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Abstract

Accurate annotations of genes and ther transcripts is a foundation of genomics, but no
annotation technique presently combines throughput and accuracy. As aresult, current reference
gene collections remain far from complete: many genes models are fragmentary, while thousands
more remain uncatalogued—particularly for long noncoding RNAs (IncRNAS). To accelerate
INcRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS),
combining targeted RNA capture with third generation long-read sequencing. We present an
experimental re-annotation of the entire GENCODE intergenic IncRNA population in matched
human and mouse tissues. CLS approximately doubles the annotated complexity of targeted loci,
in terms of validated splice junctions and transcript models, outperforming existing short-read
techniques. The full-length transcript models produced by CLS enable us to definitively
characterize the genomic features of INCRNAS, including promoter- and gene-structure, and
protein-coding potential. Thus CLS removes a longstanding bottleneck of transcriptome

annotation, generating manual-quality full-length transcript models at high-throughput scales.
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I ntroduction

Long noncoding RNAS (IncRNAS) represent a vast and largely unexplored component of
the mammalian genome. Efforts to assign INCRNA functions rest on the availability of high-
quality transcriptome annotations. At present such annotations are still rudimentary: we have
little idea of the total INCRNA count, and for those that have been identified, transcript structures

remain largely incomplete.

The number and size of available INCcRNA annotations have grown rapidly thanks to
projects using diverse approaches. Early gene sets, deriving from a mixture of FANTOM cDNA
sequencing efforts and public databases (1,2) were joined by the “lincRNA” (long intergenic
non-coding RNA) sets, discovered through analysis of chromatin signatures (3). More recently,
studies have applied de novo transcript-reconstruction software, such as Cufflinks (4) and
Scripture (5) to identify novel genes in short-read RNA sequencing (RNAseq) datasets (6-10).
However the reference for INCRNAS, as for protein-coding genes, has become the regularly-
updated, manual annotations from GENCODE, which are based on curation of cDONAs and ESTs
by human annotators (11,12). GENCODE has been adopted by most international genomics
consortia(13-17).

At present, annotation efforts are caught in a trade-off between throughput and quality.
De novo methods deliver large annotations with low hands-on time and financial investment. In
contrast, manual annotation is relatively slow and requires long-term funding. However the
quality of de novo annotations is often doubtful, due to the inherent difficulty of reconstructing
transcript structures from much shorter sequence reads. Such structures tend to be incomplete,
often lacking terminal exons or omitting splice junctions between adjacent exons (18). This
particularly affects IncRNAs, whose low expression results in low read coverage (12). The
outcome is a growing divergence between automated annotations of large size but uncertain
quality (e.g. 101,700 genes for NONCODE (9), and smaller but highly-curated “conservative’
annotations of GENCODE (15,767 genes for version 25) (12).

Annotation incompleteness takes two forms. First, genes may be entirely missing from
the annotation. Many genomic regions are suspected to transcribe RNA but presently contain no
annotation, including “orphan” small RNAs with presumed long precursors (19), enhancers (20)
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and ultraconserved eements (21,22). Similarly, thousands of single-exon predicted transcripts
may be valid, but are generally excluded owing to doubts over their origin (12). The second form
of incompleteness refers to missing or partial gene structures in already-annotated InCRNAS.
Start and end sites frequently lack independent supporting evidence (12), and IncCRNAs as
annotated have shorter spliced lengths and fewer exons than mRNAs (8,12,23). Recently,
RACE-Seq was developed to complete IncRNA annotations, but at relatively low throughput
(23).

One of the principal impediments to INcRNA annotation arises from their low steady-
state levels (3,12). To overcome this, targeted transcriptomics, or “RNA Capture Sequencing”
(CaptureSeq) (24) is used to boost the concentration of known or suspected low-abundance
transcriptsin cDNA libraries. These studies have relied on Illumina short read sequencing and de
novo transcript reconstruction (24-26), with accompanying doubts over transcript structure
quality. Thus, while CaptureSeq achieves high throughput, its transcript structures lack the
confidence required for inclusion in GENCODE.

In order to harness the power of CaptureSeq while eliminating de novo transcript
assembly, we have developed RNA Capture Long Seq (CLS). CLS couples targeted RNA
capture with third generation long-read cDNA sequencing. We used CLS to interrogate the
GENCODE catalogue of intergenic INcRNAs, together with thousands of suspected novel loci, in
six tissues each of human and mouse. CLS dramatically extends known annotations with high-
guality novel structures. These data can be combined with other genomic data indicating 5 and
3’ transcript termini to yield full-length transcript models in an automated way, alowing us to
describe fundamental IncRNA promoter and gene structure properties for the first time. Thus
CLS represents a significant advance in transcriptome annotation, and the dataset produced here

advances our understanding of INcCRNA'’s basic properties.
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Results

Capture Long Seq approach to extend the GENCODE IncRNA annotation

Our aim was to develop an experimental approach to improve and extend reference
transcript annotations, while minimizing human intervention and avoiding de novo transcript
assembly. We designed a method, Capture Long Seq (CLS), which couples targeted RNA
capture to Pacific Biosciences (“PacBio”) Third Generation long-read sequencing (Figure 1A).
The novelty of CLSisthat it captures full-length, unfragmented cDNAS: this enables the targeted
sequencing of low-abundance transcripts, while avoiding the uncertainty of assembled transcript

structures from short-read sequencing.

