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ABSTRACT
Motivation: The majority of the human genome is composed of non-
coding regions containing regulatory elements such as enhancers,
which are crucial for controlling gene expression. Many variants
associated with complex traits are in these regions, and may disrupt
gene regulatory sequences. Consequently, it is important to not
only identify true enhancers but also to test if a variant within an
enhancer affects gene regulation. Recently, allele-specific analysis in
high-throughput reporter assays, such as massively parallel reporter
assays (MPRA), have been used to functionally validate non-coding
variants. However, we are still missing high-quality and robust data
analysis tools for these datasets.
Results: We have further developed our method for allele-specific
analysis QuASAR (quantitative allele-specific analysis of reads) to
analyze allele-specific signals in barcoded read counts data from
MPRA. Using this approach, we can take into account the uncertainty
on the original plasmid proportions, over-dispersion, and sequencing
errors. The provided allelic skew estimate and its standard error also
simplifies meta-analysis of replicate experiments. Additionally, we
show that a beta-binomial distribution better models the variability
present in the allelic imbalance of these synthetic reporters and
results in a test that is statistically well calibrated under the null.
Applying this approach to the MPRA data by Tewhey et al. (2016),
we found 602 SNPs with significant (FDR 10%) allele-specific
regulatory function in LCLs. We also show that we can combine
MPRA with QuASAR estimates to validate existing experimental and
computational annotations of regulatory variants. Our study shows
that with appropriate data analysis tools, we can improve the power
to detect allelic effects in high throughput reporter assays.
Availability: http://github.com/piquelab/QuASAR/tree/master/

mpra

Contact: fluca@wayne.edu;rpique@wayne.edu

1 INTRODUCTION
Genetic variants in non-coding regions are responsible for inter-
individual differences in molecular and complex phenotypes.
Quantitative trait loci (QTLs) for molecular and cellular phenotypes
(Dermitzakis, 2012) have been crucial in providing stronger
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evidence and a better understanding of how genetic variants in
regulatory sequences can affect gene expression levels (Stranger,
2007; Gibbs et al., 2010; Melzer et al., 2008; Cheung et al., 2003;
Brem et al., 2002). However, eQTL studies have severe limitations
in identifying the true causal variant, due to linkage disequilibrium
(LD) limiting the resolution of analysis. The availability of extensive
functional annotations (Consortium, 2012; Pique-Regi et al., 2011;
Hoffman et al., 2012; Moyerbrailean et al., 2016b) enables the
integration of functional genomic information into eQTL analysis,
which can be useful to dissect the causal variant and the functional
basis of the observed associations (Gaffney et al., 2012; Veyrieras
et al., 2008; Lee et al., 2009; Lappalainen et al., 2013; Kichaev
et al., 2014; Wen et al., 2015; Pickrell, 2014). SNPs that fall within
a transcription factor (TF) binding site (TFBS) represent a major
mechanism underlying eQTLs (Degner et al., 2012). Recently,
additional computational and experimental techniques have been
developed to predict and detect allelic effects of SNPs in TFBS
using DNase I footprinting and ChIP-seq data (from the ENCODE
and Roadmap Epigenome projects) (Moyerbrailean et al., 2016b;
Lee et al., 2015; Maurano et al., 2015; Zhou and Troyanskaya,
2015). Still, it is a challenge to further validate if allelic effects in
binding translate to effects on gene transcription. While all these
existing computational annotations are useful for predicting the
causal SNP in an eQTL, they do not prove the SNP is truly causal,
nor do they properly quantify its effect on gene expression.

To dissect regulatory sequences and compare genetic effects
on gene expression, different versions of high throughput
reporter assays have emerged in the recent years. These include
massively parallel reporter assays (MPRA) Melnikov et al. (2012);
Kwasnieski et al. (2012) and self transcribing active regulatory
regions sequencing (STARR-seq) Arnold et al. (2013) that can
simultaneously measure the regulatory function of thousands of
constructs at once. MPRAs utilize a multitude of unique synthesized
DNA oligos that are associated with barcodes, cloned in a reporter
plasmid and transfected into cells. The transcripts are then isolated
for RNA-seq. The number of barcode reads in the RNA over the
number of barcode reads from the plasmid DNA is used as a
quantitative measure of expression driven by the synthetic enhancer
region (Melnikov et al., 2012; Kwasnieski et al., 2012; Patwardhan
et al., 2012; Sharon et al., 2012; Kwasnieski et al., 2014). MPRA
and STARR-seq were originally developed to identify and validate
regulatory regions, but they can also be used to compare allelic
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Table 1. Statistical methods for ASE and MPRA analysis.

