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Abstract 

Background 

Long non-coding RNAs (lncRNAs) have emerged as key players in a remarkably variety of 

biological processes and pathologic conditions, including cancer. Next-generation sequencing 

technologies and bioinformatics procedures predict the existence of tens of thousands of 

lncRNAs, from which we know the functions of only a handful of them, and very little is known 

in cancer types such as head and neck squamous cell carcinomas (HNSCCs). 

Results 

Here, we use RNA-seq expression data from The Cancer Genome Atlas (TCGA) and various 

statistic and software tools in order to get insight about the lncRNome in HNSCC. Based on 

lncRNAs expression across 426 samples, we discover five distinct tumor clusters that we 

compare with reported clusters based on various genomic/genetic features. Results demonstrate 

significant associations between lncRNA-based clustering and DNA-methylation, TP53 

mutation, and human papillomavirus infection. Using "guilt by association" procedures, we 

infer the possible biological functions of representative lncRNAs of each cluster. Furthermore, 

we found that lncRNA clustering is correlated with some important clinical and pathologic 

features, including patient survival after treatment, tumor grade or sub-anatomical location. 

Conclusions 

We present a landscape of lncRNAs in HNSCC, and provide associations with important 

genotypic and phenotypic features that may help to understand the disease. 
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Background 

Head and neck cancer is the sixth leading cancer worldwide, with an estimated 600,000 new 

cases annually and a 50% five-year mortality rate (Globocan 2012) [1]. As more than 90% of 

this cancer cases are of squamous origin, they are generally referred to as head and neck 

squamous cell carcinoma (HNSCC). HNSCC arises in the upper aerodigestive tract, comprising 

the nasal cavity and paranasal sinuses, oral cavity, pharynx, larynx, and trachea. The main risk 

factors associated with its development are tobacco and alcohol consumption, which have a 

synergistic effect when combined, and also human papillomavirus (HPV) infection [2, 3]. HPV 

is known to drive tumorigenesis through the actions of its major oncoproteins E6 and E7, which 

can inactivate p53 and retinoblastoma (Rb) tumor supressors, respectively, altering cell cycle 

regulation in infected cells. HPV-positive differ from HPV-negative HNSCCs in tumor biology 

and clinical characteristics, including clinical outcomes, since HPV-positive tumors have been 

associated with a more favorable prognosis [4]. HNSCC patients are frequently treated with 

surgery, together with radiotherapy and/or cisplatin-based chemotherapy. Patients with 

aggressive disease are treated with cetuximab, an anti-EGFR antibody. Few patients respond to 

this therapy, and there is not molecular stratification of the patients neither biomarkers of 

responsiveness [2]. Previous characterization of molecular features in HNSCC, particularly with 

the aid of large-scale cancer genomics initiatives such as the TCGA, has generated important 

insights for stratifying patients and delineating tumor subtypes [5-7]. These multiomic analyses, 

do not take into account the vast long non-coding transcriptome that may substantially 

contribute to HNSCC pathogenesis and progression. 

LncRNAs are transcripts longer than 200 nucleotides that have no apparent protein coding 

potential [8]. They are highly diverse and actively present in many aspects of cell biology, 

including cellular differentiation, proliferation, DNA damage response, dosage compensation, 

and chromosomal imprinting. LncRNAs are categorized as exonic, intronic, intergenic, 

antisense, or overlapping based on their genomic location relative to a protein-coding gene. The 

most recent estimate of the Encyclopedia of DNA Elements (ENCODE) Project Consortium 

(GENCODE version 25) is that the human genome contains more than 15,000 lncRNA genes 

that encode almost 28,000 transcripts [9] although the total number is estimated to be much 

higher. Like the protein coding genes (PCGs), lncRNAs genes are regulated transcriptionally 

and by histone modification, and lncRNA transcripts are processed by the canonical splicing 

machinery [10]. In addition, lncRNAs have fewer exons than PCGs, are usually located in the 

nucleus, are subject to less selective pressure during evolution, and show higher tissue or cell 

type specificity. Given the large number of lncRNAs that are predicted to exist, it is expected 

that the functions in which they are involved may include many of the known (and possibly 

new) biological and physiological processes. Some of the molecular functions described so far 

include chromatin interactions, transcriptional regulation, RNA processing, mRNA stability or 
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translation, or signaling cascades modulation [11]. In the context of cancer phenotypes, 

lncRNAs functions have been found in proliferation, growth suppression, motility, immortality, 

angiogenesis and viability [11, 12]. Unfortunately, the possible functions or phenotypic effect of 

the vast majority of lncRNAs remains elusive in normal homeostasis or in cancer [12, 13], and 

are difficult to analyze [14]. 

