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Abstract 

Both common and rare genetic variation play a role in the causes for mood 

disorders. Very large families pose unique opportunities and analytical 

challenges but may provide a way to identify regions and mutations associated 

with mood disorders. We identified a family with a high prevalence (~30%) of 

mood disorders in a rural village in Brazil, featuring decreasing age of onset over 

generations. The pattern of inheritance was complex with 32 Bipolar type I cases, 

11 Bipolar type II and 59 recurrent and/or severe Depression cases in addition to 

other phenotypes. We enrolled 333 participants with DNA samples from a 

broader pedigree of 960 subjects for genotyping using the Affymetrix 10K array. 

Non-parametric linkage was carried out via MERLIN and parametric with both 

MERLIN and MCLINKAGE. We exome sequenced a subset of the family (n=27) 

in order to identify rare variation within the linkage regions shared by affected 

family members. We identified four genome wide significant and four suggestive 

linkage regions on chromosomes 1, 2, 3, 11 and 12 for different phenotype 

definitions. However, no region received strong joint support in both the 

parametric and non-parametric analyses. Exome sequencing revealed potential 

deleterious variants in 11p15.4 for MDD and 1q21.1-1q21.3 and 12p23.1-p22.3, 

implicated in cell signaling, adhesion, translation and neurogenesis processes. 

Overall, our results suggest promising, but not definitive or confirmed evidence, 

that rare genetic variation contributes to the high prevalence of mood disorders in 

this multi-generational family. We note that a substantial role for common genetic 

variation is likely given the strength of the linkage signals observed. 
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The World Health Organisation reports depression and bipolar disorder as the 

second and seventh most important causes of years lost due to disability 

worldwide[1]. The heritability of bipolar disorder is between 60-90% with a lower 

but still substantial heritability for major depression (40-45%) [2]; [3]. First-degree 

relatives of bipolar disorder probands have a 5-10 fold increase in risk of 

developing the illness compared to relatives of controls but also show a three fold 

increase in unipolar depression, indicating that bipolar disorder does not “breed 

true” [4]. Large collaborative genome-wide association studies (GWAS) have 

uncovered several common genetic variants of small effect [5]. Genomewide 

estimates of heritability suggest that up to 60% of the genetic risk is contributed 

by common variants [6]. Overall, the current picture for bipolar disorder (and 

almost all complex traits) is a genetic architecture formed of both common and 

rare variants.  

Linkage studies have been pursued on the basis that there may be variants of 

greater effect shared between and within affected families. However these 

studies have usually focused on collections of comparatively small families or sib 

pairs and few consistent findings have emerged [7]. Large multigenerational 

families (e. g. of >30 affected individuals) theoretically offer a powerful means for 

mapping complex disease loci that are individually rare but common in a single 

family. These loci may be more highly penetrant and of larger effect than loci 

found with GWAS [8]. Here we report the results of the Brazilian Bipolar Family 

(BBF) study on a five-generation family of 639 members of which 333 were 

enrolled in the current analyses. Our objectives were to perform a linkage 

analysis with genome coverage and try to identify new genes/mutations related 

to bipolar and other mood disorders in the family. Here we report our findings and 

preliminary results of sequencing of linkage regions.  
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Methods 

Family Ascertainment 

The Brazilian Bipolar Family (BBF) consists of 960 members. Ascertainment was 

via a 45-year-old female proband with severe Type-1 BP, who was treated by 

one of the psychiatrists involved in the study (M.D). She stated that there were 

dozens of cases of mood disorders in the family, most of whom lived in a small 

village in a rural area of a state north of São Paulo. Cooperation from the family 

and a within family published book about the history of the family, self-published 

within the family, was invaluable for our ascertainment.  

The grandparents of the proband were reported to be first cousins and both 

suffered from BP1 disorder. Of their 13 children, 12 had a confirmed bipolar 

mood disorder and many of them went on to have affected children. Notably, one 

of them went on to give birth to 14 affected children. The BBF also exhibits other 

features, including anticipation; an apparent pattern of earlier age of onset in 

affected individuals in successive generations.  

Family members >16 years of age underwent semi-structured interviews, using 

the Portuguese version of the Structured Clinical Interview for DSM-IV Axis I 

Disorders (SCID) [9]. Members aged 6-16 were assessed using the Portuguese 

version of Kiddie-SADS-Present and Lifetime Version (K-SADS-PL) [10]. In total 

308 interviews were completed, and 5 eligible members declined an interview. 