CLS may be applied to two distinct objectives: to improve existing gene models, or to
identify novel loci (blue and orange in Figure 1A, respectively). Although the present study
focuses mainly on the first objective of improving existing INcRNA annotations, we demonstrate
also that novel loci can be captured and sequenced. With this in mind, we created a
comprehensive capture library targeting the set of intergenic GENCODE IncRNAs in human and
mouse. It should be noted that annotations for human are presently more complete than for
mouse, and this accounts for the differences in the annotation sizes throughout (9,090 vs 6,615
genes, respectively). It should also be noted that GENCODE annotations probed in this study are
principally multi-exonic transcripts based on polyA+ cDNA and EST libraries, and hence are not
likely to include many “enhancer RNAS’ (11,27). To these we added tiled probes targeting loci
that may produce IncRNAs. small RNA genes (28), enhancers (29) and ultraconserved e ements
(30). For mouse we also added orthologue predictions of human InNcCRNAs from PipeR (31).
Numerous control probes were added, including a series targeting half of the ERCC synthetic
spike-ins (32). Together, these sequences were used to design capture libraries of temperature-

matched and non-repetitive oligonucleotide probes (Figure 1B).

To access the maximal breadth of INcRNA diversity, we chose a set of transcriptionally-
complex and biomedically-relevant organs from mouse and human: whole brain, heart, liver and
testis (Figure 1C). To these we added two deeply-studied ENCODE human cell lines, HeLa and
K562 (33), and two mouse embryonic time-points (E7 and E15).
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We designed a protocol to capture full-length, oligo-dT-primed cDNASs (full details can
be found in Materials and Methods). Barcoded, unfragmented cDNASs were pooled and captured.
Preliminary tests using quantitative PCR indicated strong and specific enrichment for targeted
regions (Supplementary Figure 1). PacBio sequencing tends to favour shorter templates in a
mixture (34). Therefore pooled, captured cDNA was size-selected into three ranges (1-1.5kb,
1.5-2.5kb, >2.5kb) (Supplementary Figure 2), and used to construct sequencing libraries for
PacBio SMRT (single-molecular real-time) technology (35).

CL Syieldsan enriched long-read transcriptome

Samples were sequenced on altogether 130 SMRT cells, yielding ~2 million reads in total
in each species (Figure 2A). PacBio sequence reads, or “reads of insert” (ROIs) were
demultiplexed to retrieve their tissue of origin and mapped to the genome (see Materials and
Methods for details). We observed high mapping rates (>99% in both cases), of which 86% and
88% were unique, in human and mouse, respectively (Supplementary Figure 3). For brevity, all
data are henceforth quoted in order of human then mouse. The use of short barcodes meant that,
for ~30% of reads, the tissue of origin could not be retrieved (Supplementary Figure 4). This
may be remedied in future by the use of longer barcode sequences. Representation was evenly
distributed across tissues, with the exception of testis (Supplementary Figure 5). The ROIs had a
median length of 1 - 1.5 kb (Figure 2B) consistent with previous reports (34) and longer than
typical IncRNA annotation of ~0.5 kb (12).

Capture performance is assessed in two ways. by “on-target” rate — the proportion of
reads originating from probed regions — and by enrichment, or increase of on-target rate
following capture (36). To estimate this, we sequenced pre- and post-capture libraries using
MiSeq. CLS achieved on-target rates of 29.7% / 16.5%, representing 19- / 11-fold increase over
pre-capture cDNA (Figure 2C, D and Supplementary Figure 6). The mgjority of off-target signal

arises from non-targeted, annotated protein-coding genes (Figure 2C).

CLS on-target rates were lower than previous studies using fragmented cDNA (36). Side-
by-side comparisons showed that this is likely due to the lower efficiency of capturing long
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cDNA fragments (Supplementary Figure 7), as observed by others (26), and thus representing a

future target for protocol optimization.

Synthetic spike-in sequences at known concentrations were used to assess CLS
sengitivity and quantitativeness. We compared the relationship of sequence reads to starting
concentration for the 42 probed (green) and 50 non-probed (violet) synthetic ERCC sequencesin
pre- and post-capture samples (Figure 2E, top and bottom rows). Given the low sequencing
depth, CLS is surprisingly sensitive, extending detection senditivity by two orders of magnitude,
and capable of detecting molecules at approximately 5 x 10 copies per cell (Materials and
Methods). As expected, it is less quantitative than conventional CaptureSeq (26), particularly at
higher concentrations where the slope falls below unity. This suggests saturation of probes by
cDNA molecules during hybridisation. A degree of noise, as inferred by the coefficient of
determination (R?) between read counts and template concentration, is introduced by the capture

process (R? of 0.63/ 0.87 in human post-capture and pre-capture, respectively).

CL S expandsthe complexity of known and novel IncCcRNAs

CLS discovers a wealth of novel transcript structures within annotated IncRNA loci. A
good example is the SAMMSON oncogene (LINC01212) (13), where we discover a variety of
new exons, splice sites, and transcription termination sites that are not present in existing
annotations (Figure 3A, more examples in Supplementary Figures 8, 9, 10). The existence of
subgtantial additional downstream structure in SAMMSON could be validated by RT-PCR
(Figure 3A).