Comprehensive genomic analysis across human cancers demonstrated that a large number of 

lncRNAs show differential expression among known tumor subtypes [15-17]. In addition, 

lncRNA alterations are highly tumor and lineage specific [15-17]. The expression of known, 

tumor associated lncRNAs, such as HOTAIR, NEAT1, UCA1, MALAT1, and MEG3, has been 

tested in HNSCC and correlated with clinicopathologic parameters [18]. Functional studies have 

tested the effects in proliferation, apoptosis, invasion and migration in HNSCC cell lines after 

RNA interference (RNAi) of specific lncRNAs [19]. In addition, lncRNA profiling has been 

done in HNSCC, assessing deregulation between normal and tumor samples, associations with 

clinical parameters, HPV infection or mutation in the TP53 tumor suppressor gene [19-21]. 

To our knowledge, no comprehensive reports studying the clusterization of human primary 

HNSCC samples based on genome-wide lncRNAs expression have been published. Therefore, 

the main objective of this report is to analyze the long non-coding transcriptome in HNSCC in 

order to discover new tumor clusters. Furthermore, we investigate whether lncRNA-based 

clusterization is useful to predict patient’s clinical outcome, and is associated with important 

clinicopathologic parameters. Finally, we interrogate the dataset to infer the possible biological 

functions of lncRNAs in HNSCC based on correlation patterns of the PCGs. 
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Methods 

Data resources 

Expression values of 12,727 lncRNA genes from 426 HNSCC primary tumor samples of the 

TCGA RNAseq cohort were downloaded from the TANRIC web page [22]. Methods used to 

extract these expression values have been described [16]. Briefly, the genomic coordinates of 

the human lncRNAs from the GENCODE Resource (version 19) were obtained. Thereafter, the 

lncRNA exons that overlapped with any known coding genes based on the gene annotations of 

GENCODE and RefGene were filtered out. As a result, the analysis focused on the remaining 

12,727 lncRNAs. Based on the BAM files, the expression levels were quantified as RPKM, and 

the lncRNAs with detectable expression were defined as those with an average RPKM ≥ 0.3 

across all samples in each cancer type, as defined in the literature. The Ensembl identifiers of 

the 500 lncRNA genes displaying the highest variability in HNSCC were kindly provided by 

Dr. H. Liang at the Research Group from the Department of Bioinformatics and Computational 

Biology of The University of Texas and the MD Anderson Cancer Center. We downloaded 

DNA methylation, CNV, miRNA, and reverse phase protein array (RPPA) clustering data, as 

well as HPV infection and PCG mutations for the TCGA HNSCC dataset using the cBioPortal 

[23], the UCSC Xena [24] and the TCGA [25] repositories. 

Unsupervised clustering analysis 

Consensus Cluster Plus (CCP) tool [26], which is implemented as an R language package from 

Bioconductor [27], extends the CC algorithm and is briefly described here. The algorithm 

begins by subsampling a proportion of items and a proportion of features from a data matrix. 

Each subsample is then partitioned into up to k groups by a user-specified clustering algorithm. 

This process is repeated for a specified number of times. Pairwise consensus values, defined as 

‘the proportion of clustering runs in which two items are grouped together’, are calculated and 

stored in a consensus matrix (CM) for each k. Clustering settings used were as follows: 

maxK=6; number of bootstraps=1000; item subsampling proportion=0.8; feature subsampling 

proportion=1; cluster algorithm=pam; inner linkage type=complete; final linkage 

type=complete; correlation method=Euclidean. Consensus CDF plot and proportion of 

ambiguous clustering (PAC) per each k was obtained. 

Analysis of tumor clusters revealed by lncRNA expression. 