Discrepancies in diagnoses were reviewed by two independent psychiatrists and 

a final consensus diagnosis was assigned. The family had an obvious division, 

with densely affected large branches from the village and nearby forming a core 

that we termed “Branch 1” and the rest of the family, which has less densely 

affect branches, and had migrated to urban areas around south-eastern Brazil. 
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Phenotype Models 

Three phenotypic models were constructed for the analyses: a narrow, broad, 

and super model, in addition to a depression only model. The narrow affection 

model included family members that fulfilled DSM-IV criteria for BPI, BPII, or 

schizoaffective disorder. The broad model included family members in the narrow 

model in addition to family members who fulfilled DSM-IV criteria for BPNOS and 

cyclothymia. The super model included cases from the broad model and those 

with one or more episodes of major depression of moderate to severe MDD or 

who fulfilled diagnostic criteria for dysthymia as defined by DSM-IV. Finally, 

family members were included in the depression model if they had a history of 

dysthymia or experienced one episode of major depression (Table 1). Non 

interviewed family members were given the status “unknown”. Individuals who 

were interviewed and did not receive any mood (or other psychiatric) disorder 

diagnosis were labelled as “unaffected” in the analyses. 

Sample Collection and Genotyping 

Following diagnostic interview, interviewers obtained 30ml of whole blood in 4 7.5 

ml (EDTA containing) monovettes for adults and lesser amounts or saliva for 8 

adults and 17 children given personal preference or age (DNA Genotek Inc., 

Ontario, Canada). Genomic DNA was isolated from whole blood and saliva at the 

Federal University of São Paulo using standard procedures. In total, 333 DNA 

samples were extracted, of which 324 were genotyped using the Affymetrix 10K 

microarray. One sample with discordant sex information was removed from the 

data set.  

We excluded SNPs on genotype missingness (>10%), a minor allele frequency 

<25% in BBF founders (n=54) and deviation from HWE in founders only (p<10-4). 

5315 SNPs remained available for analysis. Pedigree structure, Mendelian and 

non-Mendelian errors were estimated using PLINK pair-wise IBD estimation, 

PEDSTATS [11] and MERLIN [12] with MERLIN’s “pedwipe” function used to 

remove them. We also used the McLinkage Check Errors procedure to calculate 

the posterior probability of genotype mistyping at each marker in the data (given 
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the observed genotypes in relatives), which were incorporated into subsequent 

McLinkage analyses.  

The BBF members self reported mixed Southern European ancestry, which was 

confirmed by the interviewers impressions. Genetic analysis of principal 

components, as implemented in EIGENSOFT version 3.0 

(http://www.hsph.harvard.edu/alkes-price/software/) revealed that family 

members clustered closely with the Northern and Western European and Tuscan 

Italian populations (data not shown). 

Structure of Analysis 

Following completion of the QC procedures, 301 BBF members and 5315 were 

available for analysis. Four clean pedigree files were generated for the analyses: 

(a) the Branch 1 (village) sub-families, (b) All BBF sub-families, (c) Branch 1 with 

structure intact and (d) Total BBF with structure intact. 

Inheritance Models 

Guided by large family studies from similar populations [13],[14], we specified 

dominant and recessive models. We assumed 1% penetrance for zero copies of 

the disease allele (i.e. phenocopy rate), 81% for one copy, and 90% for two 

copies, and 1%,1% and 90% for the recessive model. Under the dominant 

model, disease allele frequencies assumed were 0.003, 0.03, and 0.13 for the 

narrow, broad, and super phenotype models (reflecting prevalence estimates of 

1.5%, 5% and 20%). Under the recessive model, disease allele frequencies 

assumed were 0.07, 0.03, and 0.46 for each phenotype. 

We also performed analyses on a depression only model. Using a population 

prevalence for recurrent or long (>6 months) single episode severe major 

depression of 5%, and a penetrance estimate of 50%, we specified disease allele 

frequency of 0.005 and parameter penetrances of 5%, 50% and 50% for a 

dominant model and 5%, 5% and 50% for a recessive model with a disease 

allele frequency of 0.05 (dominant) and 0.33 (recessive) as previously used for 

the analysis of depression pedigrees by our group [2]. Genotypes of BBF 
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founders allowed estimation of population specific marker allele frequencies [15]. 

We use the map provided with the array, with additional checking and mapping of 

SNPs to the reference genome (data not shown).  

