
Exploration and recency as the main proximate causes of

probability matching: a reinforcement learning analysis∗

Carolina Feher da Silva†1, Camila Gomes Victorino2, Nestor Caticha3, and Marcus

Vinícius Chrysóstomo Baldo ‡4

1Department of General Physics, Institute of Physics, University of São Paulo, Rua do

Matão Nr. 1371, Cidade Universitária, CEP 05508-090, São Paulo - SP, Brazil,

carolina.feher.silva@usp.br

2Department of Psychology, University of Surrey, Guildford, Surrey, GU2 7XH,

United Kingdom, c.gomesvictorino@surrey.ac.uk

3Department of General Physics, Institute of Physics, University of São Paulo, Rua do

Matão Nr. 1371, Cidade Universitária, CEP 05508-090, São Paulo - SP, Brazil,

nestor@if.usp.br

4Department of Experimental Psychology, Medical Sciences Division, University of

Oxford, 9 South Parks Road, Oxford, OX1 3UD, United Kingdom,

marcus.baldo@psy.ox.ac.uk

May 11, 2017

∗Draft version. This paper has not been peer reviewed.
†Corresponding author
‡Permanent address: Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São

Paulo, Av. Prof. Lineu Prestes, 1524, ICB-I, Cidade Universitária, CEP 05508-000, São Paulo - SP, Brazil, baldo@usp.br

1

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/104752doi: bioRxiv preprint 

https://doi.org/10.1101/104752
http://creativecommons.org/licenses/by-nd/4.0/


Abstract1

Research has not yet reached a consensus on why human participants perform suboptimally2

and match probabilities instead of maximize in a probability learning task. The most influential3

explanation is that participants search for patterns in the random sequence of outcomes. Other4

explanations, such as expectation matching, are plausible, but do not take into account how5

reinforcement learning shapes people’s choices.6

This study aimed to quantify how human performance in a probability learning task is affected7

by pattern search and reinforcement learning. We collected behavioral data from 84 young adult8

participants who performed a probability learning task wherein the most frequent outcome was9

rewarded with 0.7 probability. We then analyzed the data using a reinforcement learning model10

that searches for patterns. Model simulations indicated that pattern search, exploration (making11

random choices to learn more about the environment), recency (discounting early experiences to12

account for a changing environment), and forgetting may impair performance in a probability13

learning task.14

Our analysis estimated that 85% (95% HDI [76, 94]) of participants searched for patterns and15

believed that each trial outcome depended on one or two previous ones. The estimated impact16

of pattern search on performance was, however, only 6%, while those of exploration and recency17

were 19% and 13% respectively. This suggests that probability matching is caused by uncertainty18

about how outcomes are generated, which leads to pattern search, exploration, and recency.19

Keywords: probability matching, reinforcement learning, wavy effect, exploration-exploitation20

trade-off.21
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1 Introduction22

In our lives, we frequently make decisions, some of which have lifelong consequences for our well-being.23

It is thus essential to identify the environmental and neurobiological factors that promote suboptimal24

decisions. Accomplishing this goal, however, can be hard. Sometimes decades of research is not enough25

to produce a consensus on why people often make poor decisions in certain contexts. One example is26

the binary probability learning task. In this task, participants are asked to choose repeatedly between27

two options; for instance, in each trial they are asked to predict if a ball will appear on the left or28

on the right of a computer screen. If their prediction is correct, they receive a reward. In each trial,29

the rewarded option is determined independently and with fixed probabilities; for instance, the ball30

may appear on the left with 0.7 probability or on the right with 0.3 probability. Usually one option,31

called the majority option, has a higher probability of being rewarded than the other. A typical32

probability learning task consists of hundreds or thousands of trials, and as this scenario repeats itself,33

all participants must learn is that one option is more frequently rewarded than the other. Indeed,34

the optimal strategy, called maximizing, is simply choosing the majority option in every trial. Human35

participants, however, rarely maximize; their behavior is usually described as probability matching,36

which consists of choosing each option with approximately the same probability it is rewarded (Koehler37

& James, 2014; Newell & Schulze, 2016; Vulkan, 2000). We would thus expect a participant performing38

our example task to choose left in about 70% of the trials and right in about 30% of trials, instead39

of optimally choosing left in all trials. Probability matching is suboptimal in this example because40

it leads to an expected accuracy of 30% × 30% + 70% × 70% = 58%, while maximizing leads to an41

expected accuracy of 70%1. Since the 1950s, a huge number of studies have attempted to explain42

why people make suboptimal decisions in such a simple context, and many plausible causes have been43

proposed, but no consensus has yet been reached on how much each cause contributes to probability44

matching (Koehler & James, 2014; Newell & Schulze, 2016; Vulkan, 2000).45

Perhaps the most influential proposal is that probability matching reflects the well-known human46

tendency to see patterns in noise (Huettel, Mack, & McCarthy, 2002): people may not realize that each47

outcome is randomly and independently drawn, but may believe instead that the outcome sequence48

follows a deterministic pattern, which they will then try to figure out (Feher da Silva & Baldo, 2012;49

Gaissmaier & Schooler, 2008a, 2008b; Gaissmaier, Schooler, & Rieskamp, 2006; Koehler & James,50

1More generally, if the majority option is rewarded with probability 0.5 < p < 1, maximizing leads to an expected
accuracy of p, while probability matching leads to an expected accuracy of p2 + (1 − p)2, which is strictly less than p,
because 0.5 < p < 1 implies p2 + (1− p)2 = 1− 2p(1− p) < 1− (1− p) = p.
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2014; Unturbe & Corominas, 2007; Wolford, Miller, & Gazzaniga, 2000; Wolford, Newman, Miller, &51

Wig, 2004). This pattern-search hypothesis is supported by much experimental evidence (Gaissmaier52

& Schooler, 2008b; Gaissmaier et al., 2006; Unturbe & Corominas, 2007; Wolford et al., 2000, 2004).53

For instance, when researchers altered the outcome sequence in a probability learning task to make54

it look more random (by, oddly, making it less random), participants chose the majority option more55

frequently and consequently performed better (Wolford et al., 2004). Moreover, participants who56

matched probabilities more closely in the absence of a pattern tended to achieve greater accuracy in57

the presence of one (Gaissmaier & Schooler, 2008b).58

It is not clear, however, how pattern search leads to probability matching. Wolford et al. (2004)59

claimed that “if there were a real pattern in the data, then any successful hypothesis about that60

pattern would result in frequency matching”. This assumes participants search for patterns by making61

predictions in accordance with plausible patterns. Koehler and James (2014), however, wondered62

why participants would employ such a strategy if they could, to advantage, maximize until a pattern63

was actually found. Maximizing while searching for patterns, besides guaranteeing that a majority64

of rewards would be obtained, is also an effortless strategy (Schulze & Newell, 2016) that allows65

participants to dedicate most of their cognitive resources to pattern search (Koehler & James, 2014).66

1.1 Patterns and Markov chains67

Alternatively, Plonsky, Teodorescu, and Erev (2015) argued that searching for complex patterns leads68

to probability matching by creating a tendency to base decisions on a small sample of previous out-69

comes. This argument assumes a general model of pattern search that we will now explain in detail,70

since it was also adopted in our study. Let us first define a temporal pattern as a connection between71

past events and a future one, so that the latter can be predicted with greater accuracy whenever the72

former are known. Suppose, for instance, that in each trial of a task, participants are asked to predict73

if a target will appear on the left or on the right of a computer screen. If the target appears alternately74

on the left and on the right, participants who have learned this pattern can correctly predict the next75

location of the target whenever they know its previous location.76

An event may be more or less predictable from previous events depending on the probability that77

links their occurrences. For instance, if the probability is 1 that the target will appear on one side in78

the next trial given that it was on the other side in the previous trial, the target will always alternate79

between sides. If this probability is greater than 0.5 but less than 1, the target will generally alternate80
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between sides but may also appear more than once on the same side sequentially, and participants81

may make prediction errors even after learning the pattern.82

In general, the probability that each event will occur may be conditional on the occurrence of the83

L ≥ 0 previous events. Formally, this sequence of events constitutes a Markov chain of order L. In a84

typical probability learning task, for instance, the outcome probabilities do not depend on any previous85

outcomes (L = 0). In an alternating sequence, each outcome depends on the previous one (L = 1). As86

outcomes depend on an increasing number of past ones, more complex patterns are generated. It has87

been shown that participants can implicitly learn to exploit outcome dependencies at least as remote88

as three trials (Cleeremans & McClelland, 1991; Reber, 1989).89

In explicit pattern learning tasks, it is believed that the relevant past events are stored in working90

memory. To understand how events are selected to enter working memory, a number of highly complex91