Gathering the non-redundant union of al ROIs, we measured the amount of new
complexity discovered in targeted IncRNA loci. CLS detected 58% and 45% of targeted INCRNA
nucleotides, and extended these annotations by 6.3 / 1.6 Mb nucleotides (86% / 64% increase
compared to existing annotations) (Supplementary Figure 11). CLS discovered 45,673 and
11,038 distinct splice junctions (SJs), of which 36,839 and 26,715 are novel (Figure 3B and
Supplementary Figure 12, left bars). The number of novel, high-confidence human SJs amounted
to 20,327 when using a deeper human SJ reference catalogue composed of both GENCODE v20

and miTranscriptome (8) as a reference (Supplementary Figure 13). For independent validation,
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and given the relatively high sequence indel rate detected in PacBio reads (Supplementary Figure
14) (see Methods for analysis of sequencing error rates), we deeply sequenced captured cDNA
by Illumina HiSeq at an average depth of 35 million / 26 million pair-end reads per tissue
sample. Split reads from this data exactly matched 78% / 75% SJs from CLS. These “high-
confidence” SJs alone represent a 160% / 111% increase over the existing, probed GENCODE
annotations (Figure 3B, Supplementary Figure 12). Novel high-confidence IncRNA SJs are
rather tissue-specific, with greatest numbers observed in testis (Supplementary Figure 15), and
were also discovered across other classes of targeted and non-targeted loci (Supplementary
Figure 16). We observed a greater frequency of intron retention events in IncRNAs, compared to

protein-coding transcripts (Supplementary Figure 17).

To evaluate the biological significance of novel INCRNA SJs, we computed their strength
using standard position weight matrix models from donor and acceptor sites (37) (Figure 3C,
Supplementary Figure 18). High-confidence novel SJs from IncRNAS (orange, upper panel) far
exceed the predicted strength of background SJlike dinucleotides (bottom panels), and are
essentially indistinguishable from annotated SJs in protein-coding and INcCRNA loci (pink, upper
and middle panels). Even unsupported, novel SJs (black) tend to have high scores in excess of
background, although with a significant low-scoring tail. Although they display little evidence of
sequence conservation using standard measures (similar to INcCRNA SJs in general)
(Supplementary Figure 19), novel SJs also display weak but non-random evidence of selected

function between human and mouse (Supplementary Figure 20).

We estimated how close these sequencing data are to saturation of true gene structures,
that is, to reaching a definitive IncRNA annotation. In each tissue sample, we tested the rate of
novel splice junction and transcript model discovery as a function of increasing depth of
randomly-sampled ROIs (Figure 3D, Supplementary Figures 21, 22). We observed an ongoing
gain of novelty with increasing depth, for both low- and high-confidence SJs, up to that
presented here. Similarly, no SJ discovery saturation plateau was reached at increasing simulated
HiSeq read depth (Supplementary Figure 23). Thus, considerable additional sequencing is
required to fully define the complexity of annotated GENCODE IncRNAs.

Beyond INncRNA characterization, CLS can be of utility to characterize many other types
of transcriptional units. As an illustration, we searched for precursor transcripts of small RNAs
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(microRNAs, snoRNAs and snRNAS), whose annotation remains poor (19). We probed 1 kb
windows around all “orphan” small RNAs, i.e. those with no annotated overlapping transcript.
Note that, although mature snoRNAs are non-polyadenylated, they tend to be processed from
polyA+ precursor transcripts (38). We identified more than one hundred likely exonic primary
transcripts, and hundreds more potential precursors harbouring small RNAs within their introns
(Figure 3E). One intriguing example was the cardiac-enriched hsa-mir-143 (Supplementary
Figure 24). We previoudly identified a standalone IncRNA in the same locus, CARMENL1, which
is necessary for cardiac precursor cdl differentiation (39). CLS identifies a new RT-PCR-
supported isoform that overlaps hsa-mir-143, suggesting it is a bifunctional IncRNA directing a

complex auto-regulatory feedback loop in cardiogenesis.

Assembling a full-length IncRNA annotation

A unique benefit of the CLS approach is the ability to identify full-length transcript
models with confident 5° and 3' termini. ROIs of oligo-dT-primed cDNAs carry a fragment of
the poly(A) tail, which can identify the polyadenylation site with basepair precision (34). Using
conservative filters, 73% / 64% of ROIs had identifiable polyA sites (Supplementary Table S1)
representing 16,961 / 12,894 novel polyA sites when compared to end postions of all
GENCODE annotations. Both known and novel polyA sites were accompanied by canonical
polyadenylation motifs (Supplementary Figure 25). Similarly, the 5 completeness of ROIs was
confirmed by proximity to methyl-guanosine caps identified by CAGE (Cap Analysis of Gene
Expression) (17) (Supplementary Figure 26). Together, TSS and polyA sites were used to define
the5' / 3' completeness of all ROIs (Figure 4A).