Parametric Linkage Analysis using McLinkage  

Two-point parametric linkage on the BBF and Branch 1 was conducted using 

TwoPointLods, part of the McLinkage package. For reasons of computation, 

regions reaching suggestive or significant thresholds in 2-point linkage were 

analysed using McLinkage multipoint parametric linkage, which samples from the 

posterior distribution of inheritance vectors, given the observed genotypes, and 

calculates multipoint LOD scores (MLOD) and TLOD scores between the 

specified phenotype and genetic markers in a pedigree [16].  

Merlin Analyses 

Linkage analysis programs, such as MERLIN, that use the Lander-Green [17] 

exact LOD score calculation require large pedigrees to be split. We first split the 

BBF into 19 (<30 bit) sub-families, preserving family relatedness, such as first 

cousin marriages and complex marriage loops where possible, prior to breaking 

these loops. Two-point and multipoint parametric linkage analysis was conducted 

on 19 subfamilies belonging to all three branches of the family, and 12 

subfamilies belonging to Branch 1 of the family using the models described 

above. Heterogeneity LOD (HLOD) scores were also calculated.  

We also employed MERLIN to conduct multipoint NPL methods of linkage 

analysis, examining both affected relative pairs, NPLpairs, and affected subgroups 

within the family, NPLall, for allele sharing by descent. We selected the Kong and 

Cox (1997) exponential model flag in MERLIN (--exp) to convert NPLpairs and 

NPLall Z-scores to LOD scores and used MERLIN --trim to drop non-informative 

family members from the analysis.  

Whole-genome Linkage Thresholds:  
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We used a threshold of LOD ≥ 3 and LOD ≥ 2 as indicative of whole-genome 

significant and suggestive linkage in our analyses [18]. We corrected for multiple 

testing using the formula of Ott, as used in [2] 

LOD – log10(number of independent tests performed)  

We used the Matrix Spectral Decomposition (matSpD) method to estimate the 

equivalent number of independent tests performed in our analyses 

(http://gump.qimr.edu.au/general/daleN/matSpD/) via use a correlation matrix of 

the LOD scores ≥ 2 achieved in all analyses to reflect a balanced liberal-

conservative approach. This gave the independent tests performed as 8 and 5 

for the parametric and NPL analyses respectively. Thus, corrected LOD scores of 

3.90 and 2.90 are used to indicate significant and suggestive linkage in our 

parametric analyses and a corrected LOD score of 3.70 and 2.70 to indicate 

significant and suggestive linkage in our NPL analyses. Within the MERLIN 

results alone, very similar/near-identical estimates were generated via 100 

simulations of the family in MERLIN preserving the structure of the pedigree, 

prior to splitting the sub-pedigrees before re-performing all NPL and parametric 

analysis. For reasons of computation, we were unable to do this confirmatory 

analysis in MCLINKAGE. 

Sequencing Methods 

Paired-end 100bp whole exome sequencing on Illumina HiSeq 2000 for 29 

individuals was outsourced to BGI (Beijing Genomics Institute). In brief, 

SOAPaligner was used for alignment to hg19 using default settings and allowing 

a maximum of 3 mismatches and SOAPsnp for assembly of consensus 

sequence and genotype calls, using default prior probabilities (novel hom 0.0005 

and novel het 0.001) and refining SNP calling using known information (-2 

option). Upon reception, files were converted to VCF4.0 and additional filters 

were applied: minimum read depth 30, maximum read depth 300 and quality 30 

or higher using VCFtools v0.1.12a [19]. Ts/Tv ratios of remaining variants fell 

between 2.2 and 2.4. 2 individuals were excluded due to overall poor QC metrics. 
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SNP and indels within linkage regions were then annotated using ANNOVAR [20] 

May 2014 version and databases. 

Variants were filtered using the following criteria; <1% or <0.1% in any population 

in the Exome Aggregation Database and functional relevance (non-synonymous 

exonic SNV, stopgain or stoploss for SNVs). Finally, we required the variant to be 

present in at least 2 affected individuals for the particular phenotype and in a 

maximum of 1 unaffected and 1 married-in individual. In addition, we filtered our 

variants against a Brazilian population dataset, consisting of 604 exomes 

available from collaborators (see acknowledgments). We also screened the 

mutations in the EXAC database (http://exac.broadinstitute.org/ 11/08/15, see 

acknowledgments), which includes a large number of psychiatric exomes. 