Type of test
Conditions T Fisher Bin �-bin QuASAR

Previously used in MPRA X X
Previously used for ASE X X X
Requires normally distributed
data

X

Underestimates the effect of
biological variability

X X X

Handles overdispersion X X
Accounts for base calling
error

X

effects of genetic polymorphisms or methylation (Lea et al., 2017).
Recent studies used this technique to compare allelic variants
of SNPs with the aim to dissect, at a large scale, the causal
nucleotide in eQTL and Genome Wide Association Study (GWAS)
signals. Specifically, (Vockley et al., 2015) used a STARR-seq
derived method (POP-STARR-seq) to measure allelic effects on
gene expression for population based variation in 104 regulatory
regions, and a more recent study by (Tewhey et al., 2016) adapted
MPRA to fine-map variants associated with gene expression in
lymphoblastoid cell lines (LCLs) and HepG2.

The application of MPRA to quantify the allelic effects of
regulatory variants is very similar to the challenge posed by
allele-specific expression (ASE) in RNA-seq data. However, one
key difference is that the proportion of plasmids for each allelic
construct may not be in a 1:1 ratio. Few off-the-shelf statistical
methods have been used for processing and analyzing these large
MPRA datasets (Table 1), but they do not consider several technical
issues that can lead to false positives, such as base-calling error and
over-dispersion. As demonstrated in RNA-seq ASE approaches, a
binomial distribution fails to account for overdispersion and results
in overly optimistic p-values, while a beta-binomial distribution
is a more adequate choice (Kumasaka et al., 2015a; van de Geijn
et al., 2015). Compared to RNA-seq ASE methods that combine all
reads across haplotypes, in MPRA we do not need to accommodate
for the uncertainty in phasing or haplotyping as the complete
sequence of each construct is known. By design we can also avoid
oligonucleotides that could lead to ambiguous mapping. This is
in stark contrast to using the entire human genome/transcriptome,
which typically requires extensive pre-processing. This is because
many genomes contain large number of repetitive and quasi-
repetitive regions that are only one SNP or base-calling error
away from many other paralogous regions. Here we further extend
QuASAR (Harvey et al., 2014), an approach which considers both
over-dispersion and base-calling errors, to test for allelic imbalance
in MPRA constructs when the default proportions are not equal.
The new method allows for estimates of the dispersion parameter
depending on variant-specific read coverage, and produces summary
statistics that are easy to incorporate in downstream analyses.

Here we tested our new method on MPRA data from Tewhey et al.
and we further confirmed the robustness of our method on another
dataset from Ulirsch et al.. First we compared our new QuASAR-
MPRA statistical test to other tests employed in MPRA and ASE
analyses (Table 1). We then demonstrate that the QuASAR-MPRA

test better calibrates the p-values under the null hypothesis, without
sacrificing statistical power. Finally, we used the allelic effects
identified by QuASAR-MPRA to investigate whether the genetic
variants that fall within genomic annotations, such as TF binding
motifs, are good predictors for allele-specific regulatory function.
Our study shows the potential value of using robust allele-specific
analysis in high throughput reporter assays, to improve fine mapping
analysis of association signals and validate genomic annotations of
regulatory variants.

2 METHODS
2.1 Data source and pre-processing
We downloaded processed read counts from GEO (GSE75661) ftp://
ftp.ncbi.nlm.nih.gov/geo/series/GSE75nnn/GSE75661/suppl/

GSE75661_79k_collapsed_counts.txt.gz (Tewhey et al., 2016).
This MPRA study was designed to look at ASE in 39,479 oligo pairs
representing 3,642 eQTLs from the GEUVADIS RNA-seq dataset of
lymphoblastoid cell lines (LCLs) from European and African individuals
(Lappalainen et al., 2013). It has a large number of experimental replicates
(8 LCL replicates), and makes use of barcodes (an average of 73 unique
barcodes per oligo per replicate) to remove PCR duplicates, making this
an ideal dataset to work with. We considered separately sequences in the
forward and reverse strand direction in the library, as direction of the
regulatory region could potentially affect reporter gene and therefore barcode
expression. Tewhey et al. found that filtering the data to remove variants
with low coverage greatly reduced the variability between replicates. Higher
variance could then lead to falsely identifying ASE. We therefore began
processing the dataset by applying a counts filter. For each direction we
removed all cases with less than five reads on the reference and alternate
allele, and where the sum of two alleles was  100. This gave us a total of
33,664 SNPs in the DNA library as input to the RNA library.

For the RNA library, we first separated the library into forward and reverse
directions, and then required that RNA constructs were in the DNA library.
We used a counts filter of 5 for both reference and alternate alleles so that we
were only looking at variants that had sufficient reads covering both alleles
to test for allele-specific effects on expression. This left us with 19,287 SNPs
in the forward library and 19,748 SNPs in the reverse library or 33,653 SNPs
total represented.

We additionally applied the QuASAR-MPRA method to a separate dataset
by Ulirsch et al.. We downloaded processed read counts from http://

www.bloodgenes.org/RBC_MPRA/ (Ulirsch et al., 2016). This dataset
comprised of 2,756 variants in strong linkage disequilibrium with 75 sentinel
variants associated with red blood cell traits, with reference and alternate
alleles represented in the pool of constructs. Each variant has 3 sliding
windows of coverage, which we treated as separate constructs (rather than
combining counts per variant). This dataset comprised of 2 DNA and 6 RNA
replicates (from K562 cells). The data was processed using the same steps
as with the Tewhey et al. data, resulting in 2,669 SNPs in total.

2.2 Baseline statistical methods for comparison
To test for ASE there are several different methods available (Table 1). The
t-test, Fisher’s exact test and binomial test are classical tests remarkably
appealing due to their simplicity. However, they have several limitations,
as they cannot be tuned to the context of the experiment, such as levels
of overdispersion (eg. from biological and technical variability) which are
known to exist in ASE data (Castel et al., 2015; Skelly et al., 2011; Anders
et al., 2010). A paired Student’s t-test for ASE can be used to test whether
the mean expression of the reference allele is equal to the mean expression
of the alternate allele. This test requires multiple replicates in order to
calculate a mean for each allelic expression group that has little variance,
otherwise the test will not have the power to detect differences. Fisher’s
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exact test has been used previously to identify ASE (Romanel et al., 2015),
by testing whether the reference and alternate allele counts’ proportions are
the same. Rejection of the null hypothesis, however, only informs us that
the difference between the average counts in the two samples is larger than
one would expect between technical replicates. In the binomial test, the
null hypothesis is that observed values for two categories do not deviate
from the theoretically expected distribution of observations. In ASE, the
binomial test is used to determine whether the ratio of the two alleles is
significantly different from the expected proportion (e.g. 0.5). This is the
classic test that has been employed previously to detect ASE in RNA-seq
studies, and assumes that read counts within each gene are binomially
distributed (Kilpinen et al., 2013; Consortium et al., 2015; Lappalainen
et al., 2013; Buil et al., 2014). Even accounting for reference mapping bias in
RNA-seq reads, p-values have been found to remain inflated (Castel et al.,
2015). Other methods handling ASE such as WASP, RASQUAL, EAGLE
(Kumasaka et al., 2015b; van de Geijn et al., 2014; Knowles et al., 2017)
use a per SNP overdispersion parameter and give well calibrated p-values.
However these methods perform ASE QTL mapping and their application to
MPRA would require a large number of replicates (> 15).

To reproduce the Student’s t-test performed by Tewhey et al., we
calculated the log2 ratio for the reference and alternate allele constructs
(RNA/DNA) for each replicate. These values were used as input for a paired
t-test in R. To perform the Fisher’s exact test on the MPRA counts data,
we first added a pseudocount of 1 (Vockley et al., 2015) to each RNA and
DNA reference and alternate allele counts and then used the fisher.test
function in R. To perform the binomial test on the MPRA counts data, we
compared the reference and alternate allele counts to the DNA proportion
(reference allele/ reference allele + alternate allele). To combine the p-values
for the two LCL individuals, we used Fisher’s method (Tewhey et al., 2016).

2.3 QuASAR Approach
QuASAR by default assumes that under the null hypothesis of no allelic
imbalance the reference and alternate allele read counts should be at 1:1
ratio. However, in MPRA, the proportion rl of the reference reads is not
necessarily 0.5 across all the l genetic variants, due to differences in PCR
amplification, as well as cloning and transformation efficiencies. Here, we
have extended QuASAR to test for differences between the proportion of
reference reads in DNA rl and the proportion obtained from RNA reads ⇢l.
To reject the null hypothesis ⇢l = rl, we extend QuASAR’s beta-binomial
model. The observed reference Rl and alternate Al allele read counts at a
given l are modeled as:

Pr (Rl|Nl, l,Mb) =

⇣Nl

Rl

⌘
� (Mb)� (Rl +  lMb)� (Al + (1�  l)Mb)

� (Nl +Mb)� ( lMb)� ((1�  l)Mb)
(1)

 l = [⇢l(1� ✏) + (1� ⇢l)✏] (2)

where Nl = Rl+Al is the total read count at l, and Mb is the concentration
parameter that controls over-dispersion of the mean proportion centered
around  l, which also incorporates in the model a base-calling error ✏ and
the allelic ratio ⇢l overall-mean. We can estimate ✏ using an EM procedure
(Harvey et al., 2014), but here for MPRA we fixed ✏̂ = 0.001 as a
conservative estimate of the true base-calling error rate.