“Gating” models (e.g. O’Reilly & Frank, 2006; Todd, Niv, & Cohen, 2009; Zilli & Hasselmo, 2008)92

were proposed. They assume that working memory elements are maintained or updated according to93

reinforcement learning rules. We will, however, simply assume that working memory stores a history of94

k outcomes, comprising the previous k outcomes, where k depends on the perceived pattern complexity,95

and that participants try to learn the optimal action after each possible history of k outcomes. For96

instance, if working memory stores just the previous outcome (k = 1) and the outcome sequence97

generally alternates between left and right (L = 1), participants will eventually learn that left is the98

optimal prediction after right and right is the optimal prediction after left. In general, participants99

must store at least the L previous outcomes in working memory to learn the pattern in a Markov chain100

of order L, i.e., it is necessary that k ≥ L.101

Based on this general model of pattern search, Plonsky et al. (2015) proposed two specific models:102

the CAB-k and CAT models. The CAB-k model is the simplest one: In each trial, a simulated CAB-k103

agent considers the history of k outcomes that just occurred and selects the action with the highest104

average payoff in the past, but taking into account only the subset of past trials that followed the same105

history. In the example of the alternating pattern, an agent with k = 1 will eventually learn to predict106

left after right (and vice versa), because predicting left had the highest average payoff in past trials107

that followed right (and vice versa).108

In probability learning tasks, the CAB-k model with large k values predicts probability match-109

ing (Plonsky et al., 2015). This is because a large k value generates long histories, which tend to occur110

more rarely than short ones; for instance, in a sequence of binary digits, 111 is more rare than 11.111
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In this case, a CAB-k agent will base each decision on only the small number of trials that followed112

the rare past occurrences of the observed history. More generally, making decisions based on only a113

small number of trials generates a bias toward probability matching. If, for example, participants were114

always to choose the most frequent outcome of the previous three trials and choosing left is rewarded115

with 0.7 probability, participants would choose left with 0.784 probability (Plonsky et al., 2015). In-116

deed, perfect probability matching is achieved when an agent adopts a strategy known as “win-stay,117

lose-shift,” which consists of repeating a choice in the next trial if it resulted in a win or switching to118

the other option if it resulted in a loss. “Win-stay, lose-shift” may be used by participants with low119

working memory capacity (Gaissmaier & Schooler, 2008b). It results in probability matching because120

in each trial the agent bases its decisions on only the previous outcome and simply predicts that trial’s121

outcome; thus, its choices and trial outcomes have the same probability distribution.122

Plonsky et al. (2015) proposed that human participants search for complex patterns and make123

decisions based on a small number of trials. To support this proposal, they demonstrated that the124

CAT model can reproduce a novel behavioral effect they detected in a repeated binary choice task, “the125

wavy effect.” They designed a task wherein selecting one of the options, the “action option,” resulted126

in a gain with 0.9 probability and in a loss with 0.1 probability, and selecting the other option always127

resulted in a zero payoff. They observed that following a loss, the frequency with which participants128

chose the action option actually increased above the mean for several trials, then decreased below the129

mean. They reproduced this effect using the CAT model with k = 14. With this k value, the negative130

effect of a rare loss on response only occurred after the preceding sequence of 14 outcomes recurred.131

However, the large k values proposed by Plonsky et al. (2015) to explain probability matching and132

the wavy effect are inconsistent with the estimated storage capacity of the human working memory,133

which is of about four elements (Cowan, 2010). Plonsky et al. (2015) argued that their estimates134

are plausible because humans can learn long patterns. For instance, humans can learn the pattern135

001010001100 of length 12 (Gaissmaier & Schooler, 2008b). Such a feat, however, does not imply that136

k ≥ 12; as will be demonstrated in Section 3.2, an agent can perfectly predict this pattern’s next digit137

given the previous five, which merely implies k ≥ 5. Moreover, even if participants can store more138

digits than the estimated capacity of working memory—by storing sequences of digits as “chunks,” for139

instance—the resulting learning problem may be intractable. The number of histories an agent must140

learn about increases exponentially with k, and this creates a critical computational problem known141

as the “curse of dimensionality” (Todd et al., 2009). The value k = 14 generates 214 = 16384 distinct142
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histories of past outcomes for participants to learn about. If each history is equally likely to occur,143

learning the pattern would only be feasible if participants had tens of thousands of trials to learn from.144

1.2 Expectation matching145

Moreover, both probability matching and the wavy effect can be explained by another proposed mecha-146

nism, known as expectation matching (Koehler & James, 2014). According to this proposal, probability147

matching arises when participants use intuitive expectations about outcome frequencies to guide their148

choices (Koehler & James, 2014; Kogler & Kühberger, 2007; West & Stanovich, 2003). Participants149

intuitively understand that if, for example, outcome A occurs with 0.7 probability and outcome B150

with 0.3 probability, in a sequence of 10 trials outcome A will occur in about 7 trials and outcome151

B in about 3. Instead of using this understanding to devise a good choice strategy, participants use152

it directly as a choice heuristics to avoid expending any more mental energy on the problem; that is,153

they predict A in about 7 of 10 trials and B in about 3. There is compelling evidence that expectation154

matching arises intuitively to most participants, while maximizing requires deliberation to be recog-155

nized as superior. For instance, when undergraduate students were asked which strategy, among a156

number of provided alternatives, they would choose in a probability learning task, most of them chose157

probability matching (Koehler & James, 2009; West & Stanovich, 2003).158

Expectation matching can also explain the wavy effect. In the study by Plonsky et al. (2015), losses159

occurred with 0.1 probability. If losses were to occur at regular intervals, a loss would be expected160

to occur 10 trials after the previous loss, and 10 trials after a loss was indeed when participants were161

least likely to select the action option. It is thus possible that, soon after a loss occurred, participants162

did not expect another to occur so soon and thought it safe to choose the action option, which caused163

the initial positive effect on choice frequency; as time went on, though, they might have believed a164

loss was about to occur again and become more and more afraid of choosing the action option, which165

caused the delayed negative effect on choice frequency.166

Most evidence for expectation matching, however, comes from experiments that employed tasks167

without trial-by-trial reinforcement and whose instructions described the process of outcome genera-168

tion (Koehler & James, 2014). Participants would, for instance, be asked to guess all at once a color169

sequence generated by rolling ten times a ten-sided die with seven green faces and three red faces (J.170

Koehler & James, 2010). In a probability learning task, however, participants do not know how out-171

comes are generated; they have to figure that out. More importantly, the probability learning task is172
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a reinforcement learning task. Again and again, participants select an action and receive immediate173

feedback about their choices. When they make a correct choice, they are rewarded with money; other-174

wise, they fail to win money or, depending on the task, they lose money. Indeed, prediction accuracy175

improves with longer training and larger monetary rewards (Shanks, Tunney, & McCarthy, 2002) or176

when participants are both rewarded for their correct choices and punished by their incorrect ones,177

instead of only one or the other (Bereby-Meyer & Erev, 1998). In reinforcement learning tasks, as178

responses are reinforced, they tend to become more habitual (Gläscher, Daw, Dayan, & O’Doherty,179

2010) and thus less affected by conscious choice heuristics such as expectation matching.180

1.3 Reinforcement learning181

A better explanation for probability matching in probability learning tasks may thus be one that takes182

into account how reinforcement learning shapes people’s choices. Already in the 1950s, probability183

learning was tentatively explained by a number of stochastic learning models, with updating rules184

based on reinforcement, which under some conditions predicted asymptotic probability matching (e.g.,185

Estes & Straughan, 1954; Mosteller, 1958).186

More recently, reinforcement learning models based on modern reinforcement learning theory (Sut-187

ton & Barto, 1998), such as Q-Learning (Watkins, 1992), SARSA (Rummery & Niranjan, 1994),188

EVL (Busemeyer & Stout, 2002), PVL (Ahn, Busemeyer, Wagenmakers, & Stout, 2008), and PVL2 (Dai,189

Kerestes, Upton, Busemeyer, & Stout, 2015), have been used to describe how humans learn in similar190

tasks, such as the Iowa, Soochow, and Bechara Gambling Tasks (Ahn et al., 2008; Busemeyer & Stout,191

2002; Dai et al., 2015; Worthy, Hawthorne, & Otto, 2013) and others (e.g. Gläscher et al., 2010; Pes-192

siglione, Seymour, Flandin, Dolan, & Frith, 2006). Reinforcement learning models that incorporate193

representations of opponent behavior have successfully explained probability matching in competitive194

choice tasks (Schulze, van Ravenzwaaij, & Newell, 2015). These models do not just describe many195

behavioral findings accurately but are also biologically realistic in that the signals they predict corre-196

spond closely to the responses emitted by the dopamine neurons of the midbrain (see Dolan & Dayan,197

2013; Glimcher, 2011; Lee, Seo, & Jung, 2012; Niv, 2009 for reviews).198

Reinforcement learning models (Ahn et al., 2008; Busemeyer & Stout, 2002; Dai et al., 2015) as-199

sume that agents compute the expected utility of each option, not their probabilities. They are thus200

incapable of explicitly matching probabilities and cannot explain why participants would consciously201

or unconsciously try to do so. The term “probability matching,” however, does not imply that par-202
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ticipants are trying to match probabilities as a strategy, only that their average behavior matches203

them approximately. As previously discussed, probability matching is achieved when an agent with no204

knowledge of the outcome probabilities adopts the “win-stay, lose-shift” strategy or searches for very205

complex patterns. In this work, therefore, we will focus not on why people match probabilities in a206

probability learning task, but more broadly on why they fail to perform optimally.207

1.4 Exploration, fictive learning, recency, and forgetting208

Reinforcement learning models suggest many mechanisms that may contribute to a suboptimal per-209

formance in probability learning tasks, such as exploration. For a reinforcement learning agent to210

maximize its expected reward, it must choose the actions that produce the most reward. But to do211

so, it must first discover what actions produce the most reward. If the agent can only learn from what212

it has experienced, it can only discover the best actions by exploring the entire array of actions and213

trying those it has not tried before. It follows, then, that to find the optimal actions, the agent must214

not choose the actions that have so far produced the most reward. A dilemma is thus created: on215

one hand, if the agent only exploits the actions that have so far produced the most reward, it may216

never learn the optimal actions; on the other hand, if it keeps exploring actions, it may never maximize217

its expected reward. To find the optimal strategy, then, an agent must explore actions at first but218

progressively favor those that have produced the most reward (Sutton & Barto, 1998).219

Moreover, animals are not limited to learning from what they have experienced; they can also learn220

from what they might have experienced (Montague, King-Casas, & Cohen, 2006). Reinforcement221

learning models that only learn from what they have experienced are of limited utility in research, and222

it is often desirable to add to such models “fictive” or “counterfactual” learning signals—the ability223

to learn from observed, but not experienced situations. Fictive learning can speed up learning and224

make models more accurate at describing biological learning. Fictive learning signals predict changes225

in human behavior and correlate with neuroimaging signals in brain regions involved in valuation and226

choice and with dopamine concentration in the striatum (Boorman, Behrens, Woolrich, & Rushworth,227

