
Statistical Correction of the Winner’s Curse Explains
Replication Variability in Quantitative Trait Genome-Wide
Association Studies

Cameron Palmer1,2, Itsik Pe’er2

1 Department of Systems Biology, Columbia University Medical Center, New York, New
York, United States of America
2 Department of Computer Science, Columbia University, New York, New York, United
States of America

* cdp2130@cumc.columbia.edu

Abstract

Genome-wide association studies (GWAS) have identified hundreds of SNPs responsible
for variation in human quantitative traits. However, genome-wide-significant
associations often fail to replicate across independent cohorts, in apparent inconsistency
with their apparent strong effects in discovery cohorts. This limited success of
replication raises pervasive questions about the utility of the GWAS field. We identify
all 332 studies of quantitative traits from the NHGRI-EBI GWAS Database with
attempted replication. We find that the majority of studies provide insufficient data to
evaluate replication rates. The remaining papers replicate significantly worse than
expected (p < 10−14), even when adjusting for regression-to-the-mean of effect size
between discovery- and replication-cohorts termed the Winner’s Curse (p < 10−16). We
show this is due in part to misreporting replication cohort-size as a maximum number,
rather than per-locus one. In 39 studies accurately reporting per-locus cohort-size for
attempted replication of 707 loci in samples with similar ancestry, replication rate
matched expectation (predicted 458, observed 457, p = 0.94). In contrast, ancestry
differences between replication and discovery (13 studies, 385 loci) cause the most
highly-powered decile of loci to replicate worse than expected, due to difference in
linkage disequilibrium.

Author Summary

The majority of associations between common genetic variation and human traits come
from genome-wide association studies, which have analyzed millions of single-nucleotide
polymorphisms in millions of samples. These kinds of studies pose serious statistical
challenges to discovering new associations. Finite resources restrict the number of
candidate associations that can brought forward into validation samples, introducing
the need for a significance threshold. This threshold creates a phenomenon called the
Winner’s Curse, in which candidate associations close to the discovery threshold are
more likely to have biased overestimates of the variant’s true association in the sampled
population. We survey all human quantitative trait association studies that validated at
least one signal. We find the majority of these studies do not publish sufficient
information to actually support their claims of replication. For studies that did, we
computationally correct the Winner’s Curse and evaluate replication performance.
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While all variants combined replicate significantly less than expected, we find that the
subset of studies that (1) perform both discovery and replication in samples of the same
ancestry; and (2) report accurate per-variant sample sizes, replicate as expected. This
study provides strong, rigorous evidence for the broad reliability of genome-wide
association studies. We furthermore provide a model for more efficient selection of
variants as candidates for replication, as selecting variants using cursed discovery data
enriches for variants with little real evidence for trait association.

Introduction 1

Genome-wide association studies (GWAS) have identified thousands of genetic variants 2

associated with complex human traits [1]. GWAS are most commonly two-stage designs, 3

with a discovery study followed up by (possibly several) internal replication studies on 4

independent samples. Due to the number of variants tested in the typical association 5

study, replication is only attempted for a small fraction of the discovered variants 6

exceeding a p-value threshold adjusted for 106 independent tests. The tradeoff between 7

study power per-variant and resources, along with the strategy of testing millions of 8

variants for association, leads to study designs where many associated variants of low 9

effect size [2] are underpowered to be detected. 10

The Winner’s Curse (WC) is the systematic overestimation of effects ascertained by 11

thresholding. This phenomenon is induced by ascertainment of the most significant 12

GWAS signals for reporting: introducing a threshold on statistical significance means 13

that the selected set of signals will preferentially contain variants whose effects are 14

overestimated in a particular study sample due to chance noise (S1 Fig). This tendency 15

of studies to overestimate their association with a phenotype in the discovery cohort 16

might cause them to replicate at an unexpectedly low rate, increasing the apparent 17

unreliability of results from the field. This paper relies on computationally correcting 18

this biased overestimate of effect size, in order to produce accurate estimates of the 19

chances for replication. 20

Several models for directly estimating bias in effect estimates have been developed. 21

Parametric models, based predominantly on the theory established in [3], generate a 22

maximum likelihood estimation of the effect estimate based on the impact of 23

introducing a p-value threshold into the reported list of variants; thus, test statistics 24

close to the threshold tend to be biased more severely than those more substantially 25

exceeding the threshold. Alternatively, nonparametric bootstrap correction of the 26

Winner’s Curse using individual-level genetic data [4] has been implemented. 27

Evaluation of these models for binary [5, 6] and quantitative [7] traits has been limited 28

to simulations and a small number of studies, without establishing the importance of 29