We developed a pipeine to merge ROIs into a non-redundant collection of transcript
models (TMs). In contrast to previous approaches (4), our “anchored merging” method respects
confirmed internal TSS or polyA sites (Figure 4B). Applying this to captured ROIs resultsin a
greater number of unique TMs than would be identified otherwise (Figure 4C, Supplementary
Figure 27). Specifically, we identified 179,993 / 129,556 transcript models across all biotypes
(Supplementary Table S2), 86 / 87% of which displayed support of their entire intron chain by
captured HiSeq split reads (Supplementary Table S3). The CCAT1 locus is an example where

10
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several nove transcripts are identified, each with CAGE and polyA support of 5" and 3’ termini,
respectively (Figure 4D). CLS here suggests that adjacent CCAT1 and CASC19 gene models are
in fact fragments of the same underlying gene, a concluson supported by RT-PCR (Figure
4D)(40).

Merged TMs can be defined by their end support: full length (5 and 3' supported), 5°
only, 3' only, or unsupported (Figure 4B, E). We identified a total of 65,736 / 44,673 full length
(FL) transcript models (Figure 4E and Supplementary Figure 28, left panels): 47,672 (73%) /
37,244 (83%) arise from protein coding genes, and 13,071 (20%) / 5,329 (12%) from IncRNASs
(Supplementary Table S2). An additional 3,742 (6%) / 1,258 (3%) represent FL models that span
loci of different biotypes (listed in Figure 1B), usually including one protein-coding gene
(“Multi-Biotype’). Of the remaining non-coding FL transcript models, 295 / 434 are nove,
arising from unannotated gene loci. Altogether, 11,429 / 4,350 full-length structures arise from
probed IncRNA loci, of which 8,494 / 3,168 (74% /| 73%) are novel (Supplementary Table S2).
We identified at least one FL TM for 19% / 12% of the originally-probed IncRNA annotation
(Figure 4F, Supplementary Figure 29). Independent evidence for gene promoters from DNasel
hypersensitivity sites, supported the accuracy of our 5 identification strategy (Figure 4G).
Human IncRNAs with mouse orthologues had significantly more FL transcript models, although

the reciprocal was not observed (Supplementary Figure 30).

In addition to probed IncRNA loci, CLS also discovered several thousand novel TMs
originating from unannotated regions, mapping to probed (blue in Figure 1B) or unprobed
regions (Supplementary Figures 31, 32). These TMs tended to have lower detection rates
(Supplementary Figure 33) consistent with their low overall expression (Supplementary Figure
34) and lower rates of 5" and 3' support than probed INcRNAS, although a small number are full
length (“other” in Figure 4E and Supplementary Figure 28, right panels).

We next compared CLS performance to the conventional CaptureSeq methodology using
short-read data. We took advantage of our HiSeq analysis (212/156 million reads, in
human/mouse) of the same captured cDNA samples, to make a fair comparison between
methods. Short-read methods depend on de novo transcriptome assembly: we found, using
PacBio reads as a reference, that the recent SringTie tool consistently outperforms Cufflinks,

which has been used in previous CaptureSeq projects (Supplementary Figure 35)(26,41). Using
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intron chains to compare annotations, we found that CLS identifies 69% / 114% more novel TMs
than StringTie assembly (Figure 4H and Supplementary Figure 36), despite sequencing 272-fold
fewer nucleotides in the PacBio library. Although StringTie TMs are slightly longer (Figure 41),
they are far less likely to be full-length than CLS (Supplementary Figure 36). CLS also provided
an advantage over short reads in the detection of transcribed genome repesats, identifying in
human approximately 20% more nucleotides in repeats being transcribed (Supplementary Figure
37).

Together, these findings show that CLS is effective in creating large numbers of full-

length transcript annotations for probed gene loci, in ahighly scalable way.

Re-defining INcCRNA promoter and gene characteristics with full-length annotations

With a full-length INcRNA catalogue, we could revisit the question of fundamental
differences of INCRNA and protein-coding genes. Existing IncRNA transcripts, as annotated, are
significantly shorter and have less exons than mRNAs (6,12). However it has remained
unresolved whether this is a genuine biological trend, or smply the result of annotation
incompleteness (23). Consdering FL TMs, we find that the median IncRNA transcript to be
1108 / 1067 nt, smilar to MRNAs mapped by the same criteria (1240 / 1320 nt) (Figure 5A,
Supplementary Figure 38). This length difference of 11% / 19% is statigtically significant
(P<2x10™® for human and mouse, Wilcoxon test). These measured lengths are still shorter than
most annotated protein-coding transcripts (median 1,543 nt in GENCODE v20), but much larger
than annotated INCRNAs (median 668 nt). There are two factors that preclude our making firm
statements regarding relative lengths of INcRNAs and mRNAS: first, the upper length limitation
of PacBio reads (Figure 2B); and second, the fact that our size-selection protocol selects against
shorter transcripts. Nevertheless we do not find evidence that INcRNAS are substantially shorter
(12). Indeed, transcript annotation length estimates are likely to be strongly biased by INCRNAS
lower expression, which would be manifested in less complete annotations by both manual and
de novo approaches. We expect that thisissue will be definitively answered with future nanopore

seguencing approaches.
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We previously observed a striking enrichment for two-exon genes in INCRNAS, which
was not observed in mRNAS (12). However, we have found that thisis clearly an artefact arising
from annotation incompleteness. the mean number of exons for INcRNAs in the FL models is
4.27, compared to 6.69 for mRNAs (Figure 5B, Supplementary Figure 38). This difference is
explained by IncRNAS longer exons, athough they peak at approximately 150 bp, or one
nucleosomal turn (Supplementary Figure 39).

The usefulness of TSS annotation used here is demonstrated by the fact that FL
transcripts TSS are, on average, closer than existing annotations to expected promoter features,
including promoters and enhancers predicted by genome segmentations (42) and CpG islands,
although not evolutionarily-conserved elements or phenotypic GWAS sites (43) (Figure 5C).
More accurate mapping of INCRNA promoters in this way may provide new hypotheses for the
latter’s mechanism of action. For example, an improved 5 annotation strengthens the link
between GWAS SNP rs246185, correlating with QT-interval and lying in the promoter of heart-
and muscle-expressed RP11-65J2 (ENSG00000262454), for which it is an expression
guantitative trait locus (eQTL) (Supplementary Figure 40) (44).

The improved 5 definition provided by CLS transcript models also enables us to
compare IncRNA and mRNA promoters. Recent studies, based on the start position of gene
annotations, have claimed to observe strong apparent differences across a range of features
(45,46). To make fair comparisons between gene sets, we created an expression-matched set of
MRNASs in HeLa and K562 cells, and removed bidirectional promoters. These were compared
across avariety of datasets from ENCODE (47) (Supplementary Figures 41, 42).

We observe a series of similar and divergent features of IncRNAS and mRNAS
promoters. For example, activating promoter histone modifications such as H3K4me3 (Figure
5D) and H3K9ac (Figure 5E), are essentially indistinguishable between full-length INcRNAS
(dark blue) and protein-coding genes (red), suggesting that, when accounting for expression
differences, active promoter architecture of IncCRNAs is not unique. The contrast of these
findings with previous reports, suggest that the latter's reliance on annotations aone led to

inaccurate promoter identification (45,46).

On the other hand, and as observed previously, INCRNA promoters are distinguished by
elevated levels of repressive chromatin marks, such as H3K9me3 (Figure 5F) and H3K27me3
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(Supplementary Figures 41, 42) (45). This may be the consequence of elevated recruitment to
InNcRNAs of Polycomb Repressive Complex, as evidenced by its subunit Ezh2 (Figure 5G).
Surprisingly, we also observed that the promoters of IncRNAS are distinguished from those of
protein-coding genes by alocalised peak of insulator protein CTCF binding (Figure 5H). Finally,
thereisaclear signal of evolutionary conservation at INCRNA promoters, although lower than for

protein-coding genes (Figure 5G).

Two conclusions are drawn from this analysis. First, that CLS-inferred TSS have greater
density of expected promoter features, compared to corresponding GENCODE annotations,
implying that CLS improves TSS annotation. And second, that when adjusting for expression,
IncRNA have comparable activating histone modifications, but distinct repressive modifications,

compared to protein-coding genes.

Discovery of new potential open reading frames

Recently a number of studies have suggested that many IncRNA loci encode peptide
sequences through unannotated open reading frames (ORFs) (48,49). We searched for signals of
protein-coding potential in FL models using two complementary methods, based on evolutionary
conservation and intrinsc sequence features (Figure 6A, Materials and Methods, Supplementary
Data File 1) (50,51). This analysis finds evidence for protein-coding potential in a small fraction
of InNcRNA FL TMs (109/1271=8.6%), with a smilar number of protein-coding FL TMs
displaying no evidence of encoding protein (2900/42,758=6.8%) (Figure 6B).

CLS FL models may lead to reclassification of protein-coding potential for seven cases in five
distinct gene loci (Figure 6C, Supplementary Figure 43, Supplementary Data File 2). A good
example is the KANTR locus, where CLS (supported by independent RT-PCR) identifies an
unannotated exon harbouring a placental mammal-conserved 76aa ORF with no detectable
protein orthologue, composed of two sequential transmembrane domains (Figure 6D,
Supplementary Figure 44) (52). This region derives from the antisense strand of a LINEL
transposable el ement. Another case is LINC01138, linked with prostate cancer, where a potential
42 aa ORF is found in the extended transcript (53). This ORF has no identifiable domains or
orthologues. We could not find peptide evidence for translation of either ORF (see Materials and
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1 Methods). Whole-cell expression, as well as cytoplasmic-to-nuclear distributions, also showed
that potentially protein-coding INCRNAS' behaviour is consistently more similar to annotated
INcRNAs than to mRNAs (Supplementary Figures 45, 46, 47). Together, these findings

demonstrate the utility of CLS in improving the biotype annotation of the small minority of

uau b~ w N

InNcRNAS that may encode proteins.
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Discussion

We have introduced an annotation methodology that resolves the competing needs of
quality and throughput. Capture Long Read Sequencing produces transcript models with quality
approaching that of human annotators, yet with throughput comparable to de novo transcriptome
assembly. In fact, by incorporating 5 and 3' mapping, CLS advances beyond all contemporary
annotation methods by providing full-length transcript models.

In the context of GENCODE, CLS will be used to accelerate annotation pipelines.
Transcript models, accompanied by meta-data describing 5', 3' and splice junction support, will
be stratified by confidence level. These will receive attention from human annotators as a
function of their incompleteness, with FL TMs passed directly to published annotations. Future
workflows will utilise de novo models from short read data from diverse cell types and
developmental time points to perform new rounds of CLS. This approach lays the path towards a

truly comprehensive human transcriptome annotation.