2009; Büchel, Brassen, Yacubian, Kalisch, & Sommer, 2011; Chandrasekhar, Capra, Moore, Noussair,228

& Berns, 2008; Chiu, Lohrenz, & Montague, 2008; Fischer & Ullsperger, 2013; Hayden, Pearson, &229

Platt, 2009; Kishida et al., 2016; Lohrenz, McCabe, Camerer, & Montague, 2007; Shimokawa, Suzuki,230

Misawa, & Miyagawa, 2009). In particular, in a probability learning task, when participants make231

their choices, they learn both the payoff they got and the payoff they would have gotten if they had232
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chosen the other option. Through fictive learning, they can eliminate the need to explore: they can233

discover the optimal action while exploiting the action that has been so far the most rewarding.234

Human learning, however, may include both fictive learning and exploration. Even though fictive235

learning supersedes exploration in a probability learning task, exploration is a core feature of cognition236

at various levels since cognition’s evolutionary origins (Hills, Todd, Lazer, Redish, & Couzin, 2015).237

Exploratory behavior may be triggered, perhaps unconsciously, by uncertainty about the environment,238

even in situations it cannot uncover more rewarding actions. In a probability learning task, even after239

participants have detected the majority option, they may still believe they can learn more about how240

outcomes are generated and thus engage in exploration, choosing the minority option and decreasing241

their performance. This might happen if, for instance, participants believe that there exists a strategy242

that will allow them to perfectly predict the outcome sequence. As long as they have not achieved243

perfect prediction, they might keep trying to learn more and explore instead of exploit. And indeed,244

when participants were frequently told they would not be able to predict all the outcomes, their245

performance improved (Shanks et al., 2002). The same was observed when the instructions emphasized246

simply predicting a single trial over predicting an entire sequence of trials (Gao & Corter, 2015).247

Exploration may thus be a reason why participants do not maximize.248

The belief that perfect prediction is possible may also lead to the belief that the environment is249

non-stationary (Newell & Schulze, 2016). As participants try and fail to achieve perfect accuracy,250

they may assume that the outcome generating process keeps changing. In reinforcement learning,251

agents adapt to a non-stationary environment by implementing recency, a strategy in which behavior252

is more influenced by recent experiences than by early ones. Recency is beneficial in a non-stationary253

environment because early information may no longer be relevant for late decisions (Sutton & Barto,254

1998). In a probability learning task, payoff probabilities are constant, and early information is relevant255

for all later decisions, but participants may come to suspect otherwise as they try to predict outcomes256

and often fail.257

Another mechanism that impairs performance is forgetting, or learning decay. An agent’s knowledge258

regarding each action may decay with time, which in a stationary environment worsens performance.259

Forgetting can also interact with pattern search to slow down learning in the short term and impair260

performance in the long term. An agent that does not search for patterns needs to learn only the utility261

of each option. In every trial, it may forget some past knowledge, but it also acquire new knowledge262

from observing which option has just been rewarded. An agent that searches for patterns, however,263
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must store information about each possible history of past outcomes. In a trial, it will only acquire264

new information about one of those histories, the one that has just occurred; meanwhile, knowledge265

about all the other histories will decay. In particular, if the agent believes that each outcome depends266

on many past ones, it must learn the optimal prediction after many long histories. As long histories267

occur more rarely than short ones on average, knowledge about them will decay more often than268

increase, and the agent will have to constantly relearn what it has forgotten. It may thus never learn269

to maximize.270

1.5 Objectives271

There are thus many plausible mechanisms for probability matching, and it is possible that human272

performance is affected by more than one. It is still unknown to what extent each of them contributes273

to behavior. In this study, our primary aim was to quantify the effects of pattern search, forgetting,274

exploration, and recency on human performance in a probability learning task.275

Our secondary aim was to estimate k, a measure of working memory usage in pattern search,276

which determines how complex are the patterns people search for. This is important because, as277

discussed above, searching for complex patterns impairs performance by creating a tendency to make278

decisions based on few past observations (Plonsky et al., 2015) and by interacting with forgetting. To279

our knowledge, only Plonsky et al. (2015) have attempted to estimate working memory usage in a280

reinforcement learning task, but, as discussed, they obtained large k estimates that lie beyond working281

memory capacity and generate extremely hard learning problems.282

We collected behavioral data from 84 young adult participants who performed a probability learning283

task wherein the majority option was rewarded with 0.7 probability. We then analyzed the data using284

a reinforcement learning model that searches for patterns, the Markov pattern search (MPL) model.285

We first compared the MPL model to the PVL model, a reinforcement learning model previously286

shown to perform better than many other models at describing the behavior of healthy and clinical287

participants in the Iowa and Soochow Gambling Tasks (Ahn et al., 2008; Dai et al., 2015). The288

MPL model generalizes the PVL model, which already includes forgetting and exploration, by adding289

recency and pattern search. It allowed us to estimate how many participants searched for patterns,290

how many previous outcomes they stored in working memory, and what was the impact of pattern291

search, exploration, recency, and forgetting on their performance. We also analyzed our experimental292

data set for the presence of the wavy effect (Plonsky et al., 2015), as it has been considered an evidence293
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of complex pattern search, and tested whether the MPL could reproduce the observed results.294

2 Methods295

Eighty-four young adult human participants performed 300 trials of a probability learning task wherein296

the majority option’s probability was 0.7. Two reinforcement learning models were then fitted to the297

data: the PVL model, which was previously proposed and validated (Ahn et al., 2008; Dai et al., 2015),298

and the MPL model, which is proposed here and generalizes the PVL model by adding recency and299

pattern search. The two models were compared for their predictive accuracy using cross-validation.300

The MPL model was selected and simulated both to check if it can reproduce several aspects of301

the participants’ behavior and to estimate how pattern search, exploration, forgetting, and recency302

influence a participant’s decisions in a probability learning task. All experimental data and computer303

code used in this study are available at https://github.com/carolfs/mpl_m0exp304

2.1 Participants305

Seventy-two undergraduate dental students at the School of Dentistry of the University of São Paulo306

performed the task described below for course credit. They were told the amount of credit they would307

receive would be proportional to their score in the task, but scores were transformed so that all students308

received nearly the same amount of credit. Twelve additional participants aged 22-26 were recruited309

at the University of São Paulo via poster advertisement and performed the same task described below,310

except there was no break between blocks and participants were rewarded with money. Overall, our311

sample consisted of 84 young adult participants.312

All participants were healthy and showed no signs of neurological or psychiatric disease. All reported313

normal or corrected-to-normal color vision. Exclusion criteria were: (1) use of psychoactive drugs,314

(2) neurological or psychiatric disorders, and (3) incomplete primary school. Participants who did315

not finish the experiments were also excluded. Written informed consent was obtained from each316

participant in accordance with directives from the Ethics Committee of the Institute of Biomedical317

Sciences at the University of São Paulo.318
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Figure 1: Events in a trial.

2.2 Behavioral task319

Participants performed 300 trials of a probability learning task. In each trial, two identical gray squares320

were presented on a white background and participants were asked to predict if a black ball would321

appear inside the left or right square (Figure 1). They pressed A to predict that the ball would appear322

on the left and L to predict that it would appear on the right. Immediately afterward, the ball would323

appear inside one of the squares along with a feedback message, which was “You won 1 point/5 cents”324

if the prediction was correct and “You won nothing” otherwise. The message remained on the screen325

for 500 ms, ending the trial.326

Trials were divided into 5 blocks of 60 trials with a break between them. The probabilities that327

the ball would appear on the right or on the left were fixed and independent of previous trials; they328

were 0.7 and 0.3 respectively for half of the participants and 0.3 and 0.7 for the other half. Before329

the task started, the experimenter explained the instructions and the participants practiced them in330

a three-trial block. The participants did not receive any information about the structure of outcome331

sequences in advance.332

2.2.1 Notation333

The following notation will be used below: N is the number of participants (84) or simulated agents;334

tmax is the number of trials in the task (tmax = 300); for each trial t, 1 ≤ t ≤ tmax, the ith participant’s335

prediction is yi(t) and the trial outcome xi(t), where 0 and 1 are the possible outcomes (xi(t), yi(t) ∈336

{0, 1}); xi and yi are binary vectors containing all outcomes and predictions respectively for the ith337
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participant. The majority outcome is 1, i.e., Pr(xi(t) = 1) = 0.7 and Pr(xi(t) = 0) = 0.3, thus 1338

corresponded to the left square for half of the participants and to the right square for the other half.339

2.2.2 Analysis340

To measure how likely participants were to choose the majority option and thus determine if they341

adopted a probability matching or maximizing strategy, we calculated the participants’ mean response342

in each trial t, given by 1
N

∑N
i=1 yi(t). The mean response is equal to the frequency of choice of the343

majority option, since the majority option is 1 and the minority option is 0. We then calculated their344

mean response in the last 100 trials of the task, after participants had already learned the frequencies345

of options 0 and 1, given by 1
N

∑N
i=1

[
1

100

∑300
t=201 yi(t)

]
. The standard deviation of the mean response346

in the last 100 trials of the task was also calculated.347

It has been claimed that in probability learning tasks many participants use a “win-stay, lose-shift”348

strategy (Gaissmaier & Schooler, 2008b; Worthy et al., 2013). Strict “win-stay, lose-shift” implies that349

in each trial the agent chooses the outcome of the previous trial, i.e., x(t − 1) = y(t) for all t > 1.350

To check if our participants employed this strategy, we measured the proportion of responses made in351

accordance with the “win-stay, lose-shift” strategy by calculating the cross-correlation c(x, y) between352

y and x in the last 100 trials of the task, given by:353

c(x, y) =
1

100

tmax∑
t=tmax−100+1

(2x(t− 1)− 1)(2y(t)− 1). (1)