The association between lncRNA-based sample clusters and sample clusters based on other 

molecular features/aberrations was done using Fisher’s exact test for fourfold (2x2) tables or 

Chi-square test for more than fourfold comparisons. Both tests are used to determine whether 

there are significant differences between the expected frequencies and the observed frequencies 

in one or more categories. Kaplan-Meier curves were obtained using the follow-up time of the 

HNSCC patients of 2 end-points: recurrence and death. Statistical analyses were done with 

SPSS 14.0. 
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Guilt-by-association (GBA) analysis 

Pearson correlation analysis was used to select lncRNAs genes with significant correlation 

between artificial expression vectors or templates (t1 to t5) (Fig. 2A), or between mean 

expression values of correlated lncRNAs and PCGs. We select both direct and inverse 

correlation patterns by setting thresholds either at the Pearson (r) value or at the associated p-

val. Pearson’s r values ranges between -1 to +1, such that 2 perfectly correlated genes display 

r=1, and 2 perfectly anticorrelated genes r=-1. LncRNAs surrogate selection was done setting 

r>0.3 with respect to the corresponding template (associated p-val<1x10-6). Additional filtering 

criteria include average RPKM ≥ 0.1 within specific clusters, and overexpression between 

normal tissue and specific clusters (Ttest, corrected p-val<0.05). PCGs directly or inversely 

correlated with lncRNAs were selected using r>0.3, or r<-0.3 with respect to mean expression 

values of selected lncRNAs per cluster, respectively (associated p-val<1x10-9). Correlations as 

well as heatmap drawings were performed using MultiExperiment Viewer v4.9 (MeV) [28]. 

 

Gene Ontology analysis 

Selected PCGs were analyzed with the Gene Functional Annotation Tool available at the 

DAVID v6.7 website [29, 30] using their official gene symbols. Gene ontology option 

GOTERM_BP_FAT was selected and a functional annotation chart generated. A maximum p-

value of 0.05 was chosen to select only significant categories. 
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Results 

HNSCC sample clusters based on lncRNA expression.  

In order to discover HNSCC tumor subgroups, we selected the 500 lncRNAs (Supplementary 

Table 1) with the most variable expression pattern in HNSCC [16] and the Consensus Cluster 

Plus (CCP) software tool (see Methods). CCP analysis revealed the presence of five HNSCC 

clusters, which we have named clusters 1 to 5 (Fig. 1 and Supplementary Table 2). The results 

suggest that lncRNAs can distinguish 5 HNSCC subtypes, having significant differences in 

lncRNA expression. 

LncRNAs clustering resembles DNA methylation and mRNA clustering.  

In order to assess the correlation between lncRNAs and additional molecular features, we 

analyze whether lncRNA clustering resembles previously described sample clustering based on 

mRNA, miRNA, protein (RPPA) expression, DNA methylation and CNV. For this, we 

downloaded clustering data from the TCGA-HNSSC dataset [5] and compared them with 

lncRNAs subgroups using contingency analyses (Chi-square test, see Methods). The results 

showed highly significant similarities between our clusterization and DNA methylation clusters 

(p-val=4.6 x 10-34) or mRNA-based subtypes (p-val=4.2 x 10-30) (Fig. 2A). LncRNA clustering 

displays lower overlapping with CNV, miRNA, and RPPA subtypes, with p-values ranging 

from 2.8 x 10-15 to 3.5 x 10-5 (Fig. 2A). The high overlapping between lncRNA and mRNA 

subgroups is suggestive of similar molecular mechanisms of expression control. Also, the 

contingency results suggest that lncRNA expression might be strongly influenced by DNA 

methylation (or viceversa), an important mechanism of epigenetic transcriptional regulation. 

HPV infected tumors display and specific lncRNAome. 

A significant proportion of tumor samples from the reported TCGA dataset [5] having 279 

samples, is infected with HPV (almost 13%). Interestingly, a deep, multiplatform analysis of the 

molecular features of HNSCC primary tumors from the TCGA, demonstrated strong differences 

between HPV-positive and HPV-negative samples [5]. Infected cancers display different 

mutational landscape, mainly characterized by the absence of TP53 gene mutations. Chi-square 

test demonstrated that lncRNA clustering is highly significantly associated with HPV (p-val=1.5 

x 10-29) (Fig. 2B), indicating infected tumors display a specific lncRNA landscape. Interestingly, 

a deeper analysis shows that almost all samples from cluster 5 (c5) are HPV positive (24 out of 

29) (p-val=4.0 x 10-21) (Fig. 2D). Similar results were reported in the TANRIC study [16]. 