WC-correction to GWAS study design. 30

Further complicating matters, there is no single accepted standard for successful 31

internal replication of a variant in a GWAS. Across the GWAS considered in this study 32

we have observed several definitions of replication. The variability of these definitions 33

leads to differing standards of “replicating signal” in the literature, and complicates an 34

evaluation of replicability across the field. 35

Variants found to be trait-associated in GWAS are not necessarily causal [8], due to 36

linkage disequilibrium (LD) between common variants. Causal variants are expected to 37

replicate, whereas significantly-associated noncausal variants will only replicate if they 38

remain linked to a causal variant in a replication study. The predicted rate of 39

replication for noncausal variants is not trivial, as in general the causal variant in a 40

locus is unknown and may not be assayed in the study. In particular, more GWAS now 41

attempt discovery and replication in samples of distinct ancestries, which are expected 42

to have substantially different LD patterns across much of the genome. Moreover, even 43
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when LD between a hidden causal variant and its observed proxy are comparable across 44

replication and discovery, there remains an open question as to whether, and in what 45

contexts, SNPs are expected to have comparable effect in different ancestral 46

backgrounds; existing work, in particular using the same database from this study [9], 47

has provided inconclusive results that may be confounded by both the Winner’s Curse 48

and a preponderance of false positive variants. 49

In this paper we seek to evaluate the replicability of SNPs in genome-wide 50

association studies across the field of human quantitative trait genetics. We specifically 51

consider quantitative trait studies as they are underrepresented amongst theoretical 52

work for correcting the Winner’s Curse, and represent a meaningful subset of the field 53

(33% of papers considered) that is still sufficiently small that we may feasibly evaluate 54

all existing studies. The NHGRI-EBI GWAS Catalog [1, 10] provides a reasonably 55

complete database of publications claiming to report genome-wide significant 56

associations between variants and human traits. We use this catalog as a tool to identify 57

the vast majority of papers in the field. Using only summary data reported in these 58

papers, we modeled the Winner’s Curse in all papers providing enough information to 59

actually support their claims of replication. We recomputed their replication rates 60

according to the nominal and Bonferroni standards of replication, thus introducing a 61

standardized regime to make generalizations about replication efficiency across all 62

studies. Together, we obtain reliable metrics to evaluate the state of human quantitative 63

trait genetics as a reproducible scientific domain. 64

Results 65

Paper Quality Control 66

We considered all 332 GWAS papers for quantitative-traits in the database [1, 10] from 67

journals we deemed pertinent to human genetics (see Table 1, S1 Table) that attempted 68

replication of discovered variants. We filtered this pool, requiring study design of strict 69

thresholding, reports of data needed to calculate bias in effect sizes [3], and related 70

consistency criteria (see Methods, S2 Table). This reduced the pool to k = 100 post-QC 71

papers (30%) for analysis. 72
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Analyzed Excluded

Am J Hum Genet 8 23
Am J Med Genet B Neuropsychiatr Genet 2 2
BMC Med Genet 3 3
Circ Cardiovasc Genet 4 12
Front Genet 1 0
Gene 1 1
Genet Epidemiol 1 1
Hum Genet 3 7
Hum Mol Genet 24 48
J Med Genet 1 5
Nat Genet 26 48
PLoS Genet 18 31
PLoS One 6 21
Science 2 2

Total: 100 204

Table 1. Distribution of papers across journals, for journals that had at least one
article with sufficient information for analysis. The full distribution of all journals
analyzed in the study, including those with all papers excluded, is in S1 Table.

The above counts consider each paper as a functional unit. In some cases, a single 73

paper will publish multiple GWAS: that is, multiple phenotypes will be analyzed in the 74

same paper. The 100 papers passing QC correspond to 134 “studies,” with 79 papers 75

containing only a single study, and the remainder having fewer than 6 studies each. As 76

these additional studies typically contribute a very small number of variants to our 77

analysis, we proceed with the paper count as a more honest reflection of the scope of 78

our analysis. 79

Paper Characteristics 80

The sum of discovery sample sizes across all analyzed papers reaches approximately 1.8 81

million non-unique individuals. The majority (88%) of this cumulative count have 82

European ancestry, framing the analysis in the context of this group. This 6.7-fold over 83

representation of European ancestry is part of uneven sampling of world populations in 84

GWAS (Table 2). 85
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European East Asian African African American

Totals 1601628 135472 1226 80006
Rate in GWAS (percent) 88.08 7.45 0.07 4.4
Rate in Population (percent) 13.3 59.8 13.1 0.5
Enrichment in GWAS (percent) 670.8 12.5 0.51 821.6

Table 2. Ancestry distribution of samples included in GWAS. Rows are as follows: (1)
“Totals”: number of samples of a given ancestry in analyzed papers, with redundancy
between studies published multiple times; (2) “Rate in GWAS”: percentage of total
samples considered that were of this ancestry; (3) “Rate in Population”: percentage of
world’s population that is of this ancestry; (4) “Enrichment in GWAS”: relative over (or
under) representation of ancestry in GWAS relative to its rate in the world. Ancestry
labels are approximations with the standard correspondences to HapMap2 reference
samples (European = CEU, East Asian = JPT+CHB, African = YRI); here, ”African
American” denotes samples reported with that nomenclature, which typically
corresponds to 80:20 admixture between ancestral sub-Saharan African and Western
European genetics [11]. All of these equivalences are oversimplifications but correspond
to assumptions widely used in the field. Counts are computed from totals across all
papers analyzed in this study, not adjusting for duplicate uses of the same datasets
across multiple studies. Total sample sizes are maximum counts of samples assuming no
per-genotype missingness is present. The totals are rounded to the nearest integer as
several imputed studies reported nonintegral sample sizes. Row 3 percentages in world
population are approximations based on demographic data from 2014-2015 [12,13].

The tally of variants these papers attempted to replicate lists 2691 non-unique 86

variants, each passing the corresponding paper-specific p-value threshold in its discovery 87

cohort. Many of these papers include linked variants on this list, introducing partial 88

redundancies. We filtered dependent variants (Online Methods) to obtain 1652 loci for 89

analysis, independent within each paper. 90

Replication Rates, by Paper 91

At a nominal threshold α = 0.05, we observe 793/1652 independent loci to replicate 92

(48%) across 100 papers. Based on the raw effect sizes reported in the discovery cohort, 93

we would have expected 1498 loci to replicate (90.7%), significantly more than observed 94

(two-tailed Poisson binomial p = 4.2 · 10−15). Statistical correction of WC leads to a 95

prediction of 888 replicated loci (53.8%), 7-fold closer but still significantly more than 96

observed (p < 3 · 10−16). Replacing the nominal threshold by Bonferroni-adjusted 97

thresholds (α = 0.05
# loci attempted in a particular paper ), we observe 519 replicated loci 98

(31.4%), significantly different than both raw (p = 3.3 · 10−14) and WC-corrected 99

(p = 9.0 · 10−15) replication predictions of 1235 (74.8%) and 610 (36.9%) loci, 100

respectively. 101

Predicting WC-corrected replication rates per paper (Poisson binomial distribution), 102

we observe excess of papers both over- and under-performing their respective 103

expectations (Fig 1A). This excess significantly correlates with publication venue (Fig 104

1B). Specifically, papers in higher impact journals tended to over-replicate, consistent 105

with publication bias [14–16] (Discussion). 106
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Fig 1. Expected and observed replication rate per publication, stratified by
journal. Top panel (A): predicted versus expected replication for each paper. Each
paper is flagged as being within 95% confidence of predicted replication rate under
WC-corrected model (dots), greater (diamonds) or lower (Xs) than expectation. X-axis:
predicted number of replications in a given paper, calculated as the sum across all loci
of power to replicate based on WC-corrected discovery effect estimates. Y-axis:
observed (jittered integer) number of replications in the paper. Colors correspond to
journals. Replication is defined as a one-tailed replication p-value surpassing a
per-paper Bonferroni threshold: 0.05

#loci attempted in paper . Confidence intervals defined

as 95% confidence according to Poisson binomial draws from the WC-corrected power
distribution. Bottom panel (B): distinct behaviors in journals depending on which set of
papers is considered. Clusters correspond to paper quality (point shapes) from top
panel; confidence intervals are 95% confidence intervals from the binomial distribution.
Red lines are expected bar heights assuming that the observed paper data correspond to
the WC-corrected model.

Sample Size and Ancestry Explain Replication Inconsistency 107

Few papers (k = 13) discovered variants in one continental ancestry and attempted 108

replication in another. This study design may hurt replication beyond WC due to 109

population-specific effects, including linkage disequilibrium. Most (48/87) remaining 110

papers reported single sample size N for replication across all attempted variants, not 111

reflecting different fractions of missing data for each variant. Note that this includes 112

genotypes missing from association analysis, rather than unmeasured genotypes whose 113

analysis was conducted within the study, even if through imputation. In particular, 114

studies conducting meta-analysis may only obtain variant data from a subset of their 115

contributing cohorts, leading to large discrepancies in effective sample size per locus. 116

This exaggerated replication sample size overestimates power to replicate and thus 117

inflates predicted replication rate. 118

The remaining 39 papers with 707 discovered loci both maintained continental 119
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ancestry across discovery and replication while also correctly reporting per-locus N . At 120

nominal threshold, 457 loci (64.6%) replicate, consistent (Poisson binomial p = 0.94) 121

with the WC-corrected prediction of 458 loci (64.8%). Considering instead the more 122

stringent Bonferroni correction, observed replication of 304 loci (43%) was also 123

consistent (p = 0.14) with the 316 expected (44.7%). In both cases, predicting 124

replication without WC-correction fails (all p < 10−14). Considering all thresholds 125

across these papers, WC-correction significantly improved sensitivity over raw discovery 126

estimates (ROC AUC 0.785 vs. 0.582, DeLong two-tailed p < 2 · 10−16; see S4 Fig). We 127

thus hereafter consider only WC-corrected estimates. 128

The improved fit amongst these 39 remaining papers is not explained by reduction in 129

power to reject fit: fit is more improved than chance expectation (based on simulations 130

on subsets of variants with matched power to observed; nominal replication, p < 0.001; 131

Bonferroni replication, p < 0.001). Furthermore, both N and ancestry filters are 132

required for good model fit (see S6 Fig and S7 Fig). 133

We further tested the importance of per-locus sample size reporting by repeating the 134

replication rate analysis on 39 papers/707 loci with correct ancestry and sample size, 135

but instead using the maximum available sample size for each study. Correcting the 136

Winner’s Curse using these aberrant sample sizes, the predicted rates of replication are 137

no longer consistent with observed data (nominal replication: p = 0.0495; Bonferroni 138

replication: p = 0.000202). These results further support the conclusion that correct 139

per-locus sample size reporting is essential for both accurate Winner’s Curse correction 140

and verifiable replication reporting. 141

Replication Efficiency by Strength of Association 142

We next investigated the relationship between the strength of a signal and its 143

replication rate. We partitioned all loci across all 100 papers into deciles according to 144

their observed replication p-value. We then used each variant’s power to replicate 145

within its study to predict the replication rate within each decile. Note that, as we used 146

deciles here, the observed and expected values should both be 10%, within confidence 147

bounds and rounding error. 148

Across all variants, the predicted replication rate per bin was not significantly 149

different from 10%, as expected, with the notable exception of the highest decile: the 150

strongest signals tended to replicate significantly less than predicted (see Fig 2). This 151

deviation primarily explains why the entire partition into deciles was significantly 152

different than expected (χ2 goodness of fit p < 10−4). As before, when restricting 153

analysis to same-ancestry replication and reporting per-locus N (see S8-S11 Fig for 154

other subsets), replication rates became consistent with prediction, both jointly across 155

all decile bins (p = 0.67) as well as within each (S3 Table). Again, this is not simply 156

lack of power to reject fit: the reduction in significance is beyond random expectation 157

(p < 0.01). Several other partitions of the data approached good fit (S3 Table), but no 158

more than was expected due to reduction in power (all p > 0.05). 159
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Fig 2. Expected and observed rates of replication in replication deciles. All
variants are sorted by replication p-value and partitioned into deciles; we then compute
power to replicate the variants in each bin using effect estimates with or without the
Winner’s Curse. Left panel (A): including all papers (WC-corrected χ2 goodness of fit
p < 10−4); right panel (B): including only papers conducting discovery and replication
in the same continental ancestry per variant and reporting accurate per-locus N
(WC-corrected χ2 goodness of fit p = 0.67). Improvement of fit exceeds what is expected
due to loss of power from subsetting data (p < 0.01). X-axis: upper p-value boundary of
bin; Y-axis: predicted fraction of replication within corresponding bin based on power
estimated from discovery data. Tracks correspond to predicted power to replicate using
raw discovery (red) or WC-corrected (teal) effect estimates. Error bars correspond to
95% confidence intervals around mean replication rates as estimated across multiple loci.

Functional Enrichment in Replicated Variants 160

Finally, we evaluated enrichment of functional annotations in detected and replicated 161

variants. We restrict this analysis to 56 papers which imputed their discovery samples 162

using the HapMap2 CEU reference panel. Variants in the CEU reference provide a null 163

distribution for functional annotation. Amongst all 998 loci for which replication was 164

attempted in these papers, the observed 29 nonsynonymous variants constitute 5X 165

enrichment compared to expectation from HapMap2 (expected 6 loci; p < 0.0001 based 166

on 10000 simulated resamplings of random variants matched on count and minor allele 167

frequency). This is due to significant enrichment of genic SNPs amongst all replication 168

candidates (3.6X, p < 0.0001), as well as an additional enrichment of nonsynonymous 169

variants among them (1.5X, p = 0.0003). Variants reaching per-paper Bonferroni 170

replication are further 1.8X enriched in nonsynonymous exonic variants, from 2.9% 171

across 998 attempted variants to 5.2% in 443 replicated ones (Binomial test one-tailed 172

p = 0.0061). This change is due to enrichment of exonic SNPs in replicated variants, 173

with no further significant selection for functional variants (p = 0.37). These results are 174

not being driven by particular outliers (χ2 goodness of fit p = 0.44; Methods). 175

Analogous enrichment among nominally-replicated variants (1.3X) is not significant 176

(Binomial one-tailed p = 0.1447). 177
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Discussion 178

This study provides the first systematic evidence of the efficacy of internal replication in 179

the field of quantitative trait genome-wide association studies. Overall, with important 180

caveats, we find that the field as a whole publishes results that replicate in a manner 181

consistent with their expected power to replicate; this seemingly argues against the 182

possibility of systematic flaws in GWAS methodology. The two significant predictors of 183

aberrant replication performance, beyond the Winner’s Curse itself, are (1) incorrectly 184

reporting maximum sample size instead of per-variant sample sizes, reflecting 185

locus-specific missingness; and (2) conducting replication in samples of different 186

continental ancestry than those used in discovery. Corresponding to reporting error and 187

linkage disequilibrium effects, these influences are not surprising. Yet we have shown 188

(S6 Fig, S7 Fig) that, within the papers considered here, these factors are necessary and 189

sufficient to explain all internal replication discrepancies. This result is both novel and 190

reassuring. 191

Though we present data separately for papers violating one of the two consistency 192

conditions (see S9 Fig, S10 Fig, S3 Table), we do not present extensive analysis or 193

conclusions for these substrata. Unfortunately, the number of papers in each bin 194

becomes quite small, in particular the mere four papers with different ancestries in 195

discovery and replication but correct per-locus sample sizes. With such small counts, 196

given the large paper-level heterogeneity we observe in Fig 1, we hesitate to draw 197

conclusions about these subsets. This prevents direct evaluation of the relative 198

importance of ancestry and sample size in replication prediction; in practice, it is likely 199

variable, dependent on the rate of missingness in a given study and the relative 200

divergence between the ancestries considered. 201

Several strategies have been developed for accounting for the Winner’s Curse in 202

reporting of signals. The use of multiple stage GWAS, in which samples are 203

conceptually partitioned into (possibly several) “discovery” and “replication” phases for 204

internal replication, may be considered an attempt at removing positive bias in effect 205

estimates. The discovery samples are used to reduce the pool of candidate SNPs from 206

∼106 to ∼101 − 103, at which point replication samples are used to verify that the 207

selected SNPs maintain their direction and approximate magnitude of effect in an 208

independent sample. Unfortunately, in many studies that make use of the discovery and 209

replication partition, the final reported results are not solely based on the replication 210

sample. Most commonly citing the argument in [17], studies frequently meta-analyze 211

effect estimates from discovery and replication for a given SNP. This joint estimate 212

maintains the benefits of prioritization by discovery, namely in reducing the cost of the 213

study by minimizing the number of variants assayed in the replication samples. 214

However, this estimate incorporates the probabilistically biased estimate from discovery, 215

possibly attenuated by the less-biased estimate from replication. Thus while the 216

argument of [17] holds, stating that meta-analysis of two-stage studies maximizes power 217

to detect variants, this increase in power comes at the cost of both increased false 218

positive rate and significant bias in the estimate of effect at true, detected signals. 219

Our selection of the Winner’s Curse correction method of Zhong and Prentice [3] is 220

based on two considerations. First, and most importantly, we lack access to the raw 221

genotype data behind the loci we consider, as is required in [4]. Moreover, the number 222

of variants reported in each study is unpredictable: in some cases there is just a single 223

variant reported, whereas in others the investigators considered several hundred. In the 224

case of the former, we cannot reliably apply methods like [18], which intrinsically 225

require summary data from a large number of the most associated variants in a study to 226

generate an effect estimate distribution. Both of these limitations strongly call for a 227

method such as [3], in which correction is applied individually to each variant using only 228

summary data. Yet this remains a limitation of our study, as we are not practically able 229
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to evaluate alternate methods of WC correction. 230

This study exclusively addresses the performance of internal replication in 231

quantitative trait GWAS. Yet other forms of replication are of just as much importance 232

to the field. External replication, in which the results of one study are tested by 233

independent investigators, is an important metric of the reliability of a field. In other 234

contexts, external replication is known to perform at much lower rates than internal 235

replication, suggesting various forms of bias. There is furthermore the consideration of 236

functional replication, here broadly meaning the extent to which meaningful biological 237

insights can be derived from GWAS data. Both of these forms of replication are largely 238

unaddressed by the current study, nor indeed are they considered by the majority of 239

GWAS publications; this does not diminish their importance. It is entirely possible that 240

our results concerning the correct performance of internal replication may coexist with 241

extremely low rates of external replication. Yet internal replication itself remains an 242

important component of the field, and one in need of proper characterization. This 243

study emerged from a discussion of the performance of internal replication in GWAS, 244

when we discovered that there were no available data to prove one way or the other 245

whether the internal replication model was effective in practice. We hope that our 246

analysis provides one measure of reassurance about the fundamental reliability of the 247

GWAS model. 248

Perhaps the most unusual observation of this analysis is the substantial proportion 249

of manuscripts in the field that do not provide enough information to actually allow 250

independent validation of their results. While some of the filters applied in our QC 251

pipeline were present simply for ease of modeling, at least 58% of papers we collected 252

failed to include the minimal amount of reporting to fully prove their claims of 253

replication. This situation is a failure both in data reporting by authors and by peer 254

review in journals. Combined with variable definitions of replication, we suggest this 255

accidental lack of transparency substantially contributes to perceived unreliability of 256

statistical genetics within other scientific disciplines. A higher standard of reporting, 257

that will not only enable computation of unbiased effect estimates, but also list them 258

explicitly, may be beneficial for the field. 259

We detect significant evidence for publication bias, the preferential publication of 260

results based on their perceived quality. In particular, as shown in Fig 1, journals of 261

higher impact factor, most notably Nature Genetics, published studies that replicated 262

more variants than expected based on their statistical power; the inverse relationship is 263

true as well. While this may intuitively suggest that the most robust results are 264

published in the best journals, there is no intrinsic reason that the results of a study 265

that replicates according to its statistical power distribution should be less robust than 266

those of a study that replicates more often than should be possible. Rather, as is often 267

the case with publication bias in other contexts, we raise concerns that the competitive 268

publication of GWAS is giving rise to a publication record with invalid statistical 269

properties, an important consideration that is not widely appreciated at this time. 270

Somewhat surprising is the lack of a clear ranking bias, in which studies combine 271

variants at a locus according to strength of association, thus biasing each locus’s 272

indicator SNP beyond the standard Winner’s Curse. This process, which has been 273

termed “LD clumping,” is reasonably common, but was not consistently reported as 274

used in the papers we analyzed. In some cases, papers reported data for all variants at a 275

locus, and we implemented our own version of LD clumping, by randomly selecting a 276

variant at each locus and discarding all other variants within a certain conservative 277

physical distance. This process may have somewhat attenuated any ranking bias in this 278

dataset; but it is quite likely that some of the fit deviation observed in our dataset is 279

attributable to ranking bias, yet is simply not strong enough to create systematic 280

significant deviation at the granularity of the tests we apply here. 281
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The indirect method of data collection used in this study raises several difficult 282

questions concerning data consistency. Due to the sheer volume of papers analyzed in 283

the course of this study, we must assume some errors are included within our data: both 284

in the form of flawed data collection by the authors of this paper, and mistaken 285

reporting from the individual papers that was missed in both peer review and our 286

manual inspection. Of particular note, for several tests included in this study, we have 287

assumed for our statistical models that these papers report complete sets of loci brought 288

to replication. We have furthermore specifically removed papers that transparently 289

report partial subsets of results. However, without access to raw SNP lists from the 290

contributing GWAS, there is no method to directly verify this criterion. There are also 291

concerns about the low precision of data typically reported in GWAS publications. 292

While we are able to make bulk conclusions across many loci, calculations at individual 293

loci are somewhat unreliable. In particular, we have attempted to recompute the 294

apparent sample size per variant for studies that have reported maximum sample size 295

only; however, low precision data have made the resulting sample sizes rather unreliable, 296

even generating in many cases sample sizes larger than the original value. Of note, since 297

we cannot rescue the replication predictions in papers with different replication ancestry 298

or maximum sample size reporting, there remains the possibility that sample size 299

reporting or different ancestry is merely a proxy for a more meaningful underlying set of 300

variables that selectively impacts papers with these apparent reporting flaws. Future 301

analyses of this kind would strongly benefit from access to more of the raw data from 302

contributing studies, should the resources be available for such an undertaking. 303

It is important to note that the restriction of analysis to quantitative (normally 304

distributed) traits limits the direct conclusions we may draw to those same studies. 305

This leaves the remainder of GWAS, which typically study binary disease traits and 306

make up approximately 67% of the NHGRI-EBI GWAS Catalog. The methods used 307

in [3] were initially developed for case/control studies and operate on regression test 308

statistics, meaning the approach we have taken here may be easily applied to 309

case/control studies in a later analysis. However, the practicalities of data collection 310

meant that it was not possible to more than double our data acquisition for this study. 311

We see no particular reason to assume different conclusions will be drawn based on 312

binary trait studies, and suggest that our conclusions may provide a reasonable starting 313

point for the interested analyst. 314

This study is not designed to counter-productively single out individual papers or 315

investigators. For transparency, the full citation list is included (S1 File). We directly 316

disclose our own statistics among considered papers. I.P. did not author any; C.P. 317

contributed to 12 papers (3.6%) in the initial pool, two passing QC (consistent with 318

expectation, Binomial given overall rejection rate across all papers, p = 0.7751). Seven 319

of the ten removed papers provided incomplete data for replication, more than expected 320

by chance (Binomial given rate of this error across all papers, p = 0.007). This 321

anecdotal observation of papers focusing on anthropometric traits suggests the 322

consistency of stylistic conventions within a phenotypic field to translate into recurrent 323

faults in data reporting. 324

Conclusion 325

The Winner’s Curse correction algorithm used here is based on a simple and fast 326

method of generating unbiased effect estimates [3]. Our implementation [19] requires 327

simple input parameters (replication threshold, SNP frequency, etc.) available from 328

studies in the field with no paper-specific modifications required. This tool models a 329

traditional two-stage GWAS design, as opposed to a paradigm of merging data from 330

both study stages [17]. While strict staging is less powerful in detecting true 331
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associations, meta-analyzing discovery and replication results in effect estimates still 332

subject to directional bias from discovery, and is thus not considered in our software. 333

This analysis provides the first systematic evidence that quantitative trait 334

association studies as a whole are replicable at expected rates. The fairly lenient quality 335

control required to generate such a result is instructive: papers conducting discovery 336

and replication in populations of similar ancestry and reporting accurate sample sizes 337

replicate according to their predicted power. That these criteria are met in only 12% of 338

all successfully published papers indicates intrinsic flaws, not in the paradigm of GWAS, 339

but rather in study design and reporting standards. Correction of discovery effects 340

provides distinct advantages for any GWAS study. Most fundamentally, replication at 341

expected level is a sanity check for the analyst. Furthermore, WC-correction allows 342

rational and optimal prioritization of variants for replication. Finally, as a field, it is 343

critical for GWAS to report correct, rather than inflated results. 344

Materials and Methods 345

Notation 346

We consider M independent loci brought forward to replication from all papers 347

combined. Each individual paper x contributes Mx loci to this total. A variant has an 348

estimate of effect βobs on a given phenotype as well as a standard error of that estimate 349

s, both computed from some form of linear regression. Significance, either for bringing 350

variants forward from discovery, or for considering variants successfully replicated, is 351

defined based on a p-value threshold αx. The corresponding test statistic βobs

s is 352

standard normally distributed; φ, ψ are thus the PDF and CDF of the standard normal 353