The cross-correlation is thus the average of (2x(t−1)−1)(2y(t)−1), which is equal to 1 if x(t−1) = y(t)354

and equal to -1 if x(t− 1) 6= y(t). If c(x, y) = 1, all predictions are the same as the previous outcome,355

which identifies strict “win-stay, lose-shift,” and if c(x, y) = −1, all predictions are the opposite of the356

previous outcome, which identifies strict “win-shift, lose-stay.” The cross-correlation is also a function357

of the proportion r of predictions which replicate the previous outcome: c(x, y) = 2r − 1.358

We also investigated the “wavy effect” (Plonsky et al., 2015). The task originally employed to359

investigate the wavy effect had an option that resulted in a rare loss. The task employed here did not,360

but option 1 resulted in a gain with 0.7 probability and in a relative loss, corresponding to the missed361

opportunity of obtaining a gain, with 0.3 probability. It was thus possible we would also observe the362

wavy effect in our data set, and we tested for this possibility.363

We adapted to our study the analysis proposed by Plonsky et al. (2015): for every participant, trials364
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were grouped according to the number of trials since the most recent x = 0 (rare) outcome; that is,365

for trial t, if trial t−n, n > 0, was the most recent trial with a 0 outcome, the number of trials elapsed366

since the most recent 0 outcome was n. For each participant i and n, cni was the number of trials in the367

group and sni the sum of all predictions y in those trials. The distribution of sni was Binomial(cni , πni ),368

where πni was the probability of y = 1. For each n, the parameters πni were given a beta distribution369

with parameters an and bn, which were in turn given improper prior uniform distributions. This370

statistical model was coded in the Stan modeling language (Carpenter et al., 2017; Stan Development371

Team, 2016b) and fitted to the data using the PyStan interface (Stan Development Team, 2016a) to372

obtain samples from the posterior distribution of model parameters. Convergence was indicated by373

R̂ ≤ 1.1 for all parameters, and at least 10 independent samples per sequence were obtained (Gelman374

et al., 2013). For each n, the participants’ mean response an/(an + bn) was obtained, as well as the375

95% high posterior density interval (HDI).376

If a wavy effect was present in the data set because of pattern search involving k previous outcomes,377

the mean response after a 0 outcome in trial t should have increased in trials t+ 1 to t+ k, decreased378

in trial t+ k+ 1, then slowly increased (Plonsky et al., 2015). Alternatively, a wavy effect might have379

been caused by expectation matching. If participants believed that 0 outcomes occurred regularly in380

the outcome sequence, they would have expected a 0 to occur every 3 to 4 trials (with 1/3 ≈ 0.33 to381

1/4 = 0.25 probability), because the probability of 0 was 0.3. Thus, according to this hypothesis, three382

or four trials after the last 0 outcome should be the point where the mean response decreased. We ran383

this analysis both in the first 100 trials of the task and in the last 100, because the wavy effect was384

first detected in a 100-trial task (Plonsky et al., 2015) and, if it is caused by expectation matching,385

it might exist only in the beginning of the task, since over time reinforced responses are expected to386

become more habitual and less affected by cognitive biases such as expectation matching.387

2.3 Statistical models388

Two reinforcement learning models were fitted to the behavioral data: the PVL model (Ahn et al.,389

2008; Dai et al., 2015) and the MPL model. The MPL model generalizes the PVL model by the390

addition of recency and pattern search.391
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2.3.1 PVL model392

The PVL and PVL2 reinforcement learning models have been previously evaluated for their abil-393

ity to describe the behavior of healthy and clinical participants in the Iowa and Soochow Gambling394

Tasks (Ahn et al., 2008; Dai et al., 2015). They were compared to and found to perform better than395

many other reinforcement learning models and a baseline Bernoulli model, which assumed that partic-396

ipants made independent choices with constant probability. In this work, we adapted the PVL model397

to the probability learning task and used it as a baseline for comparison with the MPL model, which398

generalizes the PVL model and is described next. The difference between the PVL and PVL2 models399

is not relevant for our study, since it concerns how participants attribute utility to different amounts400

of gain and loss. Thus we will refer only to the PVL model. The adapted PVL model combines a401

simple utility function with the decay-reinforcement rule (Ahn et al., 2008; Dai et al., 2015; Erev &402

Roth, 1998) and a softmax action selection rule (Sutton & Barto, 1998).403

In every trial t of a probability learning task, a simulated PVL agent predicts the next element of a404

binary sequence x(t). The agent’s prediction y(t) is a function of E0(t−1) and E1(t−1), the expected405

utilities of options 0 and 1. Initially, Ej(0) = 0 for all j ∈ {0, 1}. The probability pj(t) that the agent406

will choose option j in trial t is given by the Boltzmann distribution:407

pj(t) =
eθE(t−1)∑
i

eθE(t−1)
=

1

1 + e−θ[Ej(t−1)−E1−j(t−1)]
, (2)

where θ ≥ 0 is an exploration-exploitation parameter that models the agent’s propensity to choose408

the option with the highest expected utility. When θ = 0, the agent is equally likely to choose either409

option (it explores). Conversely, as θ → ∞ the agent is more and more likely to choose the option410

with the highest expected utility (it exploits). The expected response of a PVL agent in trial t is411

thus E[y(t)] = 1 · p1(t) + 0 · p0(t) = p1(t), the probability of choosing 1 in trial t. It is, as Equation 2412

indicates, a logistic function, with steepness θ, of E1(t − 1) − E0(t − 1), the difference between the413

expected utilities of 1 and 0. If this difference is 0, the agent is equally likely to choose 1 or 0; if it is414

positive, the agent is more likely to choose 1 than 0, and if it is negative, the agent is more likely to415

choose 0 than 1. Also, p0(t) + p1(t) = 1.416

After the agent makes its prediction and observes the trial outcome x(t), it attributes a utility uj(t)417
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to each option j, given by:418

uj(t) =


1 if x(t) = j,

0 if x(t) 6= j.

(3)

All expected utilities are then updated as follows:419

Ej(t) = AEj(t− 1) + uj(t) (4)

where 0 ≤ A ≤ 1 is a learning decay parameter, combining both forgetting and recency.420

In comparison with previous PVL and PVL2 model definitions (Ahn et al., 2008; Dai et al., 2015),421

we have made two changes to adapt this model to our task. The PVL and PVL2 models were previously422

used to study the Iowa and Soochow Gambling Tasks, in which participants may experience different423

gains and losses for their choices and only learn the outcome of the choice they actually made. In424

our task, conversely, participants gained a fixed reward for all their correct predictions and never lost425

rewards; moreover, since outcomes were mutually exclusive, participants learned both the outcome426

of the choice they made and the outcome of the choice they could have made. To account for these427

differences between the tasks, we omitted the PVL features that deal with different gains and losses428

from the utility function and, following Schulze et al. (2015), added fictive learning to the decay-429

reinforcement rule.430

2.3.2 MPL model431

The Markov pattern learning (MPL) reinforcement learning model includes the same two parameters432

per participant as the PVL model, A and θ, which measure forgetting and exploration respectively,433

and adds two more parameters, k and ρ, which measure working memory usage in pattern search and434

recency respectively. Indeed, the MPL model with k = 0 (no pattern search) and ρ = 1 (no recency) is435

identical to the PVL model; it thus adds pattern search and recency to that model. It is also equivalent436

to the CAB-k model (Plonsky et al., 2015) with A = 1 (no forgetting), ρ = 1 (no recency), and θ →∞437

(no exploration).438

In this study, each trial outcome x(t) was independently generated with fixed probabilities for every439

t and thus the outcome sequence constitutes a Bernoulli process. The MPL model, however, assumes440

that each outcome depends on the k previous outcomes, i.e., the outcome sequence constitutes a Markov441

chain of order k. The model’s state space is the set of all binary sequences of length k, representing442
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all the possible histories (subsequences) of k outcomes.443

The MPL model’s utility function is identical to that of the PVL model (see above). For every444

trial t and history η of k outcomes, the MPL agent computes option j’s expected utility Eηj (t). Thus,445

for every trial it computes 2k expected utilities for each option, as there are 2k distinct histories of k446

outcomes. For instance, if k = 1, in each trial and for each option the agent computes two expected447

utilities, one if the previous outcome was 1 and another if it was 0. An option’s expected utility is448

thus conditional on the preceding k outcomes. Initially, Eηj (0) = 0 for all j, η.449

The agent’s next choice y(t) is a function of Eη0 (t − 1) and Eη1 (t − 1), where η is the observed450

history, i.e., the k previous outcomes {x(t− k), x(t− k + 1), . . . , x(t− 1)}. The probability pj(t) that451

the agent will choose option j in trial t is given by the Boltzmann distribution:452

pj(t) =
eθE

η(t−1)∑
i

eθEη(t−1)
=

1

1 + e−θ[E
η
j (t−1)−Eη1−j(t−1)]

,

where θ ≥ 0 is the exploration-exploitation parameter.453

After the agent makes its choice, all expected utility estimates are updated as follows:454

Eηj (t) =


AρEηj (t− 1) + uj(t) after history η,

AEηj (t− 1) otherwise,
(5)

where 0 ≤ A ≤ 1 is a decay (forgetting) parameter and 0 ≤ ρ ≤ 1 is a recency parameter. The model455

implies that the agent’s knowledge spontaneously decays at rate A, while the ρ parameter defines how456

much early experiences are overridden by the most recent information. A low ρ value is adaptive when457

the environment is nonstationary and early experiences become irrelevant to future decisions. The A458

and ρ parameters have a distinct effect only if k > 0, because if k = 0 there is only one possible history459

(the null history), which precedes every trial, and all expected utilities decay at rate 0 ≤ Aρ ≤ 1.460

Thus, if k = 0, the MPL model is identical to the PVL model with learning decay Aρ.461