We have found previously for ASE that overdispersion decreases with
greater depth of coverage (Figure S9 in Moyerbrailean et al. (2016a)).
Therefore here, as compared to our previous implementation of QuASAR,
we use different Mb parameters depending on the sequencing depth Nl. We
bin Nl into different quantiles (here deciles) and we estimate Mb for each
bin separately using a grid search:

ˆMb = argmax

Mb

 
LY

l=1

Pr (Rl|Nl, ✏̂, ⇢l = rl,Mb)

!
(3)

This should work well when the number of sites (i.e., SNPs tested) is
relatively large so each bin b has > 200 observations to estimate Mb. In

our experience sequencing depth is a major determinant for M, and because
we estimate M under the null, we tend to be conservative (i.e., M is the
worst case scenario for all the constructs that belong to the same group). As
a consequence, the QuASAR-MPRA p-values remain well calibrated (or in
the worst case scenario they will tend to be slightly conservative).

We estimate ⇢̂l using (1) with Mb =

ˆMb from (3) and a standard gradient
method (L-BFGS-B) to maximize the log-likelihood function:

l(⇢l; ˆMb, ✏̂) = log Pr

⇣
Rl|Nl, l =  (⇢l, ✏̂s), ˆMb

⌘
(4)

Finally, all parameters are used to calculate the LRT statistic, contrasting
H1 : ⇢l = ⇢̂l to H0 : ⇢l = rl and the resulting p-value.

For comparison, we performed the original QuASAR analysis on the data
as well, as described in Harvey et al..

2.4 QuASAR meta-analysis
Using the QuASAR approach, we can generate summary statistics of the
allelic imbalance that can be used for downstream analyses. For example,
to compare DNA to RNA, or between RNA of different cell-types, or to
perform meta-analysis of multiple MPRA libraries. Instead of using an
estimate of the allelic proportion ⇢l, in the QuASAR approach we report
the estimate of �l = log(⇢l/(1 � ⇢l)) and its standard error �̂l using the
second derivative (i.e. Hessian) of the log-likelihood function in (4). We
prefer the logistic transformed parameter �l as it provides a more robust fit
and the second derivative is better behaved than that of ⇢l on the edges.

To illustrate this for the Tewhey et al. data, we combined the summary
statistics for the two LCL individuals using standard fixed effects meta-
analysis. The effect size �l,n of each replicate n is weighted by wn,l =

1/�̂2
n,l, to calculate the overall effect size and standard error:

�⇤
l =

1

w⇤
l

X

n

�n,l wn,l �⇤
l =

q
1/w⇤

l (5)

where w⇤
l =

P
n wn, l. We can then calculate the Z-score and p-value

to test for an overall change between all the RNA replicates combined with
respect to the original DNA proportion �0:

Zl =
�⇤
l � �0

�⇤
l

,�0 = log

rl

1� rl
, p = 2�(�|Zl|) (6)

Across all the paper, p-values were corrected for multiple testing using
the Benjamini-Hochberg’s (BH) method (Benjamini and Hochberg, 1995).
To compare the different approaches we quantified the genomic inflation
parameter, �, for a set of p-values (Yang et al., 2011). For this we calculated
the ratio of the median of the p-value distribution to the expected median,
thus quantifying the extent of the bulk inflation and the excess false positive
rate. We also use a rank sum paired test to assess statistical significance in the
p-value inflation between QuASAR-MPRA and other methods with similar
performance.

2.5 Simulations
To simulate MPRA data we randomly sampled from a beta-binomial
distribution with parameters set to approximate the real data in Tewhey
et al.. The advantage of a simulation is that we have full knowledge of which
SNPs are truly imbalanced and we can empirically calculate statistical power
(i.e, sensitivity) and FDR under specific assumptions. The true underlying
distribution may not exactly be beta-binomial but simulations are still very
useful to know how the test performs and compares to other tests. We started
by simulating the DNA reads and proportions for each SNP using a beta-
binomial. For this we used the DNA proportion from the Tewhey et al. data
as the expected proportion ⇢l and we set the concentration parameter M to
be 200, and the total number of DNA reads N = 10,000.