CLS is appropriate for virtually any class of RNA transcript. CLS versatility and
throughput makes it suited to rapid, low-cost transcriptome annotation in non-model organisms.
Preliminary bioinformatic homology screens for potential genes (including protein-coding,
INcRNAS, microRNAS etc.), in newly-sequenced genomes, or first-pass short read RNA-Seq,
could be used to design capture libraries. Resulting annotations would be substantially more

accurate than those produced by current pipelines based on homology and short-read data.

In economic terms, CLS is aso competitive. Using conservative estimates, with 2016
prices ($2460 for 1 lane of PE125bp HiSeq, $500 for 1 SMRT), and including the cost of
sequencing alone, we estimate that CLS yielded one novel, full-length INCRNA structure for
every $8 spent, compared to $27 for conventional CaptureSeq. This difference is accounted for
vastly greater rate of full-length transcript discovery by CLS.

CLS could aso be applied to personal genomics studies. Targeted sequencing of gene
panels, perhaps those with medical relevance, could examine the little-studied question of
aternative transcript variability across individuals—i.e. whether there exist isoforms that are

private to given individuals or populations.
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Despite its advantages, CLS remains to be optimised in several respects. First, the capture
efficiency for long cDNAs will need to be improved to levels presently observed for short
fragments. Second, a combination of technical factors limit the completeness of CLS transcript
models (TMs), including: sequencing reads that remain shorter than many transcripts; incomplete
reverse transcription of the RNA template; degradation of RNA molecules before reverse
transcription.  Resolving these issues will be important objectives of future protocol
improvements, and only then can we make definitive judgements about InCRNA transcript

properties.

Full-length annotations have provided the most confident view to date of IncRNA gene
properties. These are more similar to MRNAS than previously thought, in terms of spliced length
and exon count (12,54). A similar trend is seen for promoters. when INCRNA promoters are
accurately mapped by CLS and compared to matched protein-coding genes, we find them to be
surprisingly similar for activating modifications. This suggests that previous studies, which
placed confidence in annotations of TSS, should be reassessed (45,46). On the other hand
INcRNA promoters do have unique properties, including elevated levels of repressive histone
modification, recruitment of Polycomb group proteins, and interaction with the insulator protein
CTCF. To our knowledge, thisis the first report to suggest a relationship between IncRNAs and
insulator elements. Overall, these results suggest that that INcRNA gene features per se are
generally comparable to mMRNAS, after normalising for their differences in overall expression.
Finally, extended TMs do not yield evidence for widespread protein-coding capacity encoded in
INcCRNAS.

Despite success in mapping novel structure in annotated INcCRNAS, we observed
surprisingly low numbers of transcript models originating in the relatively fewer numbers of
unannotated loci that we probed, including ultraconserved eements and developmental
enhancers. This would suggest that, at least in the tissue samples probed here, such elements are

not giving rise to substantial numbers of INCRNA-like, polyadenylated transcripts.

In summary, by resolving a longstanding roadblock in IncRNA transcript annotation, the
CLS approach promises to dramatically accelerate our progress towards an eventual “complete”

mammalian transcriptome annotation. These updated INcCRNA catalogues represent a valuable
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1  resource to the genomic and biomedical communities, and address fundamental issues of
2 IncRNA biology.
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Figurelegends

Figure 1. Capture Long Seq approach to extend the GENCODE IncRNA annotation

(A) Strategy for automated, high-quality transcriptome annotation. CLS may be used to
complete existing annotations (blue), or to map novel transcript structures in suspected
loci (orange). Capture oligonucleotides (black bars) are designed to tile across targeted
regions. PacBio libraries are prepared for from the captured molecules. Illumina HiSeq
short-read sequencing can be performed for independent validation of predicted splice
junctions. Predicted transcription start sites can be confirmed by CAGE clusters (green),
and transcription termination sites by non-genomically encoded polyA sequences in
PacBio reads. Novel exons are denoted by lighter coloured rectangles.

(B) Summary of human and mouse capture library designs. Shown are the number of
individual gene loci that were probed. “PipeR pred.”: orthologue predictions in mouse
genome of human IncRNAs, made by PipeR (31); “UCE”: ultraconserved elements,
“Prot. coding”: expression-matched, randomly-selected protein-coding genes; “ERCC”:
spike-in sequences; “Ecoli”: randomly-selected E. coli genomic regions. Enhancers and
UCEs are probed on both strands, and these are counted separately. “ Total nts’: sum of
targeted nucleotides.

(C) RNA samples used.

Figure2: CLSyieldsan enriched, long-read transcriptome

(A) Summary statistics for long-read sequencing. ROI = “Read Of Insert”, or PacBio reads.

(B) Length distributions of ROIs. Sequencing libraries were prepared from three size-selected
cDNA fractions (see Supplementary Figure 2).

(C) Breakdown of sequenced reads by gene biotype, pre- (Ieft) and post-capture (right), for
human (equivalent mouse data are found in Supplementary Figure 48). Colours denote
the on/off-target status of the genomic region from which the reads originate, namely:
Grey: reads originating from annotated but not targeted features; green: reads from
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targeted features, including INcCRNAS; yellow: reads from unannotated, non-targeted
regions. The ERCC class comprises only those ERCC spike-ins that were probed in this
experiment. Note that when a given read overlapped more than one targeted class of

regions, it was counted in each of these classes separately.