distribution, respectively. 354

Data Collection 355

The NHGRI-EBI GWAS Catalog [1, 10] is an online resource that collects certain 356

annotations for all SNPs reported as significantly associated with a human trait. As 357

significant association and successful peer review are the only major criteria used for 358

inclusion in this database, we used it as a reasonably unbiased source of papers in the 359

field across a variety of phenotypes and journals. We restricted the articles selected 360

from the database to fit our modeling requirements as follows. The papers selected must 361

primarily: 362

1. study at least one quantitative trait; 363

2. be published in a journal with a primary focus on human genetics; 364

3. provide regression effect, standard error, frequency, and sample size for both 365

discovery and replication; 366

4. provide data for all variants brought forward to replication; and 367

5. model a minimally two-stage (discovery and replication) study design with a 368

p-value threshold used to select variants for replication. 369

The full list of filters and papers lost due to each criterion is shown in S2 Table. 370

Whenever possible, we made reasonable accommodations to the papers to attempt to 371

include them in this study. We consider variants novelly discovered in each paper, as 372

opposed to those previously reported for a trait in question, as those are the variants 373

typically brought forward for replication. Papers conducting multiple GWAS (i.e., 374
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reporting multiple phenotypes tested in the same study sample) had all novel discovered 375

variants from all traits included in the analysis, and are conservatively reported as a 376

single unit in this analysis. For studies that reported a single allele frequency per 377

variant, as opposed to a distinct frequency for each of discovery and replication stages, 378

we used that one frequency for both stage instead. Studies that did not report a 379

variant-specific sample size, to accommodate for differential missingness at different 380

sites, were assigned the maximum available sample size assuming no per-site 381

missingness. These modifications will introduce noise into the final analysis, yet a large 382

percentage of papers required at least one of these modifications and thus were 383

permitted in the interest of representation and sufficient sample size. 384

Studies with different replication designs were compelled whenever possible into the 385

traditional two-stage format we use here. Thus for studies that attempted multiple 386

non-tiered replications, followed by a meta-analysis of all discovery and replication 387

panels together, we conducted the replication study meta-analysis manually using 388

standard error weighting in METAL [20]. Studies that conducted tiered replications 389

were included with the first tier replication, in which all variants passing a threshold 390

from discovery were tested, used for their replication study. 391

Winner’s Curse Correction 392

To perform bias estimation, we use an implementation of the model in another study [3]. 393

The major benefit of this model is that it may be applied to variant summary statistics 394

as opposed to raw genetic data. As the non-parametric method BRsquared [4] requires 395

raw genetic data, we did not consider this alternative. The maximum likelihood model 396

we use is as follows: 397

βobs = βtrue + s
φ
(
βtrue

s − c
)
− φ

(
−βtrue

s − c
)

ψ
(
βtrue

s − c
)
+ ψ

(
−βtrue

s − c
)

Here, βobs is the (likely biased) effect estimate observed in discovery; βtrue is the 398

conceptual underlying unbiased effect of the variant in the source population; and c is 399

the test statistic corresponding to the discovery α threshold in a given study. The 400

expected bias of the observed effect, E[βobs − βtrue], scales inversely with the distance 401

between the observed test statistic and the cutoff applied to variants brought forward to 402

replication. The bias can be solved using any standard zero-finding algorithm (for 403

example, Brent’s method as implemented in C [21]). Note that in situations in which 404

the observed test statistic far exceeds the α threshold, each component of the bias in 405

the above equation is dominated by one or the other of the paired terms; only when the 406

statistic is close to the threshold (that is, when the expected bias is large) do both 407

terms meaningfully contribute to the bias estimate. 408

Independence of Loci 409

To simplify predictions of replication efficiency, we considered an independent subset of 410

all reported loci. As we lack direct access to the genetic samples used in these studies, 411

we extracted a subset of the variants such that no two variants in a paper are situated 412

within one megabase of any other. This is a very simple modification of the standard 413

clumping protocol used in GWAS studies [22]. To prevent additional bias, we report a 414

random variant from each locus, not necessarily the most strongly associated in 415

discovery. This will effectively guarantee that each variant represents a single locus with 416

only minimal linkage disequilibrium between variants, but is conservative in the sense 417

that it discards any secondary signals present among the replicated variants. 418
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Furthermore, this approach may attenuate functional annotation burden testing if the 419

strongest association in an LD block is preferentially causal. While certain papers 420

specifically address the possibility of secondary signals by sequential conditional analysis 421

of variants, the inconsistency of this analysis and absence of it in many papers led us to 422

seek a uniform treatment of all papers in this study. 423

Definition of Internal Replication 424

The concept of internal “replication” may be interpreted differently in different reports. 425