The value of Eηj (t) may increase only after history η and if j was the outcome. Also, whenever462

history η does not occur, Eηj (t) decays at rate A, and thus Eη1 (t − 1) − Eη0 (t − 1) decays at rate A,463

which decreases the probability of choosing 1 after history η. Thus, large k values, which produce long464

histories that rarely occur, interact with forgetting (A < 1) to decrease the probability of maximizing.465

Table 1 demonstrates how an MPL agents learns a repeating pattern for two different parameter466

sets.467
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2.3.3 Bayesian hierarchical models468

The PVL and MPL models were fitted to each participant as part of larger Bayesian hierarchical469

(multilevel) models, which included the PVL or MPL distributions of each participant’s predictions as470

well as a population distribution of PVL or MPL model parameters. This allowed us to use data from471

all participants to improve individual parameter estimates, to estimate the distribution of parameters472

across participants, and to make inferences about the behavior of additional participants performing the473

probability learning task. Most of this study’s conclusions were based on such inferences. Moreover,474

a hierarchical model can have more parameters per participant and avoid overfitting, because the475

population distribution creates a dependence among parameter values for different participants so that476

they are not free to assume any value (Gelman et al., 2013). This was important for the present study,477

since the MPL model is more complex than the PVL model, having four parameters per participant478

instead of two.479

For each participant i, the PVL model has two parameters (Ai, θi). The vectors (logit(Ai), log(θi))480

were given a multivariate Student’s t distribution with mean µ, covariance matrix Σ, and four degrees481

of freedom (ν = 4). This transformation of the parameters A and θ was used because the original482

values are constrained to an interval and the transformed ones are not, which the t distribution483

requires. The t distribution with four degrees of freedom was used instead of the normal distribution484

for robustness (Gelman et al., 2013).485

Based on preliminary simulations, the model’s hyperparameters were given weakly informative486

(regularizing) prior distributions. Each component of µ was given a normal prior distribution with487

mean 0 and variance 104, and Σ was decomposed into a diagonal matrix τ , whose diagonal components488

were given a half-normal prior distribution with mean 0 and variance 1, and a correlation matrix Ω,489

which was given an LKJ prior (Lewandowski, Kurowicka, & Joe, 2009) with shape ν = 1 (Stan490

Development Team, 2016b).491
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Figure 2: Hierarchical MPL model parameters. For each participant i, four parameters are fit-
ted to the data: (ki, Ai, ρi, θi). The population parameter q tracks the frequency of k values
within the population, and the population parameters µ and Σ track the mean and covariance of
(logit(A), logit(ρ), log(θ)) values within the population. The hierarchical PVL model differs from the
MPL model by not having the k and ρ individual parameters and the q population parameter.

In short, the hierarchical PVL model fitted to the experimental data was:

yi ∼ PVL(xi,Ai, θi), ∀i

(logit(Ai), log(θi)) ∼ t4(µ,Σ = τΩτ ), ∀i

µ ∼ N (0, 104)

τ ∼ Half-Normal(0, 1)

Ω ∼ LKJ(1)

For each participant i, the MPLmodel has four parameters (ki, Ai, ρi, θi). The vectors (logit(Ai), logit(ρi), log(θi))492

were given a multivariate Student’s t distribution with mean µ, covariance matrix Σ, and four degrees493

of freedom (ν = 4). The parameter k was constrained to the range 0–5, which is consistent with494

current estimates of human working memory capacity (Cowan, 2010). An MPL agent with working495

memory k is not limited to learning patterns of length k: it can also learn much longer patterns. An496

agent with k = 5, for instance, can learn the pattern 001010001100 of length 12; see Section 3.2 for497

a demonstration. The parameter k was given a categorical distribution with Pr(ki = k) = qk for498

0 ≤ k ≤ 5.499

The model’s hyperparameters were given weakly informative prior distributions. Each component500

of µ was given a normal prior distribution with mean 0 and variance 104, and Σ was decomposed into a501
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diagonal matrix τ , whose diagonal components were given a half-normal prior distribution with mean502

0 and variance 1, and a correlation matrix Ω, which was given an LKJ prior with shape ν = 1. The503

hyperparameters qk for 0 ≤ k ≤ 5 were given a joint Dirichlet prior distribution with concentration504

parameter α = (0.001, 0.001, 0.001, 0.001, 0.001, 0.001), implying that the prior probabilities that k =505

0, 1, . . . , 5 were 1/6.506

In this hierarchical model, parameters were estimated for each participant taking into account not507

only which values fitted that participant’s results best, but also which values were the most frequent508

in the population. If, for instance, ki = 5 fitted the ith participant’s results best, but all the other509

participants had k ≤ 3, the estimated value of ki might be adjusted to, say, ki = 3.510

In summary, the hierarchical MPL model is:

yi ∼ MPL(xi,ki, Ai, ρi, θi), ∀i

ki ∼ Categorical(q), ∀i

(logit(Ai), logit(ρi), log(θi)) ∼ t4(µ,Σ = τΩτ ), ∀i

q ∼ Dirichlet(α)

µ ∼ N (0, 104)

τ ∼ Half-Normal(0, 1)

Ω ∼ LKJ(1)

The model is also shown in Figure 2.511

2.4 Model fitting512

Both models were coded in the Stan modeling language (Carpenter et al., 2017; Stan Development513

Team, 2016b) and fitted to the data using the PyStan interface (Stan Development Team, 2016a) to514

obtain samples from the posterior distribution of model parameters. Convergence was indicated by515

R̂ ≤ 1.1 for all parameters, and at least 10 independent samples per chain were obtained (Gelman et516

al., 2013). All simulations were run at least twice to check for replicability.517
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2.5 Model comparison518

The PVL model includes parameters for learning decay and exploration to explain the participants’519

behavior in the probability learning task. The MPL model additionally includes parameters for pattern520

search and recency. We determined if pattern search and recency were relevant additions that increased521

the MPL model’s predictive accuracy (its ability to predict future data accurately) by comparing the522

PVL and MPL models using cross-validation2.523

Statistical models that are fitted to data and summarized by a single point, their maximum likeli-524

hood estimates, can be compared for predictive accuracy using the Akaike information criterion (AIC).525

In this study, however, the two models were fitted to the data using Bayesian computation and many526

points of their posterior distributions were obtained, which informed us not only of the best fitting pa-527

rameters but also of the uncertainty in parameter estimation. It would thus be desirable to use all the528

available points in model comparison rather than a single one. Moreover, the AIC’s correction for the529

number of parameters tends to overestimate overfitting in hierarchical models (Gelman et al., 2013).530

Another popular criterion for model comparison is the Bayesian information criterion (BIC), but it531

has the different aim of estimating the data’s marginal probability density rather than the model’s532

predictive accuracy (Gelman et al., 2013).533

We first tried to compare the models using WAIC (Watanabe-Akaike information criterion) and534

the PSIS-LOO approximation to leave-one-out cross-validation, which estimate predictive accuracy535

and use the entire posterior distribution (Vehtari, Gelman, & Gabry, 2016), but the loo R package536

with which we performed the comparison issued a diagnostic warning that the results were likely to537

have large errors. We then used twelve-fold cross-validation, which is a more computationally intensive,538

but often more reliable, method to estimate a model’s predictive accuracy (Vehtari et al., 2016). Our539

sample of 84 participants was partitioned into twelve subsets of seven participants and each model was540

fitted to each subsample of 77 participants obtained by excluding one of the seven-participant subset541

from the overall sample. One chain of 2,000 samples (warmup 1,000) was obtained for each PVL model542

fit and one chain of 20,000 samples (warmup 10,000) was obtained for each MPL model fit (as the543

MPL model converges much more slowly than the PVL model). The results of each fit were then used544

to predict the results from the excluded participants as follows.545

For each participant, 1,000 samples were randomly selected from the model’s posterior distribution546

and for each sample a random parameter set φ (φ = (A, θ) for the PVL model and φ = (k,A, ρ, θ) for547

2Because the CAB-k model (Plonsky et al., 2015) is not a statistical model, it cannot be compared to the PVL and
MPL models using cross-validation and for this reason has not been included in our model comparison.
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the MPL model) was generated from the hyperparameter distribution specified by the sample. The548

probability of the ith participant’s results Pr(yi|xi) was estimated as549

Pr(yi|xi) =
1000∑
s=1

1

1000

tmax∏
t=1


p0(t|xi,φs) if yi(t) = 0

p1(t|xi,φs) if yi(t) = 1

 ,

where pj(t|xi,φs) is the probability that the participant would choose option j in trial t, as predicted550

by the model with parameters φs. The model’s estimated out-of-sample predictive accuracy CV was551

given by552

CV = −2
N∑
i=1

log Pr(yi|xi).

A lower CV indicates a higher predictive accuracy. This procedure was repeated twice to check for553

replicability.554

2.6 Posterior predictive distributions555

We also simulated the MPL model to check its ability to replicate relevant aspects of the experimental556

data and predict the results of hypothetical experiments. To this end, two chains of 70,000 samples557

(warmup 10,000) were obtained from the model’s posterior distribution given the observed behavioral558

data. A sample was then repeatedly selected from the posterior distribution of the hyperparameters559

(the population parameters µ, Σ, and q), random (k,A, ρ, θ) vectors were generated from the dis-560

tribution specified by the sample, and the MPL model was simulated to obtain replicated prediction561

sequences y using the generated parameters on either random outcome sequences x, Pr(x(t) = 1) = 0.7,562

or the same x sequences our participants were asked to predict. By generating many replicated data,563

we could estimate the posterior predictive distribution of relevant random variables (Gelman et al.,564

2013). For instance, would participants maximize if they stopped searching for patterns? To answer565

this question, we simulated the model with k = 0 and (A, ρ, θ) randomly drawn from the posterior dis-566

tribution, and calculated the mean response. If the mean response was close to 1, the model predicted567

maximization.568
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Figure 3: Observed mean response curve of participants and predicted mean response curve, obtained
by fitting the MPL model to the experimental data. The line y = 0.7 corresponds to the mean response
of an agent that matches probabilities. (Participants: N = 84; MPL simulations: N = 106.)