(D) Summary of capture performance. The y-axis shows the percent of all mapped ROIs

originating from atargeted region (“on-target”). Enrichment is defined as the ratio of this
value in Post- and Pre-capture samples. Note that Pre- and Post-capture on-target rates
were calculated using MiSeq and PacBio reads, respectively, although similar results
were obtained when using MiSeq also for the Post-capture samples.

(E) Response of read counts in captured cDNA to input RNA concentration. Upper panels:

Pre-capture; lower panels. Post-capture. Left: human; right: mouse. Note the log scales
for each axis. Each point represents one of 92 spiked-in synthetic ERCC RNA sequences.
42 were probed in the capture design (green), while the remaining 50 were not (violet).
Lines represent linear fits to each dataset, whose parameters are shown above. Given the
log-log representation, a linear response of read counts to template concentrate should

yield an equation of typey = ¢ + mx, wheremis 1.

Figure 3. Extending known IncRNA gene structures

(A) Novel transcript structures from the SAMMSON (LINC01212) locus. Annotation as

present in GENCODE v20 is shown in green, capture probesin grey, CLS reads in black
(confirming known structure) and red (novel structures). A sequence amplified by
independent RT-PCR is also shown.

(B) Novel splice junction (SJ) discovery. The y-axis denotes counts of unique SJs for human

(equivalent mouse data in Supplementary Figure 12). Only “on-target” junctions
originating from probed INCRNA loci are considered. Grey represents GENCODE-
annotated SJs that are not detected. Dark green represents annotated SJs that are detected
by CLS. Light green represent novel SJs that are identified by CLS but not annotated.
The left column represents all SJs, and the right column represents only high-confidence
SJs (supported by at least one split-read from Illumina short read sequencing). See also
Supplementary Figure 13 for a comparison of CLS SJs to the miTranscriptome catalogue.
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(C) Splice junction (SJ) motif strength. Panels plot the distribution of predicted SJ strength,

for acceptors (left) and donors (right). Data shown are for human, equivalent analysis for
mouse may be found in Supplementary Figure 18. The strength of the splice sites were
computed using standard position weight matrices used by GenelD (37). Data are shown
for non-redundant SJs from CLS transcript models from targeted IncRNAs (top), all
annotated protein-coding genes (middle), or a background distribution sampled from
randomly-selected AG (acceptor-like) and GT (donor-like) dinucleotides.

(D) Novel splice junction discovery as a function of sequencing depth in human. Each panel

represents the number of novel splice junctions (SJs) discovered (y-axis) in simulated
analysis where increasing numbers of ROIs (x-axis) were randomly sampled from the
experiment. The SJs retrieved at each read depth were further stratified by level of
sequencing support (Dark brown: al PacBio SJs, Orange: HiSeg-supported PacBio SJs;
Black: HiSeg-unsupported PacBio SJs). Each randomization was repeated fifty times, and
a boxplot summarizes the results at each simulated depth. The highest y value represents
the actual number of novel SJs discovered. Equivalent data for mouse can be found in
Supplementary Figure 21, and for rates of novel transcript model discovery in

Supplementary Figure 22.

(E) Identification of putative precursor transcripts of small RNA genes. For each gene

biotype, the figures show the count of unique genes in each group. “Orphans’ are those
with no annotated same-strand overlapping transcript in GENCODE, and were used for
capture probe design in this project. “Pot. Precursors’ (potential precursors) represent
orphan small RNAs that reside in the intron of and on the same strand as a novel
transcript identified by CLS; “Precursors’ represent those that reside in the exon of a

novel transcript.

Figure 4. Full-length transcript annotation

(A)The 5’ (transcription start site, TSS) and 3' (polyA site) termini of new transcript models

can be inferred using CAGE clusters and sequenced polyA tails, respectively. The latter
correspond to polyA fragments identified at ROl 3' ends that are not genomically-
encoded.
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(B) “Anchored” merging of ROIs to create transcript models, while respecting their TSS and
polyA sites. In conventional merging (left), transcripts TSS and polyA sites are lost
when they overlap exons of other transcripts. Anchored merging (right) respects and does
not collapse TSS and polyA sites that fall within exons of other transcripts.

(C) Anchored merging yields more distinct transcript models. The y-axis represents total
counts of ROIs (pink), anchor-merged transcript models (brown) and conventionally-
merged transcript models (turquoise). Transcript models were merged irrespective of
tissue-origin.

(D) Example of full-length, TSS- and polyA-mapped transcript models at the human CCAT1
| CASC19 locus. GENCODE v20 annotation is shown in green, nove full-length CLS
models in red. Note the presence of a CAGE-supported TSS (green star) and multiple
digtinct polyA sites (red stars). Also shown is the sequence obtained by RT-PCR and
Sanger sequencing (black).

(E) The total numbers of anchor-merged transcript models identified by CLS for human. The
y-axis of each panel shows unique transcript model (TM) counts. Left pand: All merged
TMs, coloured by end-support. Middle pand: Full length (FL) TMs, broken down by
novelty with respect to existing GENCODE annotations. Green areas are novel and
multi-exonic: “overlap” intersect an annotation on the same strand, but do not respect all
its splice junctions; “intergenic” overlap no annotation on the same strand; “extension”
respect all of an annotation’s splice junctions, and add novel ones. Right panel: Novel FL
TMs, coloured by their biotype. “Other” refers to transcripts not mapping to any
GENCODE protein-coding or IncRNA annotation. Note that the majority of “multi-
biotype” models link a protein-coding gene to another locus. Equivalent data for mouse
are found in Supplementary Figure 28.