✓l ⇠ Beta(⇢lM, (1� ⇢l)M)) RDNA
l ⇠ Bin(N, ✓l) (7)

After we simulated the DNA counts RDNA, we recalculated the new DNA
proportions r⇤l = R⇤

l /N . The exact value of the parameters used to generate
the DNA counts are not very important and should have no effect for the
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simulation as the differences are captured on the RNA data once the DNA
proportion is specified. To simulate the RNA data we need to simulate two
conditions: 1) SNPs without ASE and the same proportion as in DNA, and
2) SNPs with ASE and a different allelic proportion than those in DNA.
To do this, we explored different parameter settings for the concentration
parameter M (10, 60 and 100), effect size �� (0.5, 1.0 and 2.0) and number
of RNA replicates (2, 5 and 8). The number of reads Nl observed for each
SNP was set up to match the average NA12878 RNA counts for each SNP (so
multiple coverages are being simulated) and we divided these by a constant
factor to simulate sequencing depths (1/2,1/5 and 1/10) lower than those
obtained by Tewhey et al.. Each RNA replicate was simulated with the same
parameter setting.

⇢⇤l = logit(logit

�1
(r⇤l ) +��) (8)

✓l ⇠ Beta(⇢⇤l M, (1� ⇢⇤l )M)) RRNA
l ⇠ Bin(Nl, ✓l) (9)

To sample from Beta and Bin, we used the rbeta and rbinom in R

respectively. The proportion of SNPs with RNA counts with �� 6= 0

and simulated to have an allelic imbalance is 0.1% of the total SNPs. For
each simulated data set we then ran the t-test and QuASAR and adjusted
the p-values for multiple testing using the same BH procedure as in the
real data. For each FDR control threshold we empirically calculated power
(Sensitivity) and false discovery rate (eFDR). To ensure that we get robust
sensitivity and FDR estimates we repeated the entire procedure 20 times and
reported the average.

2.6 Annotation Overlap
Table S1 reports the annotations we have considered with their sources. More
specifically, we considered two major sets of annotations: experimentally
and computationally derived. The experimental annotations include allele-
specific hypersensitivity (ASH) from (Moyerbrailean et al., 2016b), dsQTLs
(Degner et al., 2012), and GTEx eQTLs (Consortium et al., 2015).

In terms of computational annotations, a variety of different methods have
been used recently to predict the allelic effect of SNP on TF binding and
chromatin accessibility. GKM-svm (Lee et al., 2015) uses gapped k-mer
frequencies to predict the activity of larger functional genomic sequence
elements, including the impact of a variant on DNase I sensitivity. It utilizes
support vector machinery based on the structural risk minimization principle
from statistical learning theory and kernel function which calculates the
similarity between any two sequences. CATO (Maurano et al., 2015)
quantifies the effect of SNPs on the energy of TF binding, through
overlapping SNP DHS profiles with TF motifs and applying a logistic
model which takes into account site dependent features and phylogenetic
conservation. DeepSEA (Zhou and Troyanskaya, 2015) uses TF binding,
DHS, and histone-mark profiles with genomic sequence information as
input for training a deep learning-based algorithm and predict the effects
that sequence alterations have on the chromatin. DeepSEA has three
major features: integrating sequence information from a wide sequence
context, learning sequence code at multiple spatial scales with a hierarchical
architecture, and multitask joint learning of diverse chromatin factors sharing
predictive features. Finally we also used CentiSNPs, an annotation that we
recently developed (Moyerbrailean et al., 2016b) that uses the CENTIPEDE
framework (Pique-Regi et al., 2011) to integrate DNase-seq footprints with
a recalibrated position weight matrix (PWM) model for the sequence to
predict the functional impact of SNPs in footprints. In CentiSNPs, SNPs
in footprints “footprint-SNPs” are further categorized using CENTIPEDE
hierarchical prior for each allele as “effect-SNP” if the prior relative odds
for binding are > 20 or as “Non-effect-SNPs” otherwise.

For the other computational annotations we set the following thresholds.
To run GKM-svm (Lee et al., 2015), we extracted sequences around MPRA
variants (19bp total) and then ran the reference vs alternate allele sequences
with either the GM12878 or HepG2 weights. We then used a threshold of <
�6 or > 6 for the variant scores. DeepSEA (Zhou and Troyanskaya, 2015)
variant scores were identified using the website tool with a vcf file input
(containing the MPRA variants). The functional significance predictions

have a threshold of < 0.05. We overlapped SNPs from MPRA counts data
with each annotation type. To identify particular annotations that predict the
ASE found in the MPRA, we built logistic models log(pl/(1 � pl)) =

�0 + �1 ⇥ al using the QuASAR p-values (p < 0.001) as the observed
binary outcome, and the genomic annotations al as the predictor. For this
type of analysis we use the nominal p-value (p < 0.001), as we test for an
enrichment with respect to what would be expected from the null uniform
distribution (0.1% of the tests). This nominal p-value corresponds to a FDR
threshold of 7.2% for FDR (enrichments are not sensitive to variations of
this threshold). A significant p-value from the annotation logistic model
together with the QQ-plot are useful to evaluate which annotations work
best in predicting changes in gene regulation.

3 RESULTS

Fig. 1. Comparing ASE testing methods in LCLs from Tewhey et al..
QQplot depicting the p-value distributions from testing for ASE using four
different methods in LCLs with all SNPs (Left) or SNPs predicted to not
have any regulatory effect (non-effect SNPs, Right). � measures genomic
inflation deviation from the uniform.

3.1 Applying QuASAR-MPRA to identify ASE
We used the method proposed here, QuASAR-MPRA, to detect
ASE in the MPRA data collected by Tewhey et al.. In MPRA,
ASE is defined as the departure in the RNA reads from
the DNA proportion (the input allelic ratio). Because strand
orientation may affect the enhancer function of the sequences
tested, each SNP was tested for ASE in the two strand orientations
separately (forward/reverse). The two LCL biological replicates
were combined using meta-analysis (See Methods). The number of
SNPs with significant ASE (10% FDR) were 309 (forward) and 293
(reverse) in LCLs (Table S2 and Figure 1), 85 (forward) and 84
(reverse) in HepG2 (Table S3 and Figure S1). We then compared
these results to those obtained using other methods previously used
for MPRA/ASE analysis using the same input file with the same
pre-processing filters (see Methods).

While some of the other methods seem to identify a larger number
of SNPs with significant ASE, the distribution of p-values (Figure
1) shows that those methods have very skewed distributions. The
majority of genetic variants tested are expected to have no impact
and only those that were the truly causal eQTL SNP should have
a significant p-value. We do not know a priori which variants
have ASE, but in Figure 1 we would expect that the majority
of p-values would follow the expected uniform distribution if the
approach correctly models the data under the null hypothesis. In
other words, only a fraction of MPRA constructs are expected
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to have significant allelic effects. To better quantify the departure
from the expected distribution of p-values for each testing method
we used the genomic inflation method. In this method, a greater
departure from a lambda value of 1 corresponds to greater inflation
in the test results (see Supplement for reverse oligo results). Based
on the genomic inflation value �, QuASAR-MPRA results in the
lowest inflation, with � = 1.161. A paired t-test with independent
estimation of variance and Welch’s adjustment, as in Tewhey et al.,
results in a moderately but significantly larger � = 2.89 (p <
2.2 ⇥ 10�16). The binomial test produces the greatest inflation,
with � = 57.95, followed by Fisher’s exact test, as in (Vockley
et al., 2015) resulting in � = 38.68. The methods with the lowest
inflation, QuASAR-MPRA and the t-test, have a 69% match at 10%
FDR.

These results are also similar if we use a different dataset (Ulirsch
et al., 2016) (Figure 2). QuASAR-MPRA results in the lowest
inflation, with � = 0.58, while the binomial test produces the
greatest inflation, with � = 33.31 followed by Fisher’s exact test
� = 16.86. The paired t-test is relatively well calibrated � = 1.74
but detects less hits than QuASAR-MPRA (only 64 constructs
containing 53 variants at FDR 10%). Using QuASAR-MPRA we
were able to identify 103 constructs containing 95 variants (FDR
10%) with significant ASE.

Fig. 2. Comparing ASE testing methods in Ulirsch et al. dataset. QQplot
depicting the p-value distributions from testing for ASE using four different
methods in K562 for all SNPs. � measures genomic inflation deviation from
the uniform.

Alternatively, we also considered the p-value distributions only
for the SNPs not predicted to affect TF binding (non-effect SNPs),
as these SNPs are more likely to be true negatives 1. Note that our
computationally predicted effects are not a perfect gold standard and
in fact one major application of this type of data and its analysis is to
precisely validate the accuracy of these computational annotations
and predictions as we will show later. Nevertheless, we see (in
Figure 1, 2 and S1) that the two methods with lowest lambda values
show an even lower departure from the null, consistent with the
computational method correctly predicting a large number of true
positives.