3 Results569

3.1 Behavioral results570

For each trial t, we calculated the participants’ mean response, equal to the frequency of choice of the571

majority option. Results are shown in Figure 3. Initially, the mean response was around 0.5, but it572

promptly increased, indicating that participants learned to choose the majority option more often than573

the minority option. The line y = 0.7 in Figure 3 is the expected response for probability matching.574

In the last 100 trials of the task, the mean response curve is generally above probability matching:575

participants chose the majority outcome with an average frequency of 0.77 (SD = 0.10). The mean576

response in the last 100 trials was distributed among the 84 participants as shown in Figure 4 (observed577

distribution).578

The cross-correlation of all participants was calculated for the last 100 trials, because in this trial579

range their mean response was relatively constant, as evidenced by Figure 3. The average cross-580

correlation was 0.30 (SD = 0.19), implying that, on average, 65% of the participants’ predictions581

were equal to the previous outcome and consistent with the “win-stay, lose-shift” strategy. This cross-582

correlation value, however, can also be produced by pattern search strategies, as shown in Section 3.6583

below.584

The wavy effect analysis results are shown in Figure 5. They suggest a wavy pattern in trials 1–100,585

but not in trials 201–300. In the former trials, the mean response increased for three trials after a 0,586
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Figure 4: Predictive and observed distributions of mean response in trials 200–300. (Participants:
N = 84; MPL simulations: N = 105.)
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Figure 5: Wavy effect analysis results in trials 1–100 and 201–300 for observed data and predicted data,
obtained by fitting the MPL model to the observed data. (Participants: N = 84; MPL simulations:
N = 105. The mean number of observations per participant or simulated agent for points 1 to 5 was
16.3 and for point 6+ was 16.5. The error bars are the 95% HDI.)
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Figure 6: Wavy effect analysis results in trials 1–100 and 201–300 (left) and mean response curve
(right) for MPL agents with parameters k = 3, A = 1, ρ = 1, and θ →∞ (N = 105).

decreased in the fourth trial, and increased again in subsequent trials. In the latter trials, after a 0587

outcome, the mean response always increased. It stayed below the mean for the two subsequent trials588

after 0, indicating that participants predicted 0 at an above-average frequency in those two trials.589

From the third trial on, the mean response increased above the mean, indicating that participants590

predicted 0 at a below-average frequency. According to Plonsky et al. (2015), this result indicates that591

k = 3 in the first 100 trials, because the mean response curve is predicted to decrease in trial k+1 after592

a 0 outcome. Indeed, a wavy effect similar to the one observed in the first 100 trials can be obtained593

by simulating the MPL model with k = 3, A = 1, ρ = 1, and θ → ∞, which makes it equivalent to594

the CAB-k model with k = 3 (Plonsky et al., 2015), but this simulation also predicts maximization595

rather than probability matching (Figure 6). Alternatively, the observed wavy effect can be explained596

by expectation matching: since the probability that x = 0 is 0.3, four trials after the last 0 outcome597

is when one would expect the next 0 outcome to occur if 0 outcomes occurred regularly every four598

trials, with 1/4 = 0.25 probability. This would also explain why the wavy pattern is only present in599

the first 100 outcomes: as responses are reinforced, participants make more habitual choices driven by600

reinforcement learning and fewer choices driven by cognitive biases such as expectation matching.601

3.2 Pattern learning by MPL agents602

In this study we analyzed the behavioral data with the MPL model, a reinforcement model that603

searches for patterns. In the task we employed, however, participants were asked to predict outcomes604

whose probabilities were fixed and independent of previous trials, i.e., the outcomes did not follow a605

pattern. Thus, to demonstrate how the MPL model learns patterns, we must simulate MPL agents606
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MPL k = 1, A = 1, ρ = 1, θ →∞

t p1 x
η = 0 η = 1
E0 E1 E0 E1

0 0 0 0 0
1 0.5 0 0 0 0 0
2 0.5 1 0 1 0 0
3 0.5 0 0 1 1 0
4 1 1 0 2 1 0
5 0 0 0 2 2 0
6 1 1 0 3 2 0
7 0 0 0 3 3 0
8 1 1 0 4 3 0

MPL k = 1, A = 0.9, ρ = 0.9, θ = 0.3

t p1 x
η = 0 η = 1

E0 E1 E0 E1

0 0 0 0 0
1 0.5 0 0 0 0 0
2 0.5 1 0 1 0 0
3 0.5 0 0 0.9 1 0
4 0.57 1 0 1.73 0.9 0
5 0.43 0 0 1.56 1.73 0
6 0.61 1 0 2.26 1.56 0
7 0.39 0 0 2.03 2.26 0
8 0.65 1 0 2.65 2.03 0

Table 1: MPL agents learn a sequence of outcomes x generated by alternating deterministically between
0 and 1. The agent’s parameters are given in the first row. The p1 column gives the probability that
the agent will respond 1 (it will respond 0 with probability 1−p1). From trial t = 4 on, the agent with
optimal parameters for this task (left) has already learned the pattern and always predicts the next
outcome correctly. The agent with suboptimal parameters (right) also learns the alternating pattern,
but does not always make correct predictions.

performing a different task, where outcomes actually follow a pattern. In this section we show that the607

MPL model with appropriate parameters can learn any pattern generated by a Markov chain of any608

order L ≥ 0. This includes all deterministic patterns, such as the repeating pattern 001010001100, of609

length 12, employed in a previous study with human participants (Gaissmaier & Schooler, 2008b).610

When the sequence to be predicted is generated by a fixed binary Markov chain of order L, the611

optimal strategy is to always choose the most likely outcome after each history η of length L. If612

an MPL agent is created with parameters k ≥ L, A = 1 (no forgetting), ρ = 1 (no recency), and613

θ → ∞ (no exploration), it will eventually learn the optimal strategy by the following argument. In614

this scenario, each expected utility will be simply a count of how many times that option was observed615

after the respective history, and the most frequent option will be observed more often than the least616

frequent one in the long run, which will eventually make its expected utility the highest of the two.617

The option with the highest expected utility will then be chosen every time, because this agent does618

not explore. When k ≥ L, the highest possible values for A (A = 1) and θ (θ → ∞) maximize the619

agent’s expected accuracy. A high A value means that past observations are not forgotten, which is620

optimal, because the Markov transition matrix that generates the sequence of outcomes is fixed and621

past observations represent relevant information. In this task, exploration, i.e. making random choices622

due to θ < ∞, does not uncover new information, because the agent always learns the outcomes of623

both options, regardless of what it actually chose. Thus, a high θ value is optimal, as it means that624

the “greedy” choice (of the option with the highest expected utility) will always be made.625
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Table 1 demonstrates how two MPL agents learn a deterministic alternating pattern in an eight-626

trial task. First, note that an alternating sequence, 01010101 . . ., is formed by repeating the pattern627

01 of length 2, but can be generated by a Markov chain of order 1, where 0 transitions to 1 with 1628

probability and 1 transitions to 0 with 1 probability. The MPL agent therefore only needs k = 1 to629

learn it, and only needs to consider two histories of past outcomes: η = 0 and η = 1. Similarly, the630

repeating pattern 001010001100 of length 12 (Gaissmaier & Schooler, 2008b) can be generated by a631

Markov chain of order 5, and an MPL agent only needs k = 5 to learn it.3632

The left half of Table 1 demonstrates how the agent with optimal parameters for this task (k = 1,633

A = 1, ρ = 1, θ → ∞) learns the pattern. Before the task starts, in trial t = 0, the expected utilities634

of predicting 0 or 1 are 0 for both considered histories. In trial t = 1, a history of length 1 has not635

yet been observed, and the agent just predicts 0 or 1 with 0.5 probability (p1 = 0.5). The outcome in636

trial t = 1 is x = 0, the first element of the alternating pattern. In trial t = 2, the agent has observed637

the history η = 0, but it has not learned anything about it yet and thus predicts 0 or 1 with 0.5638

probability. It then observes that the outcome alternates to x = 1 and updates the expected utility639

of making a prediction after 0: Eη=0
0 (t = 2) = 0 and Eη=0

1 (t = 2) = 1. Thus, alternating to 1 after640

0 acquires a higher expected utility than repeating 0 after 0. Since A = 1 and ρ = 1, this knowledge641

will not decay, and since θ → ∞, the agent will always exploit and predict 1 after 0. It has thus642

already learned half of the pattern. In trial t = 3, the agent has observed history η = 1, but it has not643

learned anything about it yet and thus predicts 0 or 1 with 0.5 probability. It then observes that the644

outcome is x = 0 and updates the expected utility of making a prediction after 1: Eη=1
0 (t = 3) = 1645

and Eη=1
1 (t = 3) = 0. Since A = 1 and ρ = 1, this knowledge will not decay, and since θ → ∞, the646

agent will always exploit and predict 0 after 1. It has thus learned the entire pattern, and from trial647

t = 4 on it will always make a correct prediction. In this example, the Eη=1
0 and Eη=0

1 values count648

how many times the agent has observed 0 after 1 and 1 after 0 respectively.649

The right half of Table 1 demonstrates how the agent with suboptimal parameters for this task650

(k = 1, A = 0.9, ρ = 0.9, θ = 0.3) also learns the pattern, but does not always make the correct651

prediction. Note that the Eη=1
0 and Eη=0

1 values decrease if the respective history has not been652

observed, as A = 0.9, and that even if the history is observed, the expected utility value increases by653

less than one, because Aρ = 0.81. Despite the learning decay the agent experiences, though, by t = 4,654