(F) The total numbers of probed IncRNA loci giving rise to CLS transcript models (TMs),
novel TMs, full-length CLS TMs (FL TMs) and novel FL TMs in human at increasing
minimum cutoffs for each category. Equivalent mouse data can be found in
Supplementary Figure 29.

(G) Coverage of CLS transcript TSSs with ENCODE DNasel-hypersensitive sites (DHS) in
HelLa-S3. “CAGE+” / “CAGE-" denote CLS transcript models with / without CAGE-
supported 5’ ends, respectively. “GENCODE IncRNA” represent the annotated 5’ ends of
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probed IncRNA transcript annotations. “GENCODE protein-coding” corresponds to the
TSSs of a subset of annotated protein-coding genes, expression-matched to CLS TMsin
HelLa-S3.

(H) Comparison of non-redundant transcript catalogues from GENCODE annotation, CLS,
and de novo models produced by SringTie software within probed INCRNA regions. The
latter was run on short reads sequenced from the same captured cDNA as CLS. The
identity of transcripts was defined by their intron chain coordinates; as a result only
spliced transcripts are reported here. Equivalent mouse date can be found in
Supplementary Figure 36.

(1) Spliced length distributions of indicated non-redundant transcript catalogues. “FL”
indicates the subset of transcripts from each catalogue that has 5 support from CAGE,
and 3 support from PacBio-identified polyA sites. The median spliced length of each
population is indicated by a vertical dotted line. Equivalent mouse date can be found in

Supplementary Figure 36.

Figure5: Discovery of novel INCRNA transcripts

(A) The mature, spliced transcript length of: CLS full-length transcript models from targeted
IncRNA loci (dark blue); transcript models from the targeted and detected GENCODE
INcRNA loci (light blue); CLS full-length transcript models from protein-coding loci
(red).

(B) The numbers of exons per full length transcript model, from the same groups as in (A).
Dotted lines represent medians.

(C) Distance of annotated transcription start sites (TSS) to genomic features. Each cell
displays the mean distance to nearest neighbouring feature for each TSS. TSS sets
correspond to the classes from (A). “Shuffled” represent FL [incRNA TSS randomly
placed throughout genome.

(D) — (1) Comparing promoter profiles across gene sets. The aggregate density of various
features is shown across the TSS of indicated gene classes. Note that overlapping TSS
were merged within classes, and TSSs belonging to bi-directional promoters were
discarded (see Methods). The y-axis denotes the mean signal per TSS, and grey fringes
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represent the standard error of the mean. Gene sets are: Dark blue, full-length INCRNA
models from CLS; Light blue, the GENCODE annotation models from which the latter
were probed; Red, a subset of protein-coding genes with similar expression in HelLa as
the CLS IncRNAs.

Figure 6: Properties of full-length INncRNAs

(A) The predicted protein-coding potential of all full-length transcript models mapped to

INcRNA (left) or protein-coding loci (right). Each point represents a single full length
(FL) transcript model (TM). The y-axis displays the coding likelihood according to
PhyloCSF, based on multiple genome alignments, while the x-axis displays that
calculated by CPAT, an alignment-free method. Red lines indicate score thresholds,
above which transcript models are considered protein-coding. Models mapping to

multiple different biotypes were not considered.

(B) The numbers of classified transcript models (TMs) from (A).
(C) Discovery of new protein-coding transcripts as a result of full-length CLS reads, using

PhyloCSF. For each probed InNcCRNA locus, we calculated the transcript isoform with
highest scoring ORF (x-axis). From each locus, we identified the full-length transcript
model with high scoring ORF (y-axis). LncRNA loci from existing GENCODE v20
annotation predicted to encode proteins are highlighted in yellow. LncRNA loci where
new ORFs are discovered as aresult of CLS transcript models are highlighted in red.

(D) KANTR, an example of an annotated IncRNA locus where CLS discovers novel

protein-coding sequence. The upper panel shows the structure of the IncRNA and the
associated ORF (highlighted region) falling within two novel full-length CLS transcripts
(red). Note how this ORF lies outside existing GENCODE annotation (green), and its
overlap with a highly-conserved region (see green PhyloCSF conservation track, below).
Also shown is the sequence obtained by RT-PCR and Sanger sequencing (black). The
lower panel, generated by CodAlignView (55), reveals conservative subgtitutions in the
predicted ORF of 76 aa consistent with a functional peptide product. High-confidence
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1 predicted SMART (56) domains are shown as coloured bars below. The entire ORF lies

2 within and antisenseto a L1 transposable element (grey bar).
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Data availability

Raw and processed data is deposited in the Gene Expression Omnibus under accession
GSE93848. RT-PCR validation sequences are available in Supplementary Data File 3. Genome-
aligned data were assembled into a public Track Hub, which can be loaded into the UCSC
Genome Browser (pre-loaded URL.: http://genome-euro.ucsc.edu/cgi-
bin/hgTracks?hubUrl=http://public_docs.crg.es/rguigo/CL SdataltrackHub//hub.txt). In addition,
a supplementary data portal is available on the web at https://public_docs.crg.es/rguigo/CLY .
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