3.2 Applying QuASAR-MPRA to simulated data
To further investigate our proposed new method we used simulated
data where we know exactly the underlying true ASE signal to
evaluate the detection accuracy. It is important to note that the

simulation conditions may not exactly match those from the real
data (see Methods) but they are very useful for getting more insights
about the scenarios that may have larger impact on performance.
Here we only compare the two methods that seem to be well-
calibrated under the null hypothesis QuASAR-MPRA and the t-test.
Under the null distribution for all our simulations both tests do not
show a significant departure from the expected uniform distribution
for the p-values.

We then compared results from QuASAR-MPRA and the t-test in
scenarios when a fraction of the tests do have ASE (see methods).
In every condition QuASAR-MPRA has greater sensitivity to detect
ASE than the t-test (Figure 3). The t-test seems to perform better
when the over-dispersion is low (M=100), or when the effect size
of ASE is high (��=2). QuASAR-MPRA also handles well low
coverage data and a small number of replicates to achieve good
statistical power (Figure 3). This is consistent with our original
findings with QuASAR (Harvey et al., 2014) demonstrating that
we can measure ASE in a small number of replicates if there is
enough read coverage. The t-test appears to require a large number
of replicates in order to have power to detect ASE as compared to
QuASAR-MPRA.

3.3 Validation of experimental and computational
annotations for functional non-coding variants

High-throughput reporter assays can be used not only to fine-
map causal variants in both GWAS and eQTL studies, but also to
validate SNP functional annotations (Kwasnieski et al., 2014). Here
we take advantage that the p-values derived from QuASAR are
well calibrated under the null hypothesis to examine enrichments
for low p-values in both experimentally and computationally
derived annotations for allele-specific effects on TF binding.
The experimentally derived annotations included LCL dsQTLs
(Degner et al., 2012), allele-specific hypersensitivity (ASH) SNPs
(Moyerbrailean et al., 2016b), and GTEx eQTLs (Consortium et al.,
2015). In both LCLs (Figure 4) and HepG2 (Figure S2), ASH SNPs
had the greatest departure from the null, followed by LCL dsQTLs.

We then asked which computational annotations seem to be
the most complete and accurate predictors of the effect of a
sequence variant on gene regulation as validated by MPRA. We
considered effect-SNPs active in LCLs or HepG2 (Moyerbrailean
et al., 2016b), non-effect SNPs (negative control) (Moyerbrailean
et al., 2016b), predicted functional SNPs from CATO (Maurano
et al., 2015), GKM-svm (Lee et al., 2015) (a gapped kmer sequence-
based computational method to predict the effect of regulatory
variation), and DeepSEA (Zhou and Troyanskaya, 2015) (predicts
genomic variant effects at the variant position using deep learning-
based approach). Each of the functional annotations show marked
differences in p-value distribution. As expected, SNPs in active TF
footprints, but not predicted to affect binding, show no departure
from the overall distribution. In both LCLs (Figure 5) and HepG2
(Figure S3), CATO and GKM-svm SNPs had the greatest departure
from the null, closely followed by effect-SNPs.

However, effect-SNPs annotated a considerably larger number of
SNPs for both cell-types and were also able to predict cell type-
specific effects. LCL effect-SNPs in LCLs had a p-value distribution
with a greater departure from the null than the HepG2 effect-SNPs
(Figure S4) (p = 1.77⇥ 10�15 for LCL effect-SNPs vs p=0.14 for
HepG2 effect-SNPs), whereas HepG2 effect-SNPs in HepG2 had
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Fig. 3. Exploring the performance across multiple simulated conditions.
Plots depicting empirical power (sensitivity, Left y-axis) and empirical
FDR (eFDR, Right y-axis) achieved at different BH-FDR control levels
(x-axis) for ASE testing using QuASAR-MPRA (green) and a t-test (blue)
across multiple simulated conditions (rows). Default conditions are M=60,
��=1, 5 replicates, and reads/5. Each row explores changing different
simulation settings: A) over-dispersion high (M=10), medium (M=60)
and low (M=100); B) effect-size high (��=2), medium (��=1) and low
(��=0.5); C) number of replicates (3, 5, or 8) D) overall sequencing depth
compared to Tewhey et al. (1/10, 1/5, or 1/2).

a p-value distribution with a greater departure from the null than
the LCL effect-SNPs (p = 1.81⇥ 10�4 for HepG2 effect-SNPs vs
p = 1.06⇥ 10�7 for LCL effect-SNPs Figure S5). The differences
found here in HepG2 however are minor, potentially due to fewer
annotations (993 annotated LCL effect-SNPs vs 193 HepG2 effect-
SNPs).