 

Results 

Socio-demographics and Psychiatry Phenotype description 

In total 111 (36%) interviewed family members received a mood disorder 

diagnosis. Forty (13%) family members fulfilled criteria for BPI, BPII, or SAD, 

which increased to 52 (16.9%) when BPNOS and cyclothymia were considered. 

More women (62.9%) reported mood disorders and BPI and BPII (61.3%). 

Unipolar depression was 17.3%; primary anxiety disorder prevalence was 13.2%; 

and alcohol abuse was 20.3% but not associated with mood disorders (data not 

shown). 

One family member had schizoaffective disorder, four family members had 

learning disability, six had adjustment disorder, and five children were diagnosed 

with Attention Deficient Hyperactivity Disorder. The BBF also had higher than 

expected rates of autoimmune hypothyroidism (7.8%), type I diabetes (10.1%) 

and Parkinson’s disease (2.6%). 

Summary of Whole-Genome Linkage and Sequencing Results 

Using the corrected whole-genome significant and suggestive thresholds, four 

chromosomal regions resulted in whole-genome significant LOD scores: 2p23.1-
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p22.3, 3p25.3-p24.1, 11p15.4, and 12q24.22-q24.32 and four chromosomal 

regions resulted in whole-genome suggestive LOD scores: 1p22.2-p21.3, 

1q21.1-q21.3, 12p13.32-p13.31, and 22q11.21-q12.1 (Table 2). MERLIN 

multipoint parametric and non-parametric analyses generally did not yield similar 

results, although some support across linkage methodologies was observed for 

the regions on chromosome 11p15.4 and 22q11.21-q12.1 with LOD scores 

greater or equal to 1.0 for both approaches. In addition, most of the positive 

linkage results were derived from the Branch 1 subfamilies. Linkage peaks either 

remained the same or decreased in size with the inclusion of subfamilies from 

Branches 2 or 3 in the BBF analyses. The exception is chromosome 1q21.1-

q21.3, where a suggestive linkage peak (maximum LOD=2.83) was only 

achieved in analysis of the BBF subfamilies. 

Our sequencing of these regions is outlined in Table 3 with counts of variants 

that passed our filtering criteria per linkage region. We report only the variants 

with a GenomicSuperDup score <0.9. We required a minimum of 2 cases to carry 

each mutation. For the narrow phenotype no variants passed our sequencing 

filters. Notably we had a smaller number of cases sequenced for this phenotype 

(6 narrow cases versus 14 cases for depression). For the broad phenotype, no 

variants passed our sequencing filters for the broad phenotype. Linkage analysis 

had revealed two suggestive and one significant linkage peak for depression and 

the locus on chr11p15.4 was found to contain 3 predicted damaging non-

synonymous variants in ART5 and DCHS1. One variant in the chr12q24.22-

12q24.32 locus passed our filtering criteria in the TCTN2 gene. For the super 

phenotype, the linkage region on chromosome 1q contains many segmental 

duplications, but after filtering for this, we still find some genes. We find three 

different variants predicted to be damaging in ITGA10, ANP32E, and in TCHH. 

On chromosome 2p23.1-p22.3, we found a damaging non-synonymous mutation 

in FAM98A. Unusually in EXAC (exac.broadinstitute.org), the position has two 

more alternate alleles observed in a few individuals. This meant all 4 bases were 

represented at this site, albeit 3 of them at very low allele frequency (aggregate 

3/121378, i.e. about one in 40,000). The site has very good sequence coverage 
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in our data and in EXAC. Examination of EXAC data Integrative Genome Viewer 

plots showed that these variants had good quality. EXAC has a density of 1 

variant per 6bp and 7% of observed variants are multiallelic. (D. MacArthur 

personal communication, plots available upon request) 
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Discussion 

We have identified, in rural Brazil, a family with 111 cases of mood disorder, 

including manic-depression. This is one of the largest mood disorder families 

found worldwide. We successfully performed a whole-genome linkage analysis 

on this large multi-generational family and after correcting for multiple testing, 

four regions on chromosomes 2p23.1-p22.3, 3p25.3-p24.1, 11p15.4, and 

12q24.22-q24.32 achieved genome-wide significance and four regions on 

chromosomes 1p22.2-p21.2, 1q21.1-q21.3, 12p13.32, and 22q11.21-q12.1 

achieved genome-wide suggestive linkage. Several of these regions overlap with 

and provide further support for previous linkage findings.  