3These rules generate the pattern 001010001100: 00101 → 0, 01010 → 0, 10100 → 0, 01000 → 1, 10001 → 1,
00011→ 0, 00110→ 0, 01100→ 0, 11000→ 0, 10000→ 1, 00001→ 0, 00010→ 1. They prove that the pattern can be
generated by a Markov chain of order 5.
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Figure 7: Accuracy of MPL agents with varying working memory usage (k), A = 1, ρ = 1, and θ →∞
in the last 100 of 300 trials for three different tasks, whose outcomes were generated by repeating the
binary pattern strings 01, 0011, or 110010.

it has also learned the alternating pattern. If θ → ∞, it would always exploit and make the correct655

prediction, but since θ = 0.3, it will frequently, but not always, make the correct prediction, as shown656

by the p1 column.657

Figure 7 shows the results of simulations wherein MPL agents with A = 1, ρ = 1, θ → ∞, and658

k = 0, 1, 2, 3 attempt to learn patterns of increasing complexity in a 300 trial task. An alternating659

pattern (left graph of Figure 7) cannot be learned by an agent with k = 0. Agents with k ≥ L can660

learn the pattern, as demonstrated by their perfect accuracy in the last 100 trials of the task, even661

though learning this pattern only requires k = 1. In general, when k < L, the MPL model does not662

always learn the optimal strategy. The pattern 0011, of length 4, can be learned by agents with k ≥ 2663

(middle graph of Figure 7), and the pattern 110010, of length 6, by agents with k ≥ 3 (right graph of664

Figure 7). These results again demonstrate that an agent with working memory usage k may be able665

to learn patterns of length greater than k.666

3.3 Model comparison667

The PVL and MPL models were compared by cross-validation. The PVL model obtained a cross-668

validation score of 2.731× 104, while the MPL model obtained a cross-validation score of 2.656× 104.669

The lower score for the MPL model suggests that the MPL model has a higher predictive accuracy than670

the PVL model and thus that pattern search and recency, in addition to forgetting and learning decay,671

improved the reinforcement model’s ability to predict the participants’ behavior. It also supports our672

use of the MPL model to predict the results of hypothetical experiments.673
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Figure 8: Marginal posterior distribution of k, given by the mean of the q parameter (see Figure 2).
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Figure 9: Marginal posterior distributions of A, B, and θ, given the observed data D . The graphs
were obtained by generating random (A, ρ, θ) vectors from the posterior distribution of model hyper-
parameters.

3.4 Posterior distribution of MPL model parameters674

Figures 8 and 9 show the marginal posterior distributions of the parameters k, A, B, and θ. The675

most frequent k values were 0, 1, and 2, whose posterior probabilities were 0.15 (95% HDI [0.06, 0.24]),676

0.39 (95% HDI [0.25, 0.53]), and 0.45 (95% HDI [0.32, 0.59]) respectively. The posterior probability677

that k = 1 or k = 2 was 0.84 (95% HDI [0.75, 0.93]), the posterior probability that k ≥ 1 (i.e., the678

participant searched for patterns) was 0.85 (95% HDI [0.76, 0.94]), and the posterior probability that679

k ≥ 3 was 0.01 (50% HDI [0.00, 0.00], 95% HDI [0.00, 0.06]). The posterior medians of A, ρ, and θ,680

given by the transformed µ parameter, were 0.99 (95% HDI [0.98, 0.99]), 0.96 (95% HDI [0.95, 0.98]),681

and 0.23 (95% HDI [0.19, 0.28]) respectively.682
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3.5 MPL model check: mean response683

Figure 3 displays the predicted mean response curve. The predicted mean response in the last 100684

trials is 0.76 (95% HDI [0.54, 0.96]) for a new participant and 0.76 (95% HDI [0.74, 0.78]) for a new685

sample of 84 participants and the same x sequences our participants predicted. The latter prediction686

is consistent with the observed value: 11% of samples are predicted to have a mean response as high687

or higher than observed (0.77). The predicted standard deviation of the mean response in the last 100688

trials for 84 participants is 0.11 (95% HDI [0.09, 0.13]), and 96% of samples are predicted to have a689

standard deviation as high or higher than observed (0.10). The predicted and observed mean response690

distributions are shown in Figure 4.691

3.6 MPL model check: cross-correlation692

A strict “win-stay, lose-shift” strategy implies that in each trial the agent chooses the outcome of the693

previous trial, i.e., x(t − 1) = y(t) for all t > 1. This behavior can be generated by the PVL and694

MPL models with k = 0 (no pattern search) and Aρ = 0 (only the most recent outcome influences695

decisions). This implies that in each trial the expected utility of the previous outcome is 1 and the696

expected utility of the other option is 0, which creates a tendency for the agent to choose the previous697

outcome. If θ → ∞ (no exploration), the agent will employ a strict “win-stay, lose-shift” strategy;698

otherwise, it will employ this strategy probabilistically.699

However, the posterior distribution of parameters we obtained suggests the opposite of “win-stay,700

lose-shift:” k is greater than 0 with 0.85 probability and the medians of A and ρ are close to 1. Since701

previous studies that suggest many participants use a “win-stay, lose-shift” strategy (Gaissmaier &702

Schooler, 2008b; Worthy et al., 2013), this raises the possibility that our analysis is not consistent703

with the experimental data. To check for this possibility, we calculated the predicted cross-correlation704

c(x, y) between y and x in the last 100 trials of the task.705

The predicted cross-correlation for a new sample of 84 participants performing the task with the706

same x sequences was 0.28 (95% HDI [0.25, 0.32]), and 10% of participant samples are predicted to have707

an average cross-correlation as high or higher than observed (0.30). The observed cross-correlation is708

thus consistent with what MPL model predicts, suggesting that it does not reflect a “win-stay, lose-709

shift” strategy; rather, this result indicates that most participants adopted a pattern-search strategy,710

which also produced many responses that were incidentally equal to the previous outcome.711
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Figure 10: Predicted mean response by trial increases with the probability of the majority option
(p). Results were obtained by simulation using the posterior distribution of MPL model parameters.
(N = 106 by p value.)

3.7 MPL model check: wavy effect712

Figure 5 displays the predicted wavy effect curve, generated by simulating MPL agents with parameters713

randomly drawn from the posterior distribution, performing the probability learning task with the same714

x sequences as our participants. The predicted mean response trend, both for the first and the last715

100 trials, is increasing rather than wavy. The model thus predicts the observed trend accurately in716

the last 100 trials, but not in the first 100 trials. This is consistent with the explanation that the wavy717

effect observed in the first 100 trials is due to expectation matching rather than pattern search. If718

expectation matching strongly influenced the participants’ choices in the first trial range but not in719

the last one, the MPL model would only be able to predict the results accurately in the latter, since720

it does not implement expectation matching.721

3.8 Predicted effect of outcome probabilities722

Both the observed and predicted mean responses in the last 100 trials, 0.77 and 0.76 respectively,723

approximately matched the majority outcome’s probability, 0.7. Would probability matching be also724

predicted if the outcome probabilities were different? Figure 10 shows the predicted mean response725

curve for different values of the majority outcome’s probability p. The predicted mean response726

increased with p. If p = 0.5, 0.6, . . . , 1.0, the predicted mean responses at t = 1000 were 0.50, 0.65, 0.76,727

0.85, 0.90, and 0.96 respectively. Thus, the MPL model with fitted parameters predict approximate728
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Figure 11: Simulations of the MPL model indicate that pattern search (k > 0) does not necessarily
decrease the asymptotic mean response in a 1000-trial probability learning task, but agents who search
for patterns are slower to learn the majority option (top). Pattern search combined with forgetting
(k > 0, A < 1), as well as recency (ρ < 1), decreases the asymptotic mean response (bottom). (N = 106

by parameter set.)

probability matching.729

3.9 Predicted effect of pattern search, exploration, and recency on learning730

speed and mean response731

As demonstrated in Section 3.2, an MPL agent performs optimally in a task without patterns if k = 0732

(no pattern search), A = 1 (no forgetting), ρ = 1 (no recency), and θ → ∞ (no exploration). Other733

parameter values, however, do not necessarily lead to a suboptimal performance. In particular, an agent734

that searches for patterns (k > 0) may also maximize. This is shown in the top left graph of Figure 11.735

If A = 1, ρ = 1, and θ → ∞, the mean response eventually reaches 1 (maximization) even if k > 0.736

In fact, as shown in the top right graph of Figure 11, agents will learn to maximize even if θ = 0.3,737

which is approximately the median value estimated for our participants. If A < 1, however, agents738

that search for patterns never learn to maximize, as the bottom left graph of Figure 11 demonstrates.739
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Figure 12: Predicted mean response by trial for k = 0, 1, 2, 3. Results were obtained by simulation
using the posterior distribution of MPL model parameters. (N = 106 by k value.)