Finally, to formally quantify which annotations are the best
predictors of the ASE found in the MPRA, we used all experimental
and computational annotations within a logistic model to predict
which SNPs in the MPRA data have a nominally significant
QuASAR p-value (p < 0.001). The top predictors were GKM-svm
SNPs (p < 2 ⇥ 10�16) and effect-SNPs (p = 2.17 ⇥ 10�15) in
LCLs (Table S4). In HepG2, effect-SNPs were the greatest predictor
(p = 1.18⇥ 10�10) (Table S5).

4 DISCUSSION
High throughput reporter assays have proven extremely useful
for the experimental validation of enhancer regions. The recent
adaptation of MPRA to investigate ASE additionally allows for

Fig. 4. Validating experimental annotations in LCLs. QQ plot
depicting the p-value distributions from testing for ASE using QuASAR,
overlapping with experimental genomic annotations including allele-specific
hypersensitivity (ASH) (Moyerbrailean et al., 2016b), DNase I sensitivity
QTLs (dsQTLs) (Degner et al., 2012) and GTEx (Genotype-Tissue
Expression) lead SNP in LCLs (Consortium et al., 2015). An annotation
enrichment p-value is reported next to their labels, but only for those
annotations that are significantly enriched for small QuASAR-MPRA p-
values according to the logistic model (see Methods).

Fig. 5. Validating computational genomic annotations in LCLs. QQ plot
depicting the p-value distributions from testing for ASE using QuASAR,
overlapping with computational genomic annotations in LCLs. Effect-
SNP scores have a threshold of < �3 or > 3. CATO Maurano et al.
(2015) prediction scores have a threshold of > 0.1. GKM-svm Lee
et al. (2015) gapped kmer sequence-based computational method to predict
the effect of regulatory variation has a threshold of < �6 or > 6.
DeepSEA Zhou and Troyanskaya (2015) predicts genomic variant effects
at the variant position using deep learning-based algorithmic framework.
The functional significance predictions have a threshold of < 0.05. An
annotation enrichment p-value is reported next to their labels, but only for
those annotations that are significantly enriched for small QuASAR-MPRA
p-values according to the logistic model (see Methods).

validation of regulatory variants in TF binding sites, which have
been shown to be functionally relevant to fine map eQTLs and
GWAS signals. These large datasets, however, require analysis
methods to handle the intrinsic overdispersion resulting from the
original plasmid proportions, variability in the allelic imbalance,
and base-calling errors.

The major advantage of QuASAR-MPRA compared to other well
calibrated methods is that it requires a small number of replicates
allowing for a more efficient study design. QuASAR-MPRA (along
with the other methods used here) resulted in a computation time
of under a minute and should scale linearly with the number of
SNPs being tested. Our QuASAR-MPRA approach identifies causal
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regulatory variants from high-throughput reporter assays by taking
into account overdispersion present in the data. This results in a well
calibrated test, with minimal inflation, as determined by lambda
values close to 1. In addition to being a robust method to identify
ASE in high throughput reporter assays, this method estimates effect
sizes and standard errors for each SNP, which can be used in fixed
effects meta-analysis to easily combine datasets. Additionally, we
retain a larger number of discoveries 602 (FDR 10%) compared to
the original MPRA study (441 at 10%FDR) in LCLs.

Finally, we show that the allele-specific regulatory functions
identified with QuASAR-MPRA can be used to validate genomic
annotations as predictors for allele-specific effects. Knowing which
annotations are the best predictors can aid in identifying true
causal SNPs. Here we find that LCL dsQTLs and effect-SNPs
are significantly predictive of ASE in LCLs and HepG2 with
CATO, while GKM-svm is significant in only LCLs. Using genomic
annotations can additionally help us assign mechanism of action to
these regulatory variants. If a variant impacts a TF binding site for
example, this can lead to gene expression changes, and therefore
phenotypic effects. The less compelling results found in HepG2
may be due to HepG2 having fewer RNA replicates in the MPRA
dataset than LCLs. Also there is less data available by ENCODE for
the various genomic annotations, likely due to the fact that LCLs
(particularly GM12878) are a tier 1 cell line and that other studies
also used it for dsQTL analysis (Degner et al., 2012), where HepG2
is only a tier 2 cell type.

Here we have used QuASAR-MPRA on two MPRA datasets,
however this method can potentially be used for other high-
throughput reporter assays, such as the ones derived from the
STARR-seq protocol (e.g., POP-STARR-seq) (Vockley et al., 2015)
and CRE-seq protocols (Kwasnieski et al., 2012), and in the
context of high-throughput mutagenesis experiments. As the quest
for functional validation of regulatory variants becomes more and
more wide-spread, these high throughput reporter assays, when
combined with a robust statistical test, represent a unique resource
to functionally characterize genetic variants at an unprecedented and
expandable scale.
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