We consider three definitions of replication for this study, to observe different 426

characteristics of the data: 427

1. replication at nominal α = 0.05 [“nominal”] 428

2. replication at α = 0.05
Mpaper

[“Bonferroni”] 429

3. replication within deciles of variants [“deciles”] 430

We specifically only consider methods in which replication is determined from the 431

replication study alone. The nominal and Bonferroni methods are commonly used. We 432

use the decile method to investigate the behavior of the predicted power [23] to replicate 433

according to the strength of an association signal. We compute decile goodness of fit 434

with the Poisson binomial distribution, using average power to replicate in each bin 435

across all variants. This permits a formal analysis of differential performance of 436

replication at different levels of replication stringency. 437

Given a set of variants and their predicted power to replicate at a given α threshold, 438

the number of observed replications is distributed as Poisson binomial with success 439

probabilities equal to each individual variants’ power to replicate (see below). This is a 440

generalization of a Binomial distribution in which each Bernoulli trial is allowed to have 441

a known but variable success rate. We use the implementation of this distribution in 442

R [24]. We further adapt the standard two-tailed Binomial test for use with the Poisson 443

binomial CDF implemented in this package. 444

We note that under certain assumptions the number of replications will 445

asymptotically be distributed normally. However, depending on the α considered, many 446

variants analyzed here have power of effectively, or within machine precision, 0 or 1; 447

with our limited sample size, the convergence properties of our dataset will be 448

undesirable, and thus we use the exact distribution at the cost of computational 449

efficiency. This process may be considered a fitting of the model according to which the 450

WC-corrected discovery data correctly explain the observed replication data. 451

In several instances, we evaluate the effects of filtering certain subsets of papers 452

based on various criteria, and the extent to which this causes fit criteria to return to 453

null expectation. As this evaluation is potentially confounded by reduced statistical 454

power, in all cases we test whether the change in p-value is significantly different from 455

expectation under random subsampling of variants matched on total power to replicate 456

amongst the observed variants. 457

Power to Replicate 458

Assuming the discovery and replication sample of a study are drawn from the same 459

source population with shared expected effect at each variant, the power to replicate a 460

discovered variant v for a quantitative trait under the additive model is 461

power(α,ncpv) = 1− χ2
1((χ

2
1)

−1(1− α),ncpv)
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In brief, the power to detect a signal at an α threshold of p is the probability of the 462

variant exceeding the required test statistic from the null, but under the alternative 463

distribution which is noncentral χ2
1 with per-variant noncentrality parameter 464

ncpv = N
variance explained

residual variance

≈ N
2β2

obsf(1− f)

trait variance− 2β2
obsf(1− f)

where N is the replication sample size and f is the replication allele frequency of the 465

variant. This f should be the actual allele frequency in the replication sample; however, 466

studies sometimes report fhapmap from the closest reference ancestry as a means of 467

protecting patient anonymity. Overall, the predicted number of replications across all 468

variants in a paper is the sum of the power to replicate, as a function of predicted effect 469

size and replication sample size and frequency, across all variants analyzed. 470

Sample Ancestries 471

These papers demonstrate the coverage of population ancestries in the field of 472

quantitative trait genetics. We report and analyze the ancestral coverage of these 473

studies using the simplifying summary statistic of continent of ancestry (Europe, Africa, 474

East Asia), tracing generally the ancestries of the original HapMap2 populations. We 475

include a fourth category for African American samples, the largest admixed population 476

nonnegligibly represented in the papers. This geographical partitioning matches the 477

ancestry assumptions used in GWAS methods such as genotype imputation. 478

Ancestry group counts are computed from maximum reported sample size per cohort 479

per paper. In studies where cohorts of different continental ancestry are meta-analyzed, 480

sample sizes are appropriately partitioned to the contributing ancestries. No adjustment 481

is applied for papers reporting on the same cohort. For comparison to what the field’s 482

sample sizes would be under random global sampling, global population estimates are 483

computed [12,13]. 484

Functional Annotation 485

We tested loci for nonrandom annotations. This test is usually conducted with access to 486

the full set of variants tested in an individual study. As in this study design such 487

information is masked, we restricted the analysis to papers using HapMap2 imputation 488

in their discovery data; considered only SNPs present in HapMap2; and restricted the 489

data further to European ancestry discovery data, which includes the majority of papers 490

in the dataset. 491

We annotated all variants in the CEU subset of HapMap2 using ANNOVAR [25]. 492

We computed the average rate of functional annotations in the true set of variants. To 493

generate a null distribution, we matched true variants on allele frequency and, when 494

appropriate, whether the variant was located in an exon. P-values are computed over 495

10000 simulated null sets. 496

Supporting Information 497

S1 File Text supplement. Contains: S1-S11 Figure, S1-S3 Table, and bibliography 498

for all papers considered from the NHGRI-EBI GWAS Catalog. 499
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S1 Dataset Compressed archive of independent subset of loci, from all 500

papers used in analysis. Each file corresponds to a single PMID as listed in the 501

filename. Only includes data for 100 studies used in analysis. For full citations, see S1 502

File. 503

S2 Dataset Jupyter notebook of statistical analyses in the paper. Included: 504

the raw data from S1 Dataset, with per-variant data for each paper, split by ancestry 505

and sample size consistency, both before and after Winner’s Curse correction; per-paper 506

replication computations, both with nominal and Bonferroni replication; and Poisson 507

binomial testing on per-variant decile data. Any other analyses from the study are 508

straightforward to reconstruct from the variables and scripts in the notebook. To repeat 509

the Winner’s Curse correction itself, use the C++ library release [19]. 510
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