And if ρ < 1, no agent learns to maximize, as the bottom right graph of Figure 11 demonstrates. Thus,740

pattern search only decreases long-term performance compared to no pattern search when combined741

with forgetting. As k increases, however, pattern-searching agents take longer to maximize, especially742

if θ is low. The MPL model thus suggests that pattern search impairs performance by slowing down743

learning in the short term and, when combined with forgetting, in the long term. The former has744

already been proposed by Plonsky et al. (2015) using other models of pattern search.745

How much did pattern search actually affect our participants’ performance, though? Figure 12746

shows the predicted mean response curve for participants with k from 0 to 3. Participants with low k747

are expected to perform better than participants with high k, especially in the beginning, although,748

since ρ < 1, even participants with k = 0 (no pattern search) should not maximize. In the last 100749

of 300 trials, a participant with k = 0, 1, 2, 3 is predicted to have a mean response of 0.82 (95% HDI750

[0.60, 1.00]), 0.77 (95% HDI [0.56, 0.96]), 0.72 (95% HDI [0.52, 0.89]), and 0.67 (95% HDI [0.49, 0.82])751

respectively. Note that the model predicts that mean response variability is high for each k and thus752

that k is a weak predictor of mean response.753

The difference between the k = 0 and k = 2 mean response curves is largest (0.11 on average)754

in the 100-trial range that spans trials 18-117. To check if this difference in mean response could755

be detected in our experimental results, a linear regression was performed in the logit scale between756

the participants’ mean k estimates and their observed mean responses in the trial ranges 18-117 and757

201-300, using ordinary least squares. The results are shown in Figure 13. In both trial ranges, the758
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Figure 13: Mean response of participants (N = 84) in trials 18–117 (left) and 201–300 (right) as a
function of their mean k.
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Figure 14: Predicted mean response by trial for a replication of this experiment (predicted) and for
hypothetical experiments in which participants engaged in no pattern search or no recency or no
exploration or neither (optimal). Results were obtained by simulation using the posterior distribution
of MPL model parameters. (N = 106 by curve.)

mean response decreased with the mean k, as indicated by the negative slopes, but in trials 201-300,759

as expected, this trend was smaller. Moreover, in both trial ranges the small R2 indicates that the760

mean k is a weak predictor of mean response.761

To predict the effect of pattern search (k > 0), exploration (θ < ∞), and recency (ρ < 1) on762

our participants’ performance, we simulated hypothetical experiments in which participants did not763

engage in one of those behaviors. We did not simulate an experiment in which participants did not764

forget what they had learned (A = 1) because we assumed that forgetting was not affected by our765

participants’ beliefs and strategies. In the last 100 of 300 trials, the predicted mean response was 0.82766

for a “no pattern search” experiment, 0.89 for a “no recency” experiment, and 0.94 for a “no exploration”767

35

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/104752doi: bioRxiv preprint 

https://doi.org/10.1101/104752
http://creativecommons.org/licenses/by-nd/4.0/


experiment (Figure 14). Thus, “no exploration” has the largest impact on mean response, followed by768

“no recency,” and lastly by “no pattern search.”769

4 Discussion770

In this study, 84 young adults performed a probability learning task in which they were asked to771

repeatedly predict the next element of a binary sequence. The majority option, coded as 1, had 0.7772

probability of being rewarded, while the minority option, coded as 0, had 0.3 probability of being773

rewarded. The optimal strategy—maximizing—consisted of always choosing 1, i.e., having a mean774

response of 1. Our participants’ mean response in the last 100 of 300 trials was 0.77. This is consistent775

with numerous previous findings, which show that human participants generally do not maximize;776

instead, they approximately match probabilities (Koehler & James, 2014; Newell & Schulze, 2016;777

Vulkan, 2000). Previous research also suggests that participants search for patterns in the outcome778

sequence (Feher da Silva & Baldo, 2012; Gaissmaier & Schooler, 2008a, 2008b; Gaissmaier et al., 2006;779

Koehler & James, 2014; Unturbe & Corominas, 2007; Wolford et al., 2000, 2004). For this reason, we780

modeled our data with a reinforcement learning model that searches for patterns, the Markov pattern781

learning (MPL) model. In a model comparison using cross-validation, the MPL model had a higher782

predictive accuracy than the PVL model, which does not search for patterns (Ahn et al., 2008; Dai et783

al., 2015). This is additional evidence that participants indeed search for patterns. The fitted MPL784

model could also predict accurately all the features of the behavioral data set that we examined in785

the last 100 trials: the participants’ mean response and mean response standard deviation, the cross-786

correlation between the sequences of outcomes and predictions, and the mean response as a function787

of the number of trials since the last minority outcome (the “wavy effect” analysis).788

As discussed in the Introduction, the model does not estimate, and thus cannot explicitly match, the789

outcome probabilities; nevertheless its average behavior, after being fitted to the data, approximately790

matched them, even in simulations in which the outcome probabilities were different from 0.7/0.3.791

Similarly, our human participants may not have been trying to match probabilities, even though they792

did. This justifies switching our focus from why participants matched probabilities to why they simply793

failed to perform optimally.794

Our analysis indicates that 85% (95% HDI [76, 94]) of participants searched for patterns and took795

into account one or two previous outcomes—k = 1 or k = 2—to predict the next one. This finding796

challenges the common claim that many participants use the “win-stay, lose-shift” strategy (Gaissmaier797
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& Schooler, 2008b; Worthy et al., 2013), since this strategy implies k = 0. In one study (Gaissmaier &798

Schooler, 2008b), more than 30% of participants in one experiment and more than 50% of participants799

in another were classified as users of “win-stay, lose-shift.” Based on our analysis, we would claim800

instead that no more than 15% (95% HDI [6, 24]) of participants (those with k = 0) could have801

used “win-stay, lose-shift.” We checked this claim by calculating the observed and predicted cross-802

correlations between the sequences of outcomes and predictions, since “win-stay, lose-shift” creates803

a high cross-correlation. The observed cross-correlation, which indicated that about two thirds of804

predictions were consistent with “win-stay, lose-shift,” was also consistent with what the MPL model805

predicted, providing evidence that our analysis is accurate and that pattern search can also produce806

the observed cross-correlation.807

Our results, which suggest that k ≤ 2 for 99% of participants (95% HDI [94, 100]), also disagree808

with the results obtained by Plonsky et al. (2015), which suggest that participants performing a 100-809

trial reinforcement learning task employed much higher k values, such as k = 14. To check our results810

against those of Plonsky et al. (2015), we adapted to our study design the wavy effect analysis proposed811

by them. Our data set exhibited a wavy effect in the first 100 trials of the task, but not in the last 100812

trials, where the mean response always increased after a loss. Simulated data using the MPL model813

with fitted parameters displayed an increasing trend instead of a wavy pattern in both the first and814

the last 100 trials. If the interpretation of the wavy effect presented by Plonsky et al. (2015) is correct,815

i.e., the wavy effect is caused by pattern search, then our data analysis indicates that k = 3 in the first816

100 trials, and our simulated MPL agents with fitted parameters did not exhibit a similar wavy effect817

because k ≤ 2. Indeed, simulated MPL agents with k = 3 (equivalent to CAB-k agents with k = 3)818

did exhibit a wavy effect like the observed one. However, the same agents also maximized instead of819

matched probabilities. This is because while pattern search impairs performance, as demonstrated by820

Plonsky et al. (2015) and the present study, it is necessary to employ large k values such as k = 14 to821

impair performance to the level of probability matching. Thus, pattern search with k = 3 explains the822

wavy effect observed in the first 100 trials of the task, but it does not explain probability matching.823

The same observations are, however, compatible with our alternative proposal that the wavy effect824

is caused by expectation matching. In this scenario, we would expect a wavy pattern in which the825

lowest mean response occurs three to four trials after a loss, since the probability that x = 0 is 0.3. This826

was observed in the first 100 trials of the task, and explains why the MPL model with fitted parameters827

was not able to predict those results accurately—the model does not include expectation matching. As828
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responses were reinforced along the task, participants might have learned to make more choices driven829

by reinforcement learning and fewer choices driven by expectation matching, which explains why the830

wavy effect was not found in the last 100 trials and why the MPL model with fitted parameters could831

predict those results accurately. We conclude that the wavy effect found in the first 100 trials does832

not contradict our analysis suggesting k ≤ 2. This estimate is consistent with the estimated capacity833

of working memory (about four elements), while large k values such as k = 14, required to explain834

probability matching, are not (Cowan, 2010).835

Our MPL simulations agree with the basic premise in Plonsky et al. (2015) that the search for836

complex patterns, employing large k values, leads to a suboptimal performance because of the “curse837

of dimensionality.” Since, however, participants seem to have searched only for simple patterns, the838

suboptimal performance observed in the last 100 trials could not have been caused by this effect. It839

might still have been caused, in principle, by the interaction between pattern with forgetting (Fig-840

ure 12). Because of forgetting, participants with k = 0, who do not search for patterns, are predicted841

to achieve a mean response in the last 100 trials 10% higher than participants with k = 2, and 6%842

above average. But this is only a small improvement. It indicates that even participants who did843

not search for patterns were on average still far from maximizing. Indeed, in our experimental data,844

a lower mean k was associated with an only slightly higher mean response and mean k was a weak845

predictor of mean response. This suggests that pattern search is not the main behavior that impairs846

performance.847

The main behaviors that decreased performance the most, according to our analysis, were explo-848

ration and recency. Exploration in the MPL model is a tendency for choosing an option at random849

when both options have similar expected utilities. Exploration is adaptive in environments where850

agents can only learn an option’s utility by selecting it and observing the outcome. In our task, how-851

ever, participants did not have to select an option to learn its utility; they could use fictive learning852

to do so. Nevertheless, our simulations suggest that participants did explore, and that if they had853

not explored, their mean response in the last 100 trials would increase by 19%. In comparison, if854

they had not searched for patterns, their mean response would increase by only 6%. Our analysis855

also revealed that recency, the behavior of discounting early experiences, also had a large impact on856

performance; it predicted that by eliminating recency participants would increase their mean response857

by 13%. Together, the predicted high impact of exploration and recency on mean response suggests858

that participants were unsure about how outcomes were generated and tried to learn more about them.859
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Exploration points to this drive to learn more about the environment, and recency indicates that par-860

ticipants believed the environment was nonstationary, which may have resulted from their failing to861

find a consistent pattern.862

Our work has thus made novel quantitative and conceptual contributions to the study of human863

decision making. It confirmed that in a probability learning task the vast majority of participants864

search for patterns in the outcome sequence, and made the novel estimation that participants believe865

that each outcome depends on one or two previous ones. But our analysis also indicated that pattern866

search was not the main cause of suboptimal behavior: recency and especially exploration had a867

larger impact on performance. We conclude that suboptimal behavior in a probability learning task868

is ultimately caused by participants being unsure of how outcomes are generated, possibly because869

they cannot find a strategy that results in perfect accuracy. This uncertainty drives them to search870

for patterns, assume that their environment is changing, and explore.871
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