HNSCC mutations and lncRNA clustering 

In order to discover whether particular lncRNA clusters are characterized by the presence or 

absence of HNSCC mutations, we interrogate lncRNA-cluster and mutation associations using 

Chi-square test (Fig 2B-D). We selected a total number of 19 genes, found to be significantly 

mutated in the TCGA-HNSCC cohort: CDKN2A, FAT1, TP53, CASP8, AJUBA, PIK3CA, 
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NOTCH1, KMT2D, NSD1, HLA-A, TGFBR2, HRAS, FBXW7, RB1, PIK3R1, TRAF3, 

NFE2L2, CUL3 and PTEN. Significant associations between these mutations and lncRNA-

based clustering are shown (Fig. 2C). Cluster 1 (c1) is enriched in TP53 and NSD1 mutations, 

cluster 2 (c2) display frequent TP53 and KMT2D mutations, and cluster 4 (c4) frequent CASP8, 

NOTCH1 and CDKN2A mutations. In addition, cluster c5 is depleted of TP53 and CDKN2A 

mutations, as most samples are HPV-infected. Finally, cluster 4 (c4) is depleted on KMT2D 

mutations. Both KMT2D and NSD1 are methyltransferases involved in methylation of H3K4 

and H3K36, respectively, which are important epigenetic regulators of gene expression. Most 

mutations found for both proteins are truncating, therefore indicating that c1 and c2 are 

characterized by loss-of-function of histone modifiers.  

Guilt-by-association (GBA) analysis: selection of surrogate lncRNAs per cluster 

In order to select candidate lncRNAs for further analysis, we decided to perform differential 

expression analysis using the clustering information. Our aim was to select lncRNAs surrogate 

of each of the 5 clusters, so they are overexpressed only in 1 cluster. We designed 5 expression 

vectors or templates, (t1 to t5, see Figure 3A) from which we performed Pearson correlation 

analysis (see Methods) onto the lncRNA genes from which expression values are available for 

HNSCC (n=12,727). The output are lncRNAs whose expression patterns are i) expressed in the 

specific cluster, ii) overexpressed in the specific cluster versus normal tissue, and iii) 

significantly correlated with the corresponding template (r>0.3 and p-val<10-6). The number of 

selected lncRNAs per cluster and the heatmap showing expression patterns is shown (Fig. 3B 

and Supplementary Table 3): c1=91, c2=275, c3=9, c4=13, and c5=245. Note that clusters c2 

and c5 display the highest numbers of lncRNA genes, and c3 and c4 the lowest. Interestingly, 

16 out of 245 lncRNAs in cluster c5, depleted in TP53 mutations (Fig. 2C and D), have been 

shown to be overexpressed in TP53 wild type HNSCC samples [20]. In addition, 12 out of 245 

c5 lncRNA genes were found upregulated in HPV infected samples [20], in line with high 

frequency of HPV positive samples in this cluster (Fig. 2D and Supplementary Table 5). 

Associated PCGs to surrogate lncRNAs 

Predicting the biological functions of lncRNAs is challenging. Guilt-by-association (GBA) 

analysis has been proposed on the basis that the function of a poorly characterized lncRNA gene 

can be inferred from known/predicted functions of protein coding genes which are co-expressed 

[31]. We leveraged our RNA-sequencing data using GBA analysis to generate hypotheses on 

functional significance by comparing the expression of lncRNAs to protein coding genes of 

known function. Therefore, we performed correlation analysis to interrogate what coding genes 

are directly or inversely correlated with the surrogate lncRNA genes of each cluster. 

Accordingly, we use 5 different expression vectors or templates, one per cluster, calculated from 

the mean expression value of lncRNAs selected per cluster above (Fig. 3B). The number of 

correlated genes per cluster and the heatmap showing their expression patterns is shown (Fig. 
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3C and D) for directly (overexpressed PCGs) or inversely (underexpressed PCGs) correlated 

PCGs. Thresholds used are r>0.3 or r<-0.3 and p-val<1x10-9 (Supplementary Table 4). 

The results shown that each lncRNA cluster have associated a significant number of coding 

genes, whose functions might be related with the biological roles of the correlated lncRNAs.  

 

Gene Ontology analysis of lncRNA-clustering associated PCGs  

In order to predict possible functions of the surrogate lncRNAs in each cluster, we perform 

enrichment analysis of GO Biological Processes (GOBP) on the associated PCGs, which would 

find enriched pathways and larger processes made up of the activities of the PGC gene products. 

Therefore, we analyze individually the lists of PCGs directly or inversely correlated with each 

lncRNA cluster (Fig. 4). Cluster c1 is characterized by the underexpression of PCGs involved in 

T cell, natural killer cell and myeloid leukocyte activation; these processes are overexpressed in 

c5, suggesting important differences in immune response between c1 and c5. Importantly, PD-

L1 (CD274), an immune inhibitory receptor ligand whose inactivation using antibodies is being 

currently used for cancer treatment successfully, is underexpressed in c1. Cluster c2 is 

characterized by the expression of positive regulators of transcription, tissue morphogenesis, 

and neuronal markers. In addition, c2 exhibits depletion of PCGs involved in ubiquitin-

dependent protein cleavage, including some protein component of the proteasome complex 

(PSM proteins). Cluster c3 express coding genes involved in cell migration, and underexpress 

PCGs involved in glucose metabolism. Cluster c4 contain overexpressed PCGs involved in 

epidermal development, including late cornified envelope (LCE) cluster genes and small 

proline-rich protein (SPRR) genes. Both LCE and SPRR proteins are expressed in terminally 

differentiated stratified epithelia, such as skin or head and neck mucosa. Underexpressed coding 

genes in c4 are involved in protein translation, similarly to underexpressed in c5. Cluster c5 has 

many overexpressed PCGs involved in DNA replication and cell cycle processes, RNA splicing 

or transcription. Overall, the results highlights important differences between lncRNA clusters 

in terms on predicted functions, somehow validating the unsupervised clustering and Pearson 

correlation analysis performed. Whether the surrogate lncRNAs of each cluster are also 

involved in these biological functions remains to be demonstrated. 

Clinical and pathological features in lncRNA groups 

We wanted to investigate whether our lncRNA clusters could display different clinical and 

pathological characteristics, possibly providing a better understanding of the patient’s tumor 

behavior or response to current therapies. We analyze whether patient sample clusters display 

follow-up differences in recurrence or in death, after treatment. Therefore, we performed 

Kaplan-Meier survival plots for both end-points (recurrence or overall survival) and the 5 

clusters. Results show significant differences in overall survival at 5 years (p-val=0.0065, log-

rank test) as previously described [16], with c5 patients having the highest probabilities of 
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survival (Fig. 5A). In addition, patients within c1 and c2 clusters exhibit the lowest survival. No 

significant statistical differences were found, however, in recurrence after treatment 

(Supplementary Fig.1). 

Also, we examined tobacco smoking history, and found more smokers in c1 and c2 than 

expected by chance (p-val=0.02 and 0.0002, respectively, upon Fisher’s test) (Fig 5B). No 

differences were found in alcohol consumption between patient clusters. Interestingly, we show 

that tumor histology grade (G1, G2, G3, or G4) is associated with lncRNA clustering (p-

val=6.58x10-10, Chi-square test). More specifically, we found that c5 tumors have frequently 

poorly differentiated and undifferentiated histology (G3 and G4, respectively) compared with 

the other clusters, while c4 have more differentiated or moderately differentiated tumors (G1 or 

G2, respectively). Furthermore, sub-anatomic location of the tumors and cluster subdivision 

were significantly associated (p-val=5.1x10-41, Chi-square test), so that c1 and c2 tumors are 

frequently found in larynx, c4 in tongue, and c5 in tonsil (Fig. 5B). Interestingly, 4 lncRNA 

genes from c1 and 10 from c2 have been shown to be overexpressed in larynx (Supplementary 

Table 6) [20]. Finally, we found that c1 patients are younger that the remaining patients (58.2 

versus 61.6 years, p-val=0.018 after T-test), and c2 patients older (65 versus 60.2 years, p-

val=0.001 after T-test) (Fig. 5C). 

In summary, lncRNA clusterization is associated with important molecular aberrations and 

clinicopathologic features, providing important genomic and phenotypic relationships. Table 1 

summarizes the main associated features of each lncRNA cluster. 
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Table 1. Summary of significant associations with lncRNA simple clusters 

lncRNA cluster c1 c2 c3 c4 c5 

HPV infection negative negative negative negative positive 

mutation ENRICHED 
NSD1 

TP53 

TP53 

KMT2D  

CASP8 

CDKN2A 

NOTCH1 
 

mutation DEPLETED CASP8 NOTCH1 NSD1 
KMT2D 

NSD1 

TP53 

CDKN2A 

FAT1 

lncRNAs UP 91 275 9 13 245 

PCGs UP 293 792 133 389 1485 

PCGs DOWN 80 132 33 104 150 

age younger older 
   

tobacco smokers smokers 
   

tumor grade ENRICHED 
   

G1, G2 G3, G4 

tumor grade DEPLETED 
 

G1 
 

G3 G1, G2 

anatomic location ENRICHED larynx larynx 
 

tongue tonsil 

anatomic location DEPLETED tonsil 
tongue 

tonsil 

larynx 

tonsil 

larynx 

tonsil 

tongue 

larynx 
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Discussion 

The recent implication of lncRNAs in many biological functions has established a new scenario 

to better understand complex processes like cancer [12, 13]. Traditional genomic 

characterizations have produced minimal improvements in patient clinical outcome, with a 

mortality rate of 50%. Therefore lncRNAs may represent a promising field to discover novel 

diagnostic and therapeutic strategies. Here we analyzed the lncRNA expression patterns of 

HNSCC from 426 TCGA primary tumor samples to generate insights into the landscape of 

lncRNAs in HNSCC.  

Interestingly, we discover 5 clusters of samples based in lncRNA expression with significant 

differences in molecular aberrations and clinicopathologic features. LncRNA-clustering 

resembles clustering based on DNA-methylation and mRNA features. DNA-methylation is a 

chemical modification of genomic DNA by the addition of a methyl group (-CH3) to the 

cytosine or adenine DNA nucleotides. Typical DNA methylation occurs in a CpG dinucleotide 

context, where predominantly CpG sites are methylated in the genome. Most of the CpG 

clusters, known as CpG islands, occur near transcriptional start sites (TSSs) where they are 

predominantly un-methylated. The establishment and maintenance of methylation patterns 

resulting in modulation of gene expression is one of the key steps in epigenetic regulation 

during normal developmental programs. The significant overlapping between lncRNA and 

DNA-methylation clustering might be due to frequent methylation of CpG clusters closed to 

TSSs of lncRNAs altering their landscape. However, we cannot discard cross-regulation 

between DNA-methylation and specific lncRNAs, such as has been described for H19 [32] or 

ecCEBPA [33] recently. Interestingly, c1 contains almost all “hypo-methylated” samples from 

the DNA methylation clusters (Fig. 1A), concomitant with enrichment in NSD1 inactivating 

mutations. Similar mutations have also been found in squamous cell carcinoma of the skin [34]. 

This correlation between NSD1 mutations and the “hypo-methylated” samples has been 

previously reported in the TCGA HNSCC cohort [5, 35]. NSD1 is a histone 3 Lys 36 (H3K36) 

methyltransferase similar to SETD2, which is frequently mutated in the clear cell variant of 

renal cell carcinoma, and associated with DNA hypomethylation [36]. Moreover, a DNA 

hypomethylation signature has been reported in Sotos syndrome, a monogenic disorder defined 

by germline NSD1 mutations [37]. Several reports showed that H3K36 methylation is linked to 

the binding of de novo DNA methyltransferases (DNMT3A and DNMT3B) [38, 39]. Therefore, 

the recruitment of DNMT3A and DNMT3B could be impaired in NSD1 mutant tumors, leading 

to the global DNA hypomethylation observed in the c1 cluster. Whether this DNA 

hypomethylation is affecting c1 lncRNA expression regulation warrants further investigation. 

TP53 mutations have been associated with poor survival in many cancer types [40]. We believe 

that the aggressiveness of the disease in c1 and c2 patients might be, at list partially, explained 
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by the increased TP53 mutation frequency. The reverse would apply for c5, almost depleted on 

mutations, and having the best overall survival of all clusters.  

In relation with other clinical parameters analyzed, the anatomical location was the most 

significantly associated with lncRNA clustering, with c1 and c2 in larynx, c4 in tongue, or c5 in 

tonsil. This finding might be explained by the already known high tissue specificity of lncRNA 

expression [41], and highlights an important issue: HNSCC as a group includes different tumor 

locations and different etiologies. Therefore, we consider that some of the surrogate lncRNAs in 

the clusters might be specific for sub-anatomical locations in the head and neck region, and may 

help to analyze location-specific associations between molecular and phenotype features. For 

example, c5 overexpressed coding-genes are enriched in proteins involved in “lymphocyte 

activation”, a process that occurs in the tonsils, which is an immune defense organ in the 

aerodigestive tract constituting the first line of defense against ingested or inhaled foreign 

pathogens. Naturally, both B- and T-cell activation occurs in the tonsils after the uptake of 

antigens produced by pathogens by specialized antigen capture cells called M cells. Whether the 

enrichment in “lymphocyte activation” found in c5 is due to tonsil-dependent functions or to a 

specific immune response to HPV-positive tumors remains to be ascertained. 

Between the PCGs underexpressed in c1, we found programmed death-ligand 1 (PD-L1; also 

called CD274). PD-L1, which is expressed on many cancer and immune cells, plays an 

important part in blocking the 'cancer immunity cycle' by binding programmed death-1 (PD-1) 

and B7.1 (CD80), both of which are negative regulators of T-lymphocyte activation [42]. 

Binding of PD-L1 to its receptors suppresses T-cell migration, proliferation and secretion of 

cytotoxic mediators, and restricts tumor cell killing. The PD-L1-PD-1 axis protects the host 

from overactive T-effector cells not only in cancer but also during microbial infections. 

Blocking PD-L1 should therefore enhance anticancer immunity and successful treatment of 

many patients with advanced cancer using antibodies against PD-L1 has been demonstrated, 

including HNSCC [43]. Thus, the Food and Drug Administration (FDA) recently approved 

pembrolizumab, an antibody inhibiting PD-L1, for the treatment of some patients with recurrent 

or metastatic HNSCC that has continued to progress despite standard-of-care treatment with 

chemotherapy. However, little is known about predictive factors of efficacy of such therapies, 

although some recent reports described that across multiple cancer types, responses are 

observed in patients with tumors expressing high levels of PD-L1, especially when PD-L1 was 

expressed by tumor-infiltrating immune cells. Therefore, it is tempting to speculate that c1 

primary tumors would be less sensitive to anti-PD-L1 therapies than the tumors from the other 

clusters. In addition, some of the c1 lncRNAs might be involved in this PD-L1-PD-1 'cancer 

immunity cycle', and could be subject of future investigations.  

Coding genes involved in synaptic transmission and neuron differentiation are coexpressed with 

surrogate lncRNAs within cluster c2. Perineural invasion occurs in an important proportion of 
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HNSCC samples. We found no significant higher frequency of perineural invasion in c2 

samples compared with the remaining samples (Fisher’s exact test, p-val=0.5). Therefore, it is 

tempting to speculate that c2 samples might display some cellular plasticity from epithelial 

towards neuroendocrine lineage, as HNSCC tumors with neuroendocrine phenotype has been 

described [44]. Recently, neuroendocrine lineage plasticity enabled by the loss of TP53 and 

RB1 function was shown in prostate cancer, mediated by increased expression of the 

reprogramming transcription factor SOX2 [45]. Interestingly, c2 display higher frequency of 

TP53 mutations (Fig. 2C and Table 1). Possibly, lncRNAs within c2 might be involved in 

mechanisms regulating epithelial to neuroendocrine reprograming. 

Many overexpressed PCGs in c5 are related to “cell cycle” processes, suggesting that c5 

carcinomas are more proliferative. This finding is in line with the oncogenic activities of HPV 

E7 oncoprotein, which binds and induces protein degradation of cell cycle regulators such as the 

retinoblastoma protein family, including pRb (RB1), p107 (RBL1) or p130 (RBL2) [46]. 

Degradation of these proteins, mainly pRb, allow E2F transcription factors to induce expression 

of genes involved in cell cycle progression [47], such as cyclins and cyclin-dependent kinases, 

or proteins involved in DNA replication, and mitotic division. In addition, E2F1 gene 

amplification was found in HPV positive HNSCC tumors from the TCGA cohort [5], which 

correlates with a molecular profile of cell cycle deregulation. Therefore, some c5 lncRNAs 

might also be involved in these processes, and possibly in the E7-pRb-E2F axis of cell cycle 

deregulation of HPV-infected tumors. Tumors from c4 overexpresses  PCGs involved in 

epidermal differentiation, such as LCE cluster SPRR genes, normally involved in terminal 

epithelial differentiation. This result might be in line with the high frequency of differentiated 

carcinomas in c4 (histologic grades G1 and G2) (Fig. 5 and Table 1), whereby G3 tumors are 

less frequent. Therefore, some of the c4 surrogate lncRNAs could be involved in epithelial 

differentiation. 
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Conclusions 

We present the first comprehensive clustering analysis of HNSCC based on lncRNA expression 

performed to date. The results allow selection of surrogate lncRNA genes of 5 distinct tumor 

groups, propose possible functions associated with them, as well as phenotypic and clinico-

pathology features that may be consequence, in part, of their activities. 
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Figure Legends 
 

Figure1. Unsupervised clustering of HNSCC using lncRNA expression data. A) Consensus 

Cluster Plus analysis identifies five major groups (samples, n=426). The blue and white heat 

map displays sample consensus. Number of samples per cluster is shown. Consensus CDF plot 

(B) and PAC values (C) for k=2 to 6 are represented. Smaller PAC values are obtained with k=5 

and k=6, with minor differences between them. Therefore, k=5 was selected. Specifications and 

parameters used in the analysis are described in the Methods section. 

 

Figure 2: lncRNA clusters and other molecular aberrations. A) LncRNA-based clustering of 

HNSCC samples is significantly associated with clustering based in diverse molecular features, 

mainly DNA methylation and expression of PCGs (mRNA). Significance values are plot upon 

Chi-square test computation. B) and C) Association with HPV infection and HNSCC mutations 

with lncRNA clusters. Chi-square or odds ratio values are plot upon Chi-square test (B) or 

Fisher’s exact test (C) computation, respectively. Dashed red line: threshold of significance (p-

val<0.05). D) Distribution of lncRNA clusters and HPV infected samples, or samples with 

mutations in KMT2D or NSD1. Note the enrichment of HPV infection in c5, the NSD1 

mutations in c1 and the KMT2D mutations in c2 (red lines), and the depletion of KMT2D 

mutations in c4 (green line). P-values are calculated with Fisher’s exact test. Vertical black lines 

in panel D showed HPV+ samples and mutated samples for the selected genes KMT2D and 

NSD1, respectively. 

 

Figure 3. Guilt-by-association (GBA) analysis. A) Schema-graph showing approach used to 

search for lncRNA genes as surrogates of each cluster. Briefly, Pearson correlation was 

computed between all lncRNAs and artificial expression vectors or templates (templates t1 to 

t5) whereby maximum expression in individual clusters with respect to the others was 

interrogated. Threshold used: r>0.3 and p-val<1x10-6. Additional filtering criteria include 

average RPKM ≥ 0.1 within specific clusters, and overexpression between normal tissue and 

specific clusters (Ttest, corrected p-val<0.05). B) Heatmap exhibiting selected lncRNAs upon 

Pearson correlation and the corresponding gene numbers per cluster. Heatmaps of PCGs directly 

(overexpressed PCGs) (C) or inversely (underexpressed PCGs) (D) correlated with the 

lncRNAs selected per cluster in panel B. Threshold used: r>0.3 and p-val<1x10-9 for 

overexpressed PCGs; r<-0.3 and p-val<1x10-9 for underexpressed PCGs. 

 

Figure 4. GOBP terms selected by cluster. Gene Ontology analysis was done using DAVID 

v6.7 web tool (see Methods). Overexpressed or underexpressed PCGs are analyzed per cluster, 

and representative GO Biological Processes (GOBP) terms shown. Numbers at the end of each 
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bar represent genes belonging to each GOBP term. Dashed red line denotes threshold for 

significant enrichment (p-val<0.05). 

 

Figure 5. LncRNA-based clustering and clinical parameters. A) Kaplan-Meier plot of 

TCGA-HNSCC patients stratified by lncRNA clusters using overall survival as end-point. P-val 

was calculated with the log-rank test. n: number of patients with available follow-up 

information. B) Significant associations between lncRNA clusters and various clinical 

parameters, including tobacco, histologic grade, and sub-anatomical location. Odds ratios and 

significance values were calculated using Fisher’s exact test. C) Box plots of patient age for 

significant differences between c1 or c2 patients. P-values were calculated using Ttest. 

Supplementary Figure 1. Kaplan-Meier plot of TCGA-HNSCC patients stratified by lncRNA 

clusters using recurrence and end-point. P-val was calculated with the log-rank test. n: number 

of patients with available follow-up information. 
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