The findings from our study on chromosomes 11p15, 12p13.32-p13.31 and 

12q24.22-q24.32 are specific to depression. The specificity of region 11p15 to 

depression is shown by extremely low LOD scores reported in the bipolar 

disorder only models. A similar pattern was observed for the chromosome 12 

regions. While unipolar depression and BP disorder may share susceptibility loci 

in this family, these are loci that appear to only confer susceptibility to 

depression.  

The highest LOD score reported in the BBF was found on chromosome 

12q24.22-q24.32 (maximum LOD=4.74) under the depression phenotype model. 

Curtis et al. (2003) reported suggestive linkage (maximum LOD=2.8) on 

chromosome 12q24.31-q24.32 in seven families with multiple cases of BPD and 

unipolar depression. Similar to the BBF findings, they identified this region under 

a dominant model and including unipolar cases as affected only. Shink et al. [21] 

reported significant linkage in bipolar families from the Saguenay-Lac-St-Jean 

population of Québec. This region overlaps one identified by Ewald et al. [22], 

who investigated 12q22-q24 in two Danish bipolar families. The 12q23–q24 

regions was also reported by Morissette et al. [23] in a large pedigree with BPD 

and unipolar depression from Québec.  

Whole exome sequencing of 12q24.22-q24.32 showed a number of genes with 

mutations. One gene had more evidence with 4 depression cases carrying a 
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mutation in the TCTN2 gene. This gene encodes a type I membrane protein that 

belongs to the tectonic family. Studies in mice suggest that this protein may be 

involved in hedgehog signaling, and essential for ciliogenesis. Mutations in this 

gene are associated with Meckel-Gruber Syndrome (MKS; OMIM 249000) - the 

most common form of syndromic neural tube defect - and Joubert syndrome (JS; 

OMIM 213300), which is marked by ataxia, hypotonia and other features. Both 

syndromes were not observed in family members but do point to the neuronal 

importance of TCTN2. However, this finding is tentative and requires further 

study within the family and replication. 

We found a genome-wide significant linkage on chromosome 2p23.1-p22.3, 

under the super phenotype model. The region is 7.5 Mb distal to a region of 

possible linkage reported by [24] in Portuguese Island families with multiple 

patients suffering from BPD and schizophrenia. We found a convincing mutation 

in FAM98A that was shared by 7 of 14 cases with high read depth sequencing 

data and good quality scores. However, the gene encodes a protein of broadly 

unknown function that is part of family of proteins (including the paralogous 

expressed across a large of species and tissues called the DUF2465 

superfamily.  

The region with the most substantial evidence for linkage was chromosome 

11p15.4, under the depression phenotype model. Approximately 2.6 Mb 

telomeric to the BBF linkage peak, Zubenko et al. [25] reported a depression 

susceptibility locus with significant evidence for linkage (maximum LOD=4.20) 

using recurrent MDD families. The findings of Zubenko et al. [25] are difficult to 

interpret given the thirteen chromosomal regions reaching significant linkage in 

their analysis. However, this region has also been implicated in bipolar disorder 

[26]. Our sequencing results yielded a relatively large number of plausible 

mutations that we were unable to select between using objective criteria. For 

example, mutations have been reported in the cadherin receptor DCHS1 that 

lead to a recessive syndrome in humans that includes periventricular neuronal 

heterotopia [27]. 
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Chromosome 22q11.21-q12.1 achieved high genome-wide suggestive evidence 

for linkage in the BBF (LOD=3.76) under a recessive mood of disease 

transmission for the broad phenotype. Genome-wide significance was also 

previously obtained for loci on chromosome 22q12 for BPI using NPL methods 

[13] and parametric methods [28]. Moreover, chromosome 22q11.2 is deleted in 

velocardio-facial syndrome, as first reported by Driscoll [29], which is associated 

with schizophrenic symptoms [30]. This locus shows a substantial decline in LOD 

scores observed with the inclusion of depression cases in analysis. We did not 

find mutations in this region that pass our QC filters. 

Other regions, where we find no sequencing variants after filtering in the regions, 

included a suggestive linkage peak for bipolar disorder on chromosome 1p22.2-

p21.3 under the narrow (maximum LOD=2.96) and broad phenotype models 

(maximum LOD=2.93). This region harbours the MIR137 (microRNA 137) 

schizophrenia locus [31]. A second region identified on 1q21.1-q21.2 is 

approximately 6 Mb centromeric from of a putative bipolar disorder locus 

(1q23.3) identified in Ashkenazi Jