
1

Efficient Detection of Communities in Biological
Bipartite Networks

Paola Pesántez-Cabrera and Ananth Kalyanaraman

Abstract— Methods to efficiently uncover and extract community structures are required in a number of biological applications where
networked data and their interactions can be modeled as graphs, and observing tightly-knit groups of vertices (“communities”) can offer
insights into the structural and functional building blocks of the underlying network. Classical applications of community detection have
largely focused on unipartite networks—i.e., graphs built out of a single type of objects. However, due to increased availability of
biological data from various sources, there is now an increasing need for handling heterogeneous networks which are built out of
multiple types of objects. In this paper, we address the problem of identifying communities from biological bipartite networks—i.e.,
networks where interactions are observed between two different types of objects (e.g., genes and diseases, drugs and protein
complexes, plants and pollinators, hosts and pathogens). Toward detecting communities in such bipartite networks, we make the
following contributions: i) (metric) we propose a variant of bipartite modularity; ii) (algorithms) we present an efficient algorithm called
biLouvain that implements a set of heuristics toward fast and precise community detection in bipartite networks; and iii) (experiments)
we present a thorough experimental evaluation of our algorithm including comparison to other state-of-the-art methods to identify
communities in bipartite networks. Experimental results show that our biLouvain algorithm identifies communities that have a
comparable or better quality (as measured by bipartite modularity) than existing methods, while significantly reducing the
time-to-solution between one and four orders of magnitude.

Index Terms—Heterogeneous biological data, bipartite networks, graph algorithms, community detection, bipartite modularity.

F

1 INTRODUCTION

THE increasing identification and characterization of
genes, protein complexes, diseases, and drugs have

highlighted a need to incorporate heterogeneity while ana-
lyzing complex biological data. A heterogeneous network
is composed of multiple types of objects. Identifying “com-
munity” structures that transcend data boundaries in such a
network could provide new insights that may not be readily
visible by examining only a specific data type in isolation.
For instance, identifying a group of genes that have been
implicated across a set of diseases could possibly reveal
hidden links among seemingly different diseases or disease
conditions, and in the process help identify new drugs
and therapies [1]. Similarly, identifying active gene clusters
across different subsets of brain regions could provide new
insights into brain function [2].

Graph-theoretic representations offer a natural way to
model networks built out of heterogeneous data. This work
focuses on bipartite networks as a way to model the interplay
between two different data types. Bipartite networks are
those which have two types of vertices such that edges exist
only between vertices of the two different types. Bipartite
networks are called unweighted when the edges between
vertices are either present or not. Alternatively, if edges
are given different values representing the strength of the
associations among vertices the bipartite network is called
weighted. Some examples of biological bipartite networks
include (but are not limited to) gene-disease [3], gene-drug
[4], plants-pollinators [5], and host-pathogen [6].

While the idea of modeling heterogeneity as a graph

• The authors are with the School of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA, 99164.
E-mail: p.pesantezcabrera@wsu.edu, ananth@eecs.wsu.edu

problem is not necessarily new per se, algorithm develop-
ment efforts have been more recent [7], [8]. Once modeled as
a bipartite network, we can view the problem of identifying
cluster structures between the two different data types as
a problem of community detection in bipartite networks. For
example, in the case of the gene-drug network we could
identify groups of drugs that might inhibit or otherwise
modulate groups of genes. We also could detect groups of
genes that are suitable for drug repurposing but may not
currently have a drug targeting them. Similarly, for plant-
pollinator networks we could identify groups of pollinators
that limit or promote the establishment and persistence of
plant species.

Given a graph, the goal of community detection is to
partition the set of vertices into “communities” such that
vertices that are assigned to the same community have a
higher density of edges among them than to the vertices in
the rest of the network. Community detection can be used
to reveal hidden substructures within real world networks,
without any known prior knowledge on either the number
or sizes of the output communities.

Community detection is a well studied problem in lit-
erature [9]. However, the treatment of the problem on bi-
partite networks has been sparse. Because edges connect
vertices of two different types, the classical definition of
communities [10] does not directly apply. Projection-based
approaches typically result in loss of the bipartite structural
information [11]. Instead, the notion of communities needs
to be redefined so that a community of vertices of one type is
formed on the basis of the strength of its shared connections
to vertices of the other type (as shown in Fig. 1).

To unveil important new associations, evaluation of the
goodness of a community-wise division of a bipartite net-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Fig. 1. Communities detected by our biLouvain algorithm in the bez-
erra2009 bipartite network [5] of 13 Malpighiaceae oil-flowers (circles) vs.
13 oil-collecting bees (diamonds). Nodes of the same color correspond
to the same community. QB stands for bipartite modularity.

work also becomes critical. To this end, a measure called
bipartite modularity can be defined by extending the classical
measure for unipartite networks [10]. Modularity is a sta-
tistical measure which calculates the difference between the
observed fraction of intra-community edges to an expected
fraction in an equivalent random graph — i.e., null model.
A higher value of modularity suggests a clearer community
structure within the underlying network. Modularity opti-
mization is an NP-Hard problem [12]; however, a number
of efficient heuristics are used in practice [9]. For bipartite
networks, multiple formulations of bipartite modularity
have been proposed [13], [14], [15], [16]. Of these, Murata’s
definition is known to overcome some of the limitations of
the other definitions (see Sections 2 and 4).

1.1 Contributions
We present a direct, efficient method (biLouvain) to optimize
our modified version of Murata’s modularity (Murata+).
Specifically, the main contributions of this paper are:
• Murata+ modularity: We initially consider the classical

definition of Murata’s modularity [15] and discuss its
suitability for community detection in Section 4. In
the process of evaluation, we identify an inconsistency
in the classical formula and subsequently propose a
simple variant, which we call Murata+.

• biLouvain algorithm: We present efficient algorithmic
heuristics for optimized detection of bipartite commu-
nities using the Murata+ modularity (Section 5). Our
approach extends the Louvain algorithm [17], which
is one of the most efficient and widely used heuristics
for unipartite networks. Consequently, we call our algo-
rithm biLouvain. As part of our algorithm, we provide
ways to calculate the modularity gain resulting from
vertex migrations in a bipartite network — a step that
constitutes the core of the Louvain heuristic.

• Experimental evaluation: We present a thorough exper-
imental evaluation of our algorithm using both syn-
thetic and real world networks and in comparison to
other state-of-the-art methods (Section 6). Experimen-
tal results show that our algorithm identifies commu-
nities that have a comparable or better quality (as
measured by the Murata+ bipartite modularity) than

existing methods, while significantly reducing the time-
to-solution between one and four orders of magnitude.

A preliminary version of the work presented on this
paper has been published in [18]. The rest of this paper
is organized as follows. Section 2 describes the key related
work for community detection in the context of bipartite
networks. Section 3 presents the basic notation and termi-
nology for use throughout the paper. Section 4 explores the
applicability and extension of Murata’s modularity as a way
to determine the quality of a particular division of a network
into communities. Section 4 describes in detail the algorithm
we have developed — i.e., biLouvain algorithm, for detection
of communities in bipartite networks. Section 6 presents the
experimental evaluation of our algorithm on different real
and synthetic networks. Section 7 concludes the paper.

2 RELATED WORK

Modularity: Community detection has been extensively
studied in the context of unipartite graphs [9]. Most of
these algorithms use variants of the modularity measure,
as defined by Newman [10]. Multiple efforts have extended
the classical definition of modularity to bipartite networks:

i) Guimerà et al. [14] defines bipartite modularity as the
cumulative deviation from the random expectation of
the number of edges between vertex members of the
same bipartite community. The main weakness of this
definition is that it focuses on connectivity from the
perspective of only one vertex type.

ii) Barber [13] extends the scope to include connectiv-
ity information from both vertex types. However, this
definition has a limitation of enforcing a one-to-one
correspondence between the communities from both
vertex types — i.e., the number of communities should
be equal on both sides.

iii) Murata’s definition [15] overcomes the above limita-
tions by not enforcing a one-to-one mapping between
the communities of either side; more details of this
measure are presented in Section 4.1.

iv) Suzuki-Wakita [16] uses a “prominence factor” that
averages the volume of connections to all communities.

While there is no general consensus on the modularity
definition to use for bipartite networks, we chose to adopt
the Murata’s definition (with modifications as described in
Section 4.2). Experimental results (Section 6) demonstrate
the high quality of results produced by this definition.

Bipartite community detection: As for community de-
tection in bipartite networks, there have been a handful of
efforts so far. In 2006, Newman [21] proposed a special case
of spectral algorithm called Leading Eigenvector for unipartite
networks; however it has been used for bipartite networks
as well through a conversion of the bipartite matrix into
its unipartite representation. Here the Laplacian matrix is
replaced with a modularity matrix that is shown to have the
same properties. This method divides the network in two
communities by choosing the eigenvector with the largest
eigenvalue and the process continues until the leading
eigenvalue is zero or negative.

In 2007, Barber [13] developed two modularity-based
algorithms, viz. BRIM and Adaptive BRIM. The latter uses
the BRIM algorithm; however the number of communities,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

TABLE 1
A comparison of bipartite community detection methods.

Label Propagation Modularity Based
Feature LPBRIM DIRTLPAwb+ Leading Adaptive biSBM biLouvain

[19] [20] Eigenvector [21] BRIM [13] [22]
Objective function Barber’s

modularity
Barber’s
modularity

Barber’s
modularity

Barber’s
modularity

Maximum
Likelihood

Murata+
modularity

Output determinism No No Yes No No Yes
Number of communi-
ties known a priori

No No No No Yes No

Binary & weighted Yes Yes Yes Yes Yes Yes

c, gets doubled at each iteration until there is no further gain
in modularity. If the current value of c causes modularity to
decrease, the heuristic performs a bisection search for c in
the interval wherein the maximum modularity lies.

In 2009, Liu and Murata [19] proposed a hybrid al-
gorithm called LPBRIM that uses the Label Propagation
heuristic to search for a best community configuration, and
subsequently uses BRIM to refine the results. This approach
was extended and improved in 2016 by Beckett [20] in a tool
called DIRTLPAwb+.

In 2014, Larremore et al. [22] developed an approach
(biSBM) that uses a Stochastic Block model to maximize a
likelihood function. This approach assumes that the number
of output communities should be known a priori.

Table 1 summarizes the conceptual differences among
these methods, relative to our algorithm biLouvain that is
proposed in this paper.

3 BASIC NOTATION AND TERMINOLOGY

We will use G(V1 ∪ V2, E, ω) to denote an undirected bi-
partite graph. Here, V1 and V2 represent the two sets of
vertices, and E represents the set of edges such that each
edge e = (i, j) ∈ E is such that i ∈ V1 and j ∈ V2. Each edge
e is also associated with a numerical weight ω(e). We will
assume that the edge weights are non-negative values that
reflect the strength of the relation between any two vertices.
The sum of the weights of all edges incident on a vertex i is
said to be its weighted degree (denoted by γ(i)). Additionally,
we use the term binary networks to describe networks whose
edges are unweighted. In such cases, all edges that exist are
assumed to have a unit weight.

Let n1 and n2 denote the number of vertices in V1 and V2

respectively, and m denote the number of edges. Let M =∑
e
ω(e). For sake of consistency, we use i’s to denote vertices

in V1, and j’s for vertices in V2.
A community represents a subset of either V1 or V2. For

ease of exposition, we use C’s to denote communities taken
from V1 and D’s to denote communities taken from V2. Let
P1 = {C1, C2, . . . , Ck1} denote a set of communities in V1

such that it represents a partitioning of V1. Similarly, let
P2 = {D1, D2, . . . , Dk2} represent a set of communities in
V2 such that it represents a partitioning of V2. Throughout
this paper, we assume k1 need not be equal to k2.

In our algorithmic discourse, we denote the present
community containing any vertex i ∈ V1 as C(i), and the
present community containing any vertex j ∈ V2 as D(j).

Fig. 2. Illustration of a co-cluster 〈C,ψ(C)〉 where ψ(C) is refered as the
co-cluster mate of community C.

4 BIPARTITE MODULARITY

4.1 Murata’s Bipartite Modularity

In what follows, we describe Murata’s modularity [15] al-
though using our own notation for convenience.
Given a pair of communities, C ∈ P1 and D ∈ P2, and let
e denote any edge that connects a vertex in community C
with a vertex in community D. Consequently, we define:

EC,D =
1

2M

∑
e

ω(e) (1)

Note that by this definition, EC,D = ED,C . Also note that
the term 2M corresponds to the sum of the weighted degree
of all vertices1 — i.e., 2M =

∑
i γ(i). We use the term AC

to denote the fraction of this term contributed by a given
community C.

AC =
1

2M

∑
D

EC,D (2)

Furthermore, we define the co-cluster mate of a community
C to be a community D ∈ P2 to which C has the most
concentration of its edges — i.e.,

ψ(C) = argmax
D

(EC,D) (3)

We refer to the ordered tuple 〈C,ψ(C)〉 as a co-cluster. Fig. 2
illustrates this concept.
Similarly, the co-cluster mate of a community D is defined as
follows:

ψ(D) = argmax
C

(ED,C) (4)

The ordered tuple 〈D,ψ(D)〉 is also a co-cluster.

1. The factor 2 is a result of each edge getting counted twice — once
in each direction.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

Definition 1. Given a bipartite graph G(V1 ∪ V2, E, ω), and
two sets of communities P1 in V1 and P2 in V2, Murata’s
bipartite modularity QB is defined as follows [15]:

QB =
∑
C

(EC,ψ(C) −AC ×Aψ(C)) +
∑
D

(ED,ψ(D) −AD ×Aψ(D))

(5)

Intuitively, Murata’s modularity is calculated by pairing
every community from one side with a community on the
other side that it has maximum connections to. The first term
inside the two summations in Eqn. 5 corresponds to the
fraction of such “intra-cocluster” edges. The second term
inside each of the summations is the expected fraction of
such edges in a randomly generated bipartite graph with an
identical vertex degree sequence. As in Newman’s modu-
larity [10] for unipartite networks, the idea is to encourage
a partitioning that maximizes intra-cocluster edges while
discouraging a partitioning that groups unrelated vertices.

4.2 Murata+: Proposed Bipartite Modularity
From Eqns. 3, 4, and 5 we make the following two observa-
tions:
Observation 1. If a community C picks a community D as

its co-cluster mate (by Eqn. 3), D need not necessarily
pick C (by Eqn. 4).

Observation 2. The statistical terms AC × Aψ(C) and
AD ×Aψ(D) are used in the final modularity calculation
of Eqn. 5, but they are not used while picking the co-
cluster mates (Eqns. 3 and 4).

Observation 1 implies that the co-cluster relationship
is nonsymmetric. This relaxation is necessary to avoid a
method-enforced one-to-one mapping between communi-
ties and their co-cluster mates. However, the relaxation
could also lead to an undesirable effect of a potential lack of
cohesion between communities and their co-cluster mates.
For bipartite networks, we typically attempt to explain the
grouping of a community based on its co-cluster. While
one-to-one mapping would make it too restrictive for this
purpose, it is also important not to make it excessively
many-to-many. For most practical inputs, a middle ground
is more desirable where the expected mapping remains
closer to an one-to-one mapping. For instance, we can expect
a strong (if not strict) two-way correlation between a set of
genes and the set of diseases they impact.

Observation 2 indicates a matter of inconsistency be-
cause a community C picks a co-cluster mate solely based
on the positive term, while the final modularity is calculated
taking into account also the negative term. At best, this can
lead to an overestimated value for modularity QB , when a
co-cluster mate is selected. More importantly, we argue that
the negative term is in fact essential as otherwise it could
potentially lead to a scenario where a community and its
co-cluster mate could be of vastly different sizes. This is
shown in Fig. 3.

To address the above inconsistency issue within the clas-
sical definition, we propose a variant of bipartite modularity
by simply redefining the co-cluster mate selection criterion to
include the negative term:

ψ(C) = argmax
D

(EC,D −AC ×AD) (6)

Fig. 3. An illustrative example of a case where a community C has, say
40% of its edges connected to community D1 and the remaining 60%
of its edges connected to community D2. Under this scenario, C has
two choices for its co-cluster mate, ψ(C) = D1 and ψ(C) = D2, with
EC,D1 being only marginally smaller than EC,D2 but the sizes of C and
D2 could be vastly different (as shown). In scenarios like this, ignoring
the negative term may have the undesirable effect of picking a co-cluster
mate that is significantly different in size. A better choice of a co-cluster
mate for C is D1, not only because of its comparable size, but also
because it is likely to lead to a better modularity.

Similarly, a co-cluster mate of a community D is defined
as follows:

ψ(D) = argmax
C

(ED,C −AD ×AC) (7)

The modularity expression is the same as Eqn. 5. It
should be clear that this revised definition would make the
choice of co-cluster mates consistent with the modularity
calculation — i.e., fixing the problem with Observation 2.

In addition, the revised definition preserves the nonsym-
metry property (Observation 1), while being better posi-
tioned than the classical definition to encourage an one-to-
one mapping, wherever possible, without strictly enforcing
it. This is because of the reduced degree of freedom that a
community is likely to have (with the introduction of the
negative term) when selecting its co-cluster mate.

Henceforth, we refer to our revised version of the Mu-
rata’s modularity as Murata+ (Eqns. 5, 6, and 7), and use it
as our primary objective function.

5 BILOUVAIN: AN ALGORITHM FOR BIPARTITE
COMMUNITY DETECTION

In this section, we present our biLouvain algorithm for
community detection in bipartite networks. We adapt the
widely used Louvain heuristic [17] to work for bipartite
networks. While biLouvain follows the same algorithmic
template provided by Louvain, it differs in the objective
function (by using Murata+) and in the way all the key steps
are computed, as will be elaborated below.

Like the original algorithm, biLouvain is a multi-phase,
multi-iterative algorithm, where each phase is a series of
iterations, and the algorithm moves from one phase to an-
other using a graph compaction step. Within every iteration,
each vertex makes a local decision on its community based
on a net modularity gain function. The main steps of the
biLouvain algorithm are as follows (see Fig. 4):

1) Given an input bipartite graph G(V1∪V2, E, ω), initial-
ize a set of n1 + n2 communities, where n1 = |V1| and
n2 = |V2|, by placing each vertex in its own community.

2) At every iteration, all vertices in V1 and V2 are scanned
linearly (in an arbitrary order). For each vertex i:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

Fig. 4. An example to illustrate the main steps of our algorithm for
community detection: biLouvain. a) The input bipartite graph. Vertices
of the two different types are shown in two different shapes. b) After
a sequence of iterations, the biLouvain algorithm converges (based on
net modularity gain) and a phase is completed. The figure shows the
vertices and the communities they belong to at the end of the phase.
In this simple example, communities C1 and D1 are co-cluster mates
to one another, and C2 and D2 are co-cluster mates to one another. c)
The graph is compacted by collapsing each detected community into
a new “vertex” and collapsing inter-community edges between every
pair of communities into new “edges” with corresponding weights. This
compacted graph is input to the next phase until convergence.

a) Acquire a list of its candidate communities to which
it can potentially migrate to;

b) Evaluate the modularity gain that would result from
the scenario of migrating i to each of the candidate
communities.

c) Finally, migrate vertex i to a candidate community
that maximizes the modularity gain, only if such
gain is positive (otherwise, no change).

3) A phase ends when the net modularity gain achieved
between two consecutive iterations is negligible — i.e.,
below a certain threshold τi, which we refer to as the
iteration cutoff.

4) Once a phase terminates, a new graph G′(V ′1 ∪
V ′2 , E

′, ω′) is generated through a compaction step,
which collapses each community to a vertex, and edges
and their weights in the new graph corresponds to the
strength of edges connecting any two communities.

5) The new compacted graph is input to the next phase
(step 1). The algorithm terminates when any two con-
secutive phases result in a negligible modularity gain,
defined by a threshold τp, which we call phase cutoff.

In what follows, we describe how the key steps that
are impacted by the bipartite structure are implemented
in biLouvain. More specifically, the classical definition for
candidate communities and their computation (step (2a)),
the expression for calculating the modularity gain resulting
from a vertex migration, and the algorithm to calculate the
modularity gain (step (2b))—all of these need to be defined
taking into account the bipartite structure.

5.1 Computing Candidate Communities
A candidate community of a vertex is a community to which
that vertex can potentially migrate at any given iteration of
the biLouvain algorithm, with a realistic chance of accruing
a positive modularity gain.

For ease of exposition, we explain the process of com-
puting candidate communities from the point of view of
a vertex i in V1. It should be easy to see that the same
approach works for any vertex j ∈ V2.

For a given vertex i ∈ V1, let Γ(i) denote the set of
neighbors of i in V2 — i.e.,

Γ(i) = {j | (i, j) ∈ E}

Let Γ′(i) denote the set of vertices in V1 that the neigh-
bors of i are connected to.

Γ′(i) = {k | (k, j) ∈ E, where j ∈ Γ(i)}

Consequently, the set of candidate communities for i,
Cand(i) is given by:

Cand(i) =
⋃

k∈Γ′(i)

C(k)

Intuitively, a vertex i ∈ V1 can only migrate to commu-
nities in V1, within which it has at least one 2-hop neighbor
(i.e., via its vertex neighbors in V2). Moving to any other
community in V1 (i.e., not in this candidate set) will result
in a decrease in modularity.

5.2 Calculating Modularity Gain
In the case of unipartite networks [17], calculating the
expected modularity gain resulting from moving a vertex
from one community to another can be executed in constant
time if appropriate data structures are maintained. In the
case of bipartite networks, this is not the same because of
the following two lemmas (as shown in Fig. 5):
Lemma 5.1. If vertex i moves from C to C ′, then the choice

of co-cluster mates for either community could change.

Proof: The migration of vertex i from C to C ′ affects
the values EC,D, EC′,D, AC and AC′ , for any D, in Eqn. 6.

Note that the lemma applies to migrations of vertices in
V2 as well.

Define the community set N(C) as follows:

N(C) =
⋃

j∈Γ(i)

D(j)

The above lemma leads to the following corollary:
Corollary 5.2. If vertex i moves from C to C ′, then the co-

cluster mate choices for any of the communities in N(C)
or in N(C ′) could potentially change.

Proof: Due to the migration of i from C to C ′, any
community Dx of V2 to which either of these two communi-
ties is connected (see Fig. 5) could potentially change its co-
cluster mate preference with changes to the right hand side
values of its corresponding ψ(Dx) calculation (i.e., inside
Eqn. 7). This implies that Dx ∈ N(C) ∪N(C ′).

It should be intuitively clear why these two lemmas
should be true. In short, the two equations for co-cluster

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Fig. 5. Illustration of vertex i evaluating its migration from community
C to community C′. If this move were to be executed, the co-cluster
mate choices for both C and C′ (presently, ψ(C) = D and ψ(C′) = D′)
could potentially change (Lemma 5.1). Furthermore, the co-cluster mate
choice for an arbitrary community Dx which has at least one edge inci-
dent from either C or C′ could also potentially change (Corollary 5.2).
Consequently, a question mark is used to show scenarios where the
corresponding co-cluster mate assignments need to be re-evaluated.

mate choices (Eqns. 6 and 7) depend on both the positive
and the negative terms, and either of those two terms could
change for the communities covered in Lemma 5.1 and
Corollary 5.2 as a result of i moving out of C into C ′. It
should also be clear that the co-cluster mate choices for no
other communities in the rest of the graph are affected by
this move.

Based on the above lemma and corollary, we constitute
a set containing all affected communities from i′s migration
from C to C ′—i.e., S = {C,C ′} ∪ N(C) ∪ N(C ′). Subse-
quently, we compute the overall net modularity gain for this
single vertex move as follows:

We calculate the contribution of a community D and its
co-cluster mate ψ(D) to the summation in the modularity
Eqn. 5 as follows:

f(D,ψ(D)) = ED,ψ(D) −AD ×Aψ(D)

Consequently, the change in a community D’s contribu-
tion to the overall modularity QB due to the change in its
co-cluster mate (from ψ(D) to ψ(D)′ imposed by vertex i’s
move) is given by:

∆′QB(D) = f(D,ψ(D))− f(D,ψ(D)′) (8)

Finally, the overall modularity gain is given by:

∆QB =
∑
K∈S

∆′QB(K) (9)

This modularity gain is calculated for each possible
vertex move into one of its candidate communities; and
finally, vertex i is moved to that candidate community
which maximizes the gain (assuming it is positive).

5.3 Complexity Analysis
The run-time within an iteration is dominated by the time
taken to calculate the modularity gain for all the vertices
(Section 5.2). In our implementation we keep efficient data
structures to enable us to calculate each community’s con-
tribution to the overall modularity, in constant time. Given
this, the worst-case run-time complexity for calculating the
maximum modularity gain for a given vertex i at any given
iteration is O(n1 × n2)—this is for the worst-case scenario
of all C communities connected to all D communities.

As all vertices are linearly scanned within each iteration,
the worst-case run-time complexity is O((n1 + n2)n1n2)
per iteration—which makes our exact algorithm a cubic
algorithm. In practice; however, we can expect inputs to be
sparse—that would imply a quadratic behavior in the initial
iterations; but as the algorithm progresses, the number of
communities can only shrink and along with it, also the
run-time per iteration.

5.4 Performance heuristics
In what follows, we present a collection of heuristics aimed
at improving the performance of the biLouvain algorithm in
practice.

5.4.1 Vertex Ordering
In the biLouvain algorithm, the order in which vertices are
processed could potentially impact the performance of the
algorithm and the quality of community-wise partitioning
to varying degrees, depending on the input and on the
ordering scheme used.

To understand the impact of vertex ordering on perfor-
mance, note that the community assignment made for a
vertex on one partition (say V1) at any given iteration is de-
pendent on the community states of its neighboring vertices
in the other partition (V2), and also on the community states
in the same partition (for selecting candidate communities).
Also note that initially the number of communities on each
partition is equal to its number of vertices. When coupled
together, these observations imply that if vertex decisions
are all made, say sequentially, within one partition prior
to the other partition, then the time taken for processing
vertices on the first partition is likely to be significantly
higher than for the vertices in the second partition during
the same iteration. However, this performance impact is
expected to diminish in the later iterations of the algorithm
as communities get larger, thereby shrinking the number
of communities. Consequently, vertex ordering is likely to
have an effect on the algorithm’s performance.

As for quality, the impact of vertex ordering is likely
to be relatively less. It can be expected that for real world
inputs with well-defined community structures, the state
of communities typically converges faster in the first few
iterations of the algorithm, while largely remain stable in
the later iterations. However, the final output quality could
still differ based on the vertex ordering used.

To evaluate this quality-time tradeoff imposed by vertex
ordering, we implement these vertex ordering schemes:

1) Sequential: Within each iteration, the vertices in one
partition (say, V1) are all processed (in some arbitrary
order) prior to vertices in the other partition.

2) Alternate: Within each iteration, the processing of ver-
tices from the two partitions is interleaved—i.e., al-
ternating between the two partitions, until one of the
partitions is exhausted at which point the algorithm
defaults to the sequential mode to cover the remaining
vertices of the larger partition.

3) Random: Within each iteration, the order of processing
vertices in V1 ∪V2 is randomized. By fixing the random
seed, one can ensure that the output remains determin-
istic across multiple runs on the same input.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Fig. 6. Illustration of the common co-cluster mate case where ψ(C1) =
ψ(C2) = D.

Another contributing factor to dictate an ordering
scheme’s impact on performance is the constituent vertex
partition sizes. If the two partitions are of skewed sizes (e.g.,
n1 � n2) then the Random scheme is expected to have an
advantage in run-time over the other two schemes, whereas
if the two partitions have comparable sizes, then all three
schemes can be expected to behave similarly.

5.4.2 Structural Properties
The performance of the algorithm can be further improved
by observing and taking advantage of certain structural
motifs (properties) within bipartite networks and their re-
lation to the modularity expression. Such structural motifs
can include simple topological features such as a star (i.e.,
vertex i in V1 is connected to k vertices in V2), a chain (i.e.,
a linked list) inside a bipartite network, and common co-
cluster mate (i.e., communities C1, C2 ∈ P1 have commu-
nity D ∈ P2 assigned as their co-cluster mate), or more
complex attributes such as a k-core or inexact versions of
chains and stars embedded within a larger subgraph.

The idea is that, based on some provable properties, the
input graph can be preprocessed so as to detect such motifs
and compact them into their corresponding community
structures (as dictated by lemmas). This idea would reduce
the number of vertices to be processed, which has a direct
impact on the overall work of the biLouvain algorithm.

In this paper, we prove three such properties: i) for
the simple star case (Fig. 12(a); Appendix A.1), ii) for the
simple chain case (Fig. 12(b); Appendix A.2), and iii) for the
common co-cluster mate case (Fig. 6).

Although all these properties can be explored conjointly
(i.e., they complement one another), we found their effects
on performance to be varying. More specifically, based on
our tests, we found that identifying simple stars and chains
reduces the number of input vertices only by a factor of
about 8%. While such an improvement is not necessarily
insignificant in itself, relatively, our experimentations with
the common co-cluster mate property showed consistently
much larger improvements—in some cases, by even more
than three orders of magnitude, as will be discussed in
Section 6.3.2. Consequently, we delve into the details of
the common co-cluster mate property in what follows; and
defer the proofs and discussions corresponding to the other
two properties (star and chain) to Appendix A.

The Fuse heuristic: Let C1 and C2 be two communities
from vertex set V1, and D be a community from vertex set
V2, such that D is a co-cluster mate for both C1 and C2 (i.e.,

ψ(C1) = D, ψ(C2) = D), and (without loss of generality)
let C2 be a co-cluster mate for D (i.e., ψ(D) = C2). Then the
following two lemmas hold:
Lemma 5.3. Given C1, C2 and D as defined above, the

community formed by “fusing” C1 and C2 (i.e., C1∪C2)
will also choose D as its co-cluster mate.

Proof: Let:

∆C1
= AC1

− EC1,D

∆C2
= AC2

− EC2,D

∆D = AD − ED,C1∪C2

When individual communities C1 and C2 have both chosen
D as their co-cluster mate, their contribution (Q′B) to the
overall modularity (QB) is given by:

Q′B =
1

2M

[
EC1,D + EC2,D −

1

2M

[
(AC1 +AC2)×AD

]]
(10)

When communities C1 and C2 are “fused” together (C1 ∪
C2), the contribution of the newly fused community to the
overall modularity remains the same as in Eqn. 10.
Lemma 5.4. Given C1, C2 and D as defined above, com-

munity D’s contribution to the overall modularity could
potentially increase if C1 and C2 are fused (i.e., C1∪C2),
provided that the condition ∆C1 ≤ ED,C1 is also met.

Proof: When C1 and C2 are individual communities,
and D has chosen C2 as its co-cluster mate, then D’s
contribution (Q′B) to the overall modularity (QB) is given
by:

Q′B =
1

2M

[
ED,C2

− 1

2M

(
AD ×AC2

)]
(11)

However, if communities C1 and C2 are “fused” together, D
could potentially choose C1 ∪C2 as its new co-cluster mate,
in which case, D’s contribution to the overall modularity
will become:

Q′B =
1

2M

[
ED,C1

+ ED,C2
− 1

2M

[
AD × (AC1

+AC2
)
]]
(12)

Comparing Eqn. 11 and Eqn. 12:

(AD)× (AC1
) ≤ (M)× (2ED,C1

) (13)

Immediately, from the expression above we notice that:
AD ≤M .

Therefore, community D will provide a better modularity
contribution choosing C1 ∪C2 as its co-cluster mate only if:

ED,C1
+ ∆C1

≤ 2ED,C1

∆C1
≤ ED,C1

(14)

We take advantage of the common co-cluster mate prop-
erty, shown by the above two lemmas, as follows (see
Algorithm 1). By fusing pairs of communities that share a
common co-cluster mate, in a preprocessing step, we can
possibly reduce the number of initial communities, and in
turn, compact the input graph by collapsing the fused com-
munities into vertices. This optimization is aimed at achiev-
ing run-time savings; however modularity could potentially
be lost if our implementation does not explicitly perform

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

the condition in Lemma 5.4. In fact, for the purpose of our
implementation, we chose not to check for this condition,
thereby trading off quality for performance. This makes our
implementation of the Fuse-based algorithm a heuristic.

Also note that there are multiple minor variations pos-
sible while implementing the Fuse preprocessing heuristic
itself. For instance, a conservative approach is to recompute
co-cluster affiliations for communities taken from V2, after
every fuse operation that merges two communities in V1.
However, such an approach is likely to increase the run-
time. In our default implementation, we choose a more
aggressive approach of recomputing co-cluster affiliations
for communities in V2 only after all fuse operations are com-
pleted for communities in V1. We observed this approach to
achieve run-time savings with minimal quality reduction (as
shown in Section 6).

Run-time complexity for the Fuse heuristic: Given that
the initial number of communities in a partition is equal
to the number of vertices in its corresponding vertex set,
the worst-case run-time complexity for assigning co-cluster
mates for all communities is O(n1 × n2), assuming full
connectivity as explained in Section 5.3. Then, communities
belonging to the same partition are tested for common co-
cluster mates, for which the worst-case run-time complexity
is given by O(n2

1) and O(n2
2), respectively. The final com-

plexity is then O[2(n1 × n2) + n2
1 + n2

2] which makes our
Fuse heuristic a quadratic algorithm. In practice, however,
the number of communities drastically reduces (by orders
of magnitude as shown in Section 6), thereby making the
Fuse heuristic highly effective and fast in practice.

Algorithm 1: Fuse preprocessing—fusing communities
based on their common co-cluster mates

Input : Edge list
Output: List of communities. Each entry in the list is

given by the set of vertices in that community
1 Init: Each vertex starts in its own community
2 Compute ψ(Ci) for all communities Ci ∈ P1

3 for each community Ci ∈ P1 do
4 for each community Ck ∈ P1 such that k < i do
5 Compute ψ(Ci) ∩ ψ(Ck)

6 Let C∗k ← argmax
Ck

(ψ(Ci) ∩ ψ(Ck)), such that the

intersection is nonempty
7 if C∗k exists then
8 Fuse Ci into C∗k
9 ψ(C∗k) = ψ(Ci) ∩ ψ(C∗k)

10 Repeat from Step 2 for all communities Dj ∈ P2

5.5 Implementation and Software Availability
We have implemented all steps of our biLouvain al-
gorithm (including preprocessing) in C++. Scripts for
data format conversions and wrangling were writ-
ten in Perl. Software is available as open source at
https://github.com/paolapesantez/biLouvain.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup
Experimental Platform: As our experimental platform,
we used compute nodes of the Edison supercomputer at

the National Energy Research Scientific Computing Cen-
ter (NERSC). Each node has a 12-core Intel ”Ivy Bridge”
processor at 2.4 GHz, and 64GB RAM. Since our current
implementation is serial, it used only one core of a compute
node. For graph visualization, we used the Analysis and
Visualization of Social Networks (Visone) software [23].

Test inputs: For experimentation, we used a combination
of real world and synthetic data sets (see Table 2):
a) Southern Women [24]: a women vs. social events bipartite

graph;2

b) Plant-Pollinator [5]: 4 of the 23 pollinator networks, binary
and weighted, where an edge represents the frequency of
a pollinator’s visit to a plant3;

c) Malaria [22]: a mapping between subsequences and genes
in the malaria parasite P. falciparum;

d) Drug-Complexes [25]: drug-protein target interactions;
e) Gene-Drug [4]: gene-drug interactions;
f) Genes-Voxels [2]: mouse brain development during dif-

ferent phases, where edges represent the activation of a
gene on a particular point (“voxel”) in three-dimensional
space; and

g) Host-Pathogen [6]: species-species interactions, where an
edge indicates that a pathogen was found in host.
We also used two synthetic networks (Synthetic1 and

Synthetic2). More specifically, Synthetic1 corresponds to a bi-
partite network with a predefined, well-characterized com-
munity structure (probability of 0.9 for intra-cocluster edges
and probability of 0.1 for inter-cocluster edges), whereas
Synthetic2 represents a random bipartite network with uni-
form degree distribution with an unknown (possibly, weak)
community structure.

biLouvain configuration: All modularity results pre-
sented use the Murata+ formulation defined in this paper
(Section 4). Recall that biLouvain has two parameters—the
iteration and phase cutoffs (τi, τp respectively), as described
in Section 5. We experimented with multiple values of τi in
the interval [10−6, 10−2] on different inputs. These prelimi-
nary experiments consistently showed that: a) the final out-
put modularities hardly changed within the interval tested;
whereas b) as τi is decreased, the number of iterations per
phase increased, thereby increasing run-time to completion.
Thus, we set the default value of τi = 10−2 throughout
our experiments. We set the phase cutoff τp to 0.0 in all our
experiments. Note that this represents a conservative setting
where the algorithm is allowed to terminate only when
two consecutive phases produce no change in the overall
modularity. We also evaluated the quality-time tradeoff
among different vertex ordering schemes in Section 6.3.1.
Based on this evaluation, we set Random ordering as our
default ordering scheme.

6.2 Qualitative Assessment
6.2.1 Validation
First, we validate our biLouvain algorithm using the South-
ern Women benchmark and the two synthetic networks. For
the Southern Women, our algorithm was able to reproduce
the expected communities [26] identically as shown in Fig. 7.

2. This is a bipartite graph with a known community structure and
we use this as a benchmark for validation.

3. We experimented on all 23 networks, and select only the top 4
largest networks for presentation in this section.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

TABLE 2
Bipartite network input statistics.

Input Nodes Edges Input
Data Set n1 n2 m Type

SouthernWomen 18 14 89 Binary
memmott1999 25 79 299 Weighted
kevan1970 30 114 312 Weighted
junker2013 56 257 572 Weighted
kato1990 91 679 1,206 Weighted
Malaria 297 806 2,965 Binary
Drug-Complex 680 739 3,690 Binary
Mouse E135L3 163 5,162 8,870 Weighted
Mouse E115L3 159 4,341 9,770 Weighted
Mouse E155L3 156 5,301 11,237 Weighted
Mouse P28L3 89 5,924 11,253 Weighted
Mouse E185L3 146 5,339 26,735 Weighted
Mouse P4L3 128 7,796 33,001 Weighted
Mouse P14L3 230 15,302 48,242 Weighted

Host-Pathogen 8,905 6,314 22,512 Weighted
Gene-Drug 3,090 14,311 29,389 Binary

Synthetic1 21 180 216 Binary
Synthetic2 67 10 424 Binary

Fig. 7. (a) Southern Women Bipartite Graph. Circles - women and
diamonds - events by dates. (b) Detected Communities: Red={Evelyn,
Laura, Theresa, Brenda, Charlotte, Frances, Eleanor, Pearl, Ruth},
Blue={Verne, Myra, Katherine, Sylvia, Nora, Helen, Dorothy, Olivia,
Flora}, Green={6/27, 3/2, 4/12, 9/26, 2/25, 5/19, 3/15, 9/16}, and Pur-
ple={4/8, 6/10, 2/23, 4/7, 11/21, 8/3}.

For both synthetic networks, the results were along
expected lines. In Fig. 8, we show the Synthetic2 input,
and the bipartite community division output from biLou-
vain. Recall that this is a random network with uniform
degree distribution. Yet, our algorithm was able to achieve
a modularity of 0.505. On the Synthetic1 input, which was
configured to have a stronger community structure, the
output modularity was 0.816 and the expected community
structure was successfully recovered.

6.2.2 Biological Assessment of Clusters
We assessed the significance of the bipartite communities
output by the biLouvain algorithm, on the Gene-Drug net-
work, which was one of the larger real world networks
tested. For assessment, we computed a Gene Ontology
(GO)-based significance for each gene cluster detected by
our algorithm.

Fig. 8. (a) Synthetic2 bipartite network: Circles represent V1 vertices, and
diamonds V2 vertices. (b) Bipartite communities output by biLouvain:
Purple and green vertices form two communities in V1, while blue and
red form two communities in V2. The dashed line shows the division
between the two co-clusters.

Fig. 9. Evaluation of performance of biLouvain vertex ordering schemes.
(a) Drug-Complex data set (n1 ' n2). (b) Gene-Drug data set (n1 �
n2).

The biLouvain algorithm detected 505 gene clusters from
the Gene-Drug network, each consisting of two or more
genes. We computed the GO significance for these 505
clusters using gProfileR [27]. The analysis resulted in 428
(84.75%) clusters with valid GO term annotations. The sig-
nificance of a particular GO term, associated with a group
of genes, is given by its p-value. We used a conservative
approach of assigning the maximum p-value (i.e., lowest
statistical significance) from within each cluster to be the
cluster’s p-value. Based on this conservative scheme, we
found that all of the 428 clusters have a p-value of 0.05 or
less—indicating a minimum confidence level of 95%.

6.3 Performance Evaluation
In this section we evaluate the performance of the biLouvain
algorithm, including an evaluation of the effectiveness of
the different vertex ordering schemes (Section 6.3.1), and of
the different heuristics (Section 6.3.2).

6.3.1 Performance of vertex ordering schemes
In Section 5.2 we described three vertex ordering schemes
and their potential impact on biLouvain’s quality and perfor-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

Fig. 10. Time taken for the Fuse preprocessing step relative to the total
time of our biLouvain algorithm. Note that the Fuse step’s cost is shown
as part of the total time, and the time axis is in log scale.

mance. We studied this quality-time tradeoff on two signifi-
cantly different real world networks: the Drug-Complex net-
work, which represents the case of an even size distribution
between the two vertex partitions (i.e., n1 ' n2); and the
Gene-Drug network, which represents the case of a skewed
size distribution between the partitions (here, n1 � n2).

Fig. 9 depicts this quality-time tradeoff for these two
cases. For Drug-Complex (chart (a)), we observed that all
three schemes behave similarly (both by quality and perfor-
mance). For the Gene-Drug (chart (b)), we observed that the
Random scheme demonstrated the best tradeoff, showing
a reduction of 0.05 in modularity relative to Sequential,
while improving the performance by a factor of 3.43×.
These results confirm the expected efficacies of the ordering
schemes. These results provide a guide to the choice of the
ordering scheme based on the input.

6.3.2 Performance evaluation of the heuristics
In this section, we provide a comparative evaluation of two
versions of our biLouvain algorithm:
• Baseline represents the version of our biLouvain algo-

rithm that deploys only the random vertex ordering
scheme (i.e., without any preprocessing); and

• Fuse represents the version which also deploys the
Fuse preprocessing heuristic that was described in Sec-
tion 5.4.2.

Table 3 shows the results of comparing the Baseline and
Fuse versions of biLouvain. Recall that the Fuse heuristic
essentially is aimed at reducing the number of vertices
that are input to the main biLouvain clustering algorithm.
Consequently we report on both the quality and the run-
time performance of both versions. The key observations
are as follows.

The Baseline version takes anywhere between seconds
(for the smaller inputs) to hours (for most other inputs),
while taking more than 48 hours to completed for 5 out of
the 18 inputs tested.

Table 3 also shows the results of running the Fuse
version. For all inputs, the Fuse version offers a reduction
in the number of vertices—in some cases, up to two orders
of magnitude reduction (e.g., Mouse P14L3). This drastic
reduction in the graph size meant that we were able to

achieve drastic reductions in run-time compared to the
baseline version (four orders of magnitude or more in some
cases). For instance, the two orders of magnitude reduction
in the number of vertices for the Mouse P14L3 meant that
the Fuse version was able to complete the computation in
less than 5 minutes; compare this with the baseline version
not completing in 48 hours. The significant reductions in
run-time also resulted in a reduction in the output modu-
larity for many inputs (compared to the Baseline version’s
output). However, as Table 3 shows, the loss in modularity
is generally marginal. These results show the fine balance in
quality vs. time achieved by the Fuse version.

Note that all run-times reported in the Fuse column
of Table 3 include the time for preprocessing. In fact, we
analyzed the cost of Fuse preprocessing in Fig. 10. As shown,
the cost can be as high as 23% of the total execution time for
some input cases; this percentage is a result of the reductions
achieved in the subsequent clustering time (compared to the
Baseline), thereby demonstrating the high effectiveness of
the Fuse heuristic.

6.4 Comparative Evaluation
In this section, we provide a detailed comparative evalua-
tion of biLouvain against other existing tools (Section 6.4.1),
and a comparison with a projection-based implementation
(Section 6.4.2).

6.4.1 Comparison with Other Tools
We compared biLouvain against five state-of-the-art methods
for bipartite community detection—the Label Propagation
(DIRTLPAwb+) [20], the Stochastic Block Model (biSBM) [22],
the AdaptiveBRIM [13], the LPBRIM [19], and the Leading
Eigenvector [21]. The latter three algorithms are available in
the MATLAB library BiMat [28].

We used the Fuse version of our biLouvain method in all
our comparisons, as it was shown to provide a reasonable
quality-time tradeoff in Section 6.3.1.

In our evaluation, we report both on the raw perfor-
mance (run-time and memory usage) and the quality (based
on the Murata+ modularity) of the different methods.

While running DIRTLPAwb+, AdaptiveBRIM, and LP-
BRIM, we observed that the outputs varied across multiple
executions. However, upon a closer examination we found
such variations to be minor and therefore we report on an
arbitrarily selected output from each of these methods.

In the case of biSBM, the outputs not only showed
minor variations like the above three methods, but more
importantly, the method requires the user to input the
number of communities, k1 and k2, for the two sides of the
bipartite input. In fact, we found that the outputs varied
significantly with changes to these values. Therefore, we
followed an approach of running the tool over multiple
configurations of k1 and k2, and selecting the output for
which a high modularity was observed while allowing the
tool to complete in a reasonable amount of time (i.e., hours).
It is to be noted that the run-time of biSBM was also highly
sensitive to the values of k1 and k2.

Table 4 shows the results of our comparative study on
individual binary and weighted network inputs. As can be
observed, biLouvain delivers the maximum modularity for 7
out of the 18 inputs. For the other inputs, the modularity

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

TABLE 3
Input statistics, biLouvain modularity and run-time performance on the inputs using baseline method and after incorporating the Fuse heuristic.

The “N/A” label indicates that the results were not available because the corresponding runs did not complete in 48 hours.

Input Nodes Murata+ Modularity biLouvain Total Time
Data Set n1 n2 QB t sec

Baseline Fuse Baseline Fuse Baseline Fuse Baseline Fuse Speedup
SouthernWomen 18 9 14 7 0.575 0.575 0.127 0.060 2.1×
memmott1999 25 13 79 11 0.526 0.518 0.938 0.074 12.2×
kevan1970 30 11 114 14 0.690 0.679 1.405 0.077 18.2×
junker2013 56 33 257 45 0.693 0.670 5.368 0.515 10.4×
kato1990 91 54 679 51 0.680 0.678 53.155 1.824 29.1×
Malaria 297 144 806 221 0.630 0.581 34.834 5.428 6.4×
Drug-Complex 680 190 739 189 0.839 0.833 22.439 0.865 25.9×
Mouse E135L3 163 159 5,162 131 0.735 0.714 5,331.785 10.518 506.9×
Mouse E115L3 159 155 4,341 136 0.613 0.559 12,826.764 38.095 336.7×
Mouse E155L3 156 145 5,301 124 0.652 0.662 25,179.302 11.723 2,147.9×
Mouse P28L3 89 80 5,924 74 N/A 0.486 >172,800.000 5.037 > 3× 104×
Mouse E185L3 146 137 5,339 105 N/A 0.513 >172,800.000 59.607 > 2× 103×
Mouse P4L3 128 123 7,796 108 N/A 0.513 >172,800.000 73.890 > 2× 103×
Mouse P14L3 230 216 15,302 172 N/A 0.540 >172,800.000 270.060 > 6× 102×
Host-Pathogen 8,905 3,263 6,314 3,339 N/A 0.679 >172,800.000 5,626.221 > 3× 101×
Gene-Drug 3,090 2,170 14,311 2,146 0.822 0.813 3,402.000 399.822 8.5×

Synthetic1 21 21 180 21 0.816 0.806 1.351 0.072 18.8×
Synthetic2 67 3 10 2 0.505 0.5 1.580 0.064 24.7×

TABLE 4
Comparison of biLouvain quality and performance against other state-of-the-art methods.

Input Murata+ Modularity QB Total Time t(sec)
Data Set Leading Adaptive LP DIRT biSBM biLouvain Leading Adaptive LP DIRT biSBM biLouvain

Eigenvector BRIM BRIM LPAwb+ Eigenvector BRIM BRIM LPAwb+
SouthernWomen 0.493 0.482 0.482 0.482 0.540 0.575 1.166 0.639 0.789 0.020 0.068 0.060
memmott1999 0.336 0.329 0.315 0.443 0.354 0.518 0.129 0.146 0.559 3.400 0.170 0.074
kevan1970 0.535 0.552 0.401 0.685 0.553 0.679 0.231 0.123 1.328 5.017 0.168 0.077
junker2013 0.434 0.451 0.439 0.670 0.427 0.670 1.364 0.414 2.229 121.026 3.271 0.515
kato1990 0.513 0.476 0.485 0.655 0.467 0.678 21.674 3.123 5.131 802.217 26.977 1.824
Malaria 0.713 0.662 0.631 0.661 0.616 0.581 55.860 5.454 9.172 50,432.690 79.268 5.428
Drug-Complex 0.875 0.796 0.841 0.826 0.739 0.833 94.989 47.520 14.602 59,575.560 287.388 0.865
Mouse E135L3 0.772 0.685 0.678 N/A 0.634 0.714 11,122.779 27.701 355.864 >172,800.000 3,287.098 10.518
Mouse E115L3 0.623 0.555 0.465 N/A 0.429 0.559 4,273.233 13.549 233.999 >172,800.000 2,023.867 38.095
Mouse E155L3 0.698 0.655 0.564 N/A 0.524 0.662 9,417.426 19.677 369.010 >172,800.000 1,711.001 11.723
Mouse P28L3 0.539 0.480 0.481 N/A 0.409 0.486 11,839.985 18.197 503.175 >172,800.000 2,584.862 5.037
Mouse E185L3 0.451 0.445 0.527 N/A 0.270 0.513 10,446.000 5.702 401.503 >172,800.000 4,170.487 59.607
Mouse P4L3 0.465 0.439 0.561 N/A 0.284 0.513 48,607.360 13.594 1,179.655 >172,800.000 9,911.438 73.89
Mouse P14L3 N/A 0.412 0.412 N/A 0.279 0.540 >172,800.000 71.866 8,446.312 >172,800.000 66,966.088 270.060
Host-Pathogen 0.522 0.463 0.466 N/A 0.390 0.679 155,031.005 15,421.995 1,295.048 >172,800.000 35,536.244 5,626.221
Gene-Drug N/A 0.795 0.768 N/A 0.825 0.813 >172,800.000 3,231.928 5,892.775 >172,800.000 23,717.271 399.822

Synthetic1 0.825 0.813 0.806 0.806 0.812 0.806 0.594 0.551 1.528 17.798 1.247 0.072
Synthetic2 0.453 0.456 0.454 0.456 0.456 0.500 0.090 0.033 0.731 0.032 0.069 0.064

figures delivered by biLouvain are generally close to the
respective best performing method (except for Malaria).
Among the other tools, Leading Eigenvector delivers compa-
rable quality to biLouvain.

With respect to run-time, Table 4 shows that the biLouvain
algorithm is the fastest for 10 out of the 18 inputs. More
importantly, biLouvain consistently delivers one of the fastest
run-times for most of the large inputs. Among the other
tools, Adaptive BRIM delivers a comparable performance
to biLouvain, although with a significantly lower quality.
Furthermore, Leading Eigenvector, which delivered a high
quality of results in modularity, takes substantially longer

run-times on average than biLouvain.
To make it easier to see the bigger picture in relative

performance (i.e., agnostic to the precise inputs), in Fig. 11
we depict the performance profiles of all the methods. These
profile charts are constructed as follows: For any input
X , let the “top” performance (as defined by the desired
metric: run-time, quality or memory) was observed for some
method Y . Then, for each method Y ′, it’s relative perfor-
mance on that input is expressed as a percentage of this best
performance (by Y). For instance, if a method took twice
as long time as to complete than the top performing for an
input, then the contributing factor 2.0 is added to the list of

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

Fig. 11. Performance profiles comparing the relative performances of the different state-of-the-art methods versus our biLouvain method (Fuse
version), over all the 18 input data sets tested. For cases where a method did not complete successfully in 48 hours, we assigned a default value
(either runtime or modularity) that is twice the maximum value observed for that particular input using any other tool. Final modularity scores are
shown in chart(a), run-times are shown in chart(b), and memory consumption is shown in chart(c). It is to be noted that the longer a methods curve
stays near the Y-axis the more superior its performance is relative to the other methods, over a wider range of inputs.

relative performance values to method Y ′. Subsequently, the
list of all performance values is sorted in non-descending
order and plotted on the performance profile chart (one
curve for each method).

In the performance plot, the X-axis represents the factor
by which a given method fares relative to the best perform-
ing method on a particular input. The Y-axis represents
the fraction of problems (i.e., inputs). In this scheme of
representation, the closer a method’s curve is to the Y-axis,
the more superior it’s performance is, relative to the other
methods over a wider range of inputs; whereas the worst
performance of a method is shown at the top-right most
placement of the corresponding curve. Thus, the charts il-
lustrate the relative performance of each method over other
methods for the collection of 18 inputs tested (as opposed to
the individual inputs).

The performance profile results show that biLouvain
delivers the highest quality for the most fraction of the
inputs (Fig. 11a). Even the worst performance observed by
biLouvain is less than 1.4× away from the top modularity
achieved for that output.

With respect to run-time (Fig. 11b), the performance
curve biLouvain shows the best results, followed by Adaptive
BRIM.

With respect to memory consumption (Fig. 11c), biLou-
vain is one of the best performing methods alongside biSBM
and DIRTLPAwb+. We note that, by default, all biLouvain

runs were performed using a memory limit of 3GB. How-
ever, some methods required more memory to complete the
execution. For instance, for the Gene-Drug input, Adaptive
BRIM needed 7GB, LPBRIM needed 9GB, and Leading Eigen-
vector required 13GB.

6.4.2 A Projection-based Hybrid Approach
Projection, when applied to bipartite graphs, is known to
lose information. However, we explored projection as a
potential technique to initialize the set of communities at
the start of the biLouvain procedure. The goal was to assess
the impact of such an initialization procedure on both the
quality and run-time of execution.

We implemented our projection-based approach as fol-
lows: First, we generate two unipartite graphs—one from
V1 and another from V2—by simply performing a projection
of vertices. Subsequently, for each projected graphs, we run
the Louvain algorithm [17], which generates a set of commu-
nities for each vertex partitions. Using these two sets of com-
munities as “seeds”, we run the biLouvain algorithm (Fuse
version) on the original bipartite graph inputs. We then
compared the output generated by this process against the
output generated by running biLouvain directly on the input
bipartite graph inputs. Table 5 shows the results obtained
from using Projection in our test input data sets. As expected,
we observe an improvement in run-time performance with
the use of a projection for community initialization. For

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

TABLE 5
Comparison of our Fuse version of the biLouvain to our projection-based hybrid implementation.

Input Nodes Murata+ Modularity biLouvain Total Time
Data Set n1 n2 QB t(sec)

Fuse Projection Fuse Projection Fuse Projection Fuse Projection (%Preprocess)
SouthernWomen 9 2 7 2 0.575 0.568 0.060 0.122 7.612%
memmott1999 13 2 11 4 0.518 0.500 0.074 0.039 30.547%
kevan1970 11 2 14 4 0.679 0.529 0.077 0.055 29.193%
junker2013 33 5 45 10 0.670 0.526 0.515 0.095 29.510%
kato1990 54 5 51 6 0.678 0.578 1.824 0.346 47.753%
Malaria 144 11 221 10 0.581 0.665 5.428 0.313 45.025%
Drug-Complex 190 38 189 39 0.833 0.777 0.865 0.419 46.766%
Mouse E135L3 159 25 131 33 0.714 0.740 10.518 5.179 30.755%
Mouse E115L3 155 15 136 18 0.559 0.586 38.095 6.514 36.917%
Mouse E155L3 145 13 124 18 0.662 0.652 11.723 10.994 24.598%
Mouse P28L3 80 18 74 20 0.486 0.509 5.037 38.779 41.781%
Mouse E185L3 137 11 105 17 0.513 0.478 59.607 21.067 49.370%
Mouse P4L3 123 14 108 16 0.513 0.524 73.89 52.904 48.590%
Mouse P14L3 216 19 172 25 0.540 0.501 270.060 292.013 31.928%
Host-Pathogen 3,263 1,636 3,339 1,639 0.679 0.572 5,626.221 33.646 53.843%
Gene-Drug 2,170 397 2,146 412 0.813 0.794 399.822 28.479 44.661%

Synthetic1 21 4 21 8 0.806 0.776 0.072 0.076 22.410%
Synthetic2 3 2 2 2 0.500 0.456 0.064 0.043 20.750%

TABLE 6
Comparison of Murata+ modularities achieved by using Projection-only

vs. using the hybrid version that uses projection for community
initialization and biLouvain for the final communities.

Input Murata+ Modularity
Data Set Projection-only Hybrid

(Projection-biLouvain)
SouthernWomen 0.568 0.568
memmott1999 0.378 0.500
kevan1970 0.441 0.529
junker2013 0.444 0.526
kato1990 0.431 0.578
Malaria 0.565 0.665
Drug-Complex 0.676 0.777
Mouse E135L3 0.651 0.740
Mouse E115L3 0.511 0.586
Mouse E155L3 0.583 0.652
Mouse P28L3 0.368 0.509
Mouse E185L3 0.444 0.478
Mouse P4L3 0.441 0.524
Mouse P14L3 0.355 0.501
Host-Pathogen 0.425 0.572
Gene-Drug 0.688 0.794

Synthetic1 0.612 0.776
Synthetic2 0.456 0.456

instance, we observed two orders of magnitude speedup in
the case of the Host-Pathogen input. However, with respect
to quality, directly executing biLouvain still produces better
modularity values for most inputs.

Table 6 confirms the expectation that Projection all by
itself, is not good enough. The table compares the mod-

ularities achieved by: (a) if one were to simply derive
the communities strictly based on projection (i.e., without
running the biLouvain step) vs. (b) use the projection-based
communities only for initialization and run the biLouvain
algorithm to compute the final communities. As can be
observed, the modularity values produced by the hybrid
approach (projection followed by biLouvain) is significantly
larger than the modularity values produced by projection
alone.

Furthermore, the projection step in general, requires
more memory to complete execution than biLouvain—e.g.,
Mouse P4 (5GB), and Mouse P14 (9GB). This is because
the collection of edges leaving a vertex u ∈ V1 (say) in a
bipartite graph would create a corresponding clique in the
projected subgraph for those vertices in V2 that it connects
to. This may become prohibitive in memory cost for inputs
with large vertex degrees.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced an efficient algorithm, biLou-
vain, for the problem of community detection in bipartite
networks. Our approach is designed to address the dual
objectives of minimizing execution time, and maximizing
the quality (as measured by bipartite modularity). More
specifically, we make the following main contributions: i)
(metric) We propose a modified variant of the Murata’s
bipartite modularity; ii) (algorithm) We present a set of
efficient heuristics to compute bipartite communities; and
iii) (results) Our experiments demonstrate the overall run-
time effectiveness and qualitative efficacy of the proposed
algorithm. The experiments also showed that our algorithm
substantially outperforms all the five other existing tools
compared in our study, both in execution time (by orders of
magnitude) and quality.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

Given the paucity in tools for carrying out community
detection on bipartite networks, we expect that our method
and related software will be of a high utility to the research
community. Thus, future extensions have been planned.
These include (but are not limited to): i) Parallelization to
further reduce the time to solution and enhance problem
size reach; ii) Incorporation of intra-type edge information,
where available, in addition to inter-type edges as part of
modularity computation; and iii) Extending applications on
more real world data sets.

ACKNOWLEDGMENTS

This research was supported by US Department of Energy
grant DE-SC-0006516. This research used resources of the
National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES

[1] J. T. Dudley, T. Deshpande, and A. J. Butte, “Exploiting drug–
disease relationships for computational drug repositioning,” Brief-
ings in bioinformatics, p. bbr013, 2011.

[2] S. Ji, “Computational genetic neuroanatomy of the developing
mouse brain: dimensionality reduction, visualization, and cluster-
ing,” BMC bioinformatics, vol. 14, no. 1, p. 1, 2013.

[3] J. Piñero, N. Queralt-Rosinach, À. Bravo, J. Deu-Pons, A. Bauer-
Mehren, M. Baron, F. Sanz, and L. I. Furlong, “Disgenet: a discov-
ery platform for the dynamical exploration of human diseases and
their genes,” Database, vol. 2015, p. bav028, 2015.

[4] M. Griffith, O. L. Griffith, A. C. Coffman, J. V. Weible, J. F.
McMichael, N. C. Spies, J. Koval, I. Das, M. B. Callaway, J. M.
Eldred et al., “Dgidb: mining the druggable genome,” Nature
methods, vol. 10, no. 12, pp. 1209–1210, 2013.

[5] C. F. Dormann, J. Frueund, N. Bluethgen, and B. Gruber, “Indices,
graphs and null models: analyzing bipartite ecological networks.”
The Open Ecology Journal, vol. 2, pp. 7–24, 2009.

[6] M. Wardeh, C. Risley, M. K. McIntyre, C. Setzkorn, and M. Baylis,
“Database of host-pathogen and related species interactions, and
their global distribution,” Scientific data, vol. 2, 2015.

[7] B. Gao, T.-Y. Liu, X. Zheng, Q.-S. Cheng, and W.-Y. Ma, “Consis-
tent bipartite graph co-partitioning for star-structured high-order
heterogeneous data co-clustering,” in Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data
mining. ACM, 2005, pp. 41–50.

[8] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu, “Rankclus:
integrating clustering with ranking for heterogeneous information
network analysis,” in Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology.
ACM, 2009, pp. 565–576.

[9] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3, pp. 75–174, 2010.

[10] M. E. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Physical review E, vol. 69, no. 2, p.
026113, 2004.

[11] T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang, “Bipartite network pro-
jection and personal recommendation,” Physical Review E, vol. 76,
no. 4, p. 046115, 2007.

[12] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “Maximizing modularity is hard,”
arXiv preprint physics/0608255, 2006.

[13] M. J. Barber, “Modularity and community detection in bipartite
networks,” Physical Review E, vol. 76, no. 6, p. 066102, 2007.

[14] R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, “Module
identification in bipartite and directed networks,” Physical Review
E, vol. 76, no. 3, p. 036102, 2007.

[15] T. Murata, “Detecting communities from bipartite networks based
on bipartite modularities,” in Computational Science and Engineer-
ing, 2009. CSE’09. International Conference on, vol. 4. IEEE, 2009,
pp. 50–57.

[16] K. Suzuki and K. Wakita, “Extracting multi-facet community
structure from bipartite networks,” in Computational Science and
Engineering, 2009. CSE’09. International Conference on, vol. 4. IEEE,
2009, pp. 312–319.

[17] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[18] P. Pesantez-Cabrera and A. Kalyanaraman, “Detecting communi-
ties in biological bipartite networks,” in Proceedings of the 7th ACM
International Conference on Bioinformatics, Computational Biology, and
Health Informatics. ACM, 2016, pp. 98–107.

[19] X. Liu and T. Murata, “Community detection in large-scale
bipartite networks,” in Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent
Agent Technology - Volume 01, ser. WI-IAT ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 50–57. [Online]. Available:
http://dx.doi.org/10.1109/WI-IAT.2009.15

[20] S. J. Beckett, “Improved community detection in weighted bipar-
tite networks,” Royal Society Open Science, vol. 3, no. 1, p. 140536,
2016.

[21] M. E. Newman, “Modularity and community structure in net-
works,” Proceedings of the national academy of sciences, vol. 103,
no. 23, pp. 8577–8582, 2006.

[22] D. B. Larremore, A. Clauset, and A. Z. Jacobs, “Efficiently inferring
community structure in bipartite networks,” Physical Review E,
vol. 90, no. 1, p. 012805, 2014.

[23] U. Brandes and D. Wagner, “Analysis and visualization of social
networks,” in Graph drawing software. Springer, 2004, pp. 321–340.

[24] V. Batagelj and A. Mrvar, “Pajek datasets,” http://vlado.fmf.uni-
lj.si/pub/networks/data/.

[25] J. C. Nacher and J.-M. Schwartz, “Modularity in protein complex
and drug interactions reveals new polypharmacological proper-
ties,” PloS one, vol. 7, no. 1, p. e30028, 2012.

[26] L. C. Freeman, “Finding social groups: A meta-analysis of the
southern women data,” Dynamic social network modeling and analy-
sis, pp. 39–97, 2003.

[27] J. Reimand, M. Kull, H. Peterson, J. Hansen, and J. Vilo, “g:
Profiler—a web-based toolset for functional profiling of gene lists
from large-scale experiments,” Nucleic acids research, vol. 35, no.
suppl 2, pp. W193–W200, 2007.

[28] S. V. Cesar O. Flores, Timothee Poisot and J. S. Weitz., “Bimat: a
matlab(r) package to facilitate the analysis of bipartite networks.”
[Online]. Available: https://bimat.github.io/

Paola Pesántez-Cabrera received the BS in
computational systems engineering from Univer-
sity of Cuenca, Cuenca, Ecuador in 2003. She
is a 2011 Fulbright scholar. She received her
MS degree in computer science from Washing-
ton State University, Richland, USA, in 2013.
Currently, she is working toward obtaining her
PhD degree in computer science at Washington
State University, Pullman, USA. Her current re-
search interests include mathematical modeling,
algorithm development, computational biology,

bioinformatics, graph mining, and data science.

Ananth Kalyanaraman received the bachelors
degree from Visvesvaraya National Institute of
Technology, Nagpur, India, in 1998, and the MS
and PhD degrees from Iowa State University,
Ames, USA in 2002 and 2006, respectively. Cur-
rently, he is an associate professor and Boe-
ing Centennial Chair in Computer Science, at
the School of Electrical Engineering and Com-
puter Science in Washington State University,
Pullman, USA. His research focuses on devel-
oping parallel algorithms and software for data-

intensive problems originating in the areas of computational biology and
graph-theoretic applications. He is a recipient of a DOE Early Career
Award, an Early Career Impact Award and two best paper awards.
He serves on editorial boards of IEEE Transactions on Parallel and
Distributed Systems and Journal of Parallel and Distributed Computing.
Ananth is a member of AAAS, ACM, IEEE, ISCB and SIAM.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

APPENDIX A
STRUCTURAL PROPERTIES

A.1 Star Property
Lemma A.1. A connected component ofG(V1∪V2, E, ω) that

is a vertex i ∈ V1 connected to k vertices {j1, j2, . . . , jk}
in V2, is guaranteed to collapse into a single co-cluster.

Proof: Fig. 12(a) illustrates a star input. Let us
consider unit weight edges for simplicity. Vertex i is
guaranteed to be in a community of its own when the
algorithm terminates, because all its neighbors (j’s) in V2

are of unit degree. As for the community assignment for all
the j’s, we consider two possible cases:

Case a) All the k vertices in V2 are merged into one commu-
nity. For this case, the contribution (Q′B) of all these k + 1
vertices, including i, to the overall modularity (QB) is as
follows (by Eqn. 5):

Q′B =
1

2M

(
2k − 2k2

2M

)
(15)

Case b) k − 1 vertices in V2 are merged into one community,
the remaining one is left in its own community. The correspond-
ing modularity contribution is:

Q′B =
1

2M

(
(2k − 1)− 2k2 − k

2M

)
(16)

A comparison of Eqn. 15 and Eqn. 16 indicates that the
contribution of case (a) can be shown to be always greater
than the contribution of case (b), as M ≥ k (expression not
shown).

A.2 Chain Property
Lemma A.2. A connected component withinG(V1∪V2, E, ω)

that is a linear chain of length ` (in the number of edges),
can collapse into one co-cluster if and only if ` < 2

√
M .

Proof: Fig. 12(b) illustrates a chain input. For
convenience we assume unweighted edges. We consider
two possible cases to determine the optimal length of a
chain for modularity maximization.

Case a) All vertices forming the chain on each partition, are
assigned to the same community. For this case, the contribution
of the chain (Q′B) to the overall modularity (QB) is as
follows:

Q′B =
1

2M

[
2`− `2

M

]
(17)

Case b) The chain is split in two parts, such that community
pairs of lengths 〈C0, D0〉 and 〈C1, D1〉, form two co-clusters.
The corresponding modularity contribution is:

Q′B =
1

2M

[
2`− 2− `

M

(
`2 − `D0 − `C0 + 2C0D0

)]
(18)

Maximizing the negative term above:

∂y

∂C0
= −`+ 2D0 = 0

∂y

∂D0
= −`+ 2C0 = 0

Fig. 12. Illustration of a) the star case, and b) the chain case.

⇒ C0 = D0 =
`

2
(19)

Substituting Eqn. 19 in Eqn. 18:

Q′B =
1

2M

[
2`− 2− 1

M

(
`2

2

)]
(20)

For case (a) to be preferred over case (b):

1

2M

[
2`− 2`+ 2− `2

M
+

`2

2M

]
> 0

⇒` < 2
√
M

(21)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2017. ; https://doi.org/10.1101/105197doi: bioRxiv preprint

https://doi.org/10.1101/105197
http://creativecommons.org/licenses/by-nc-nd/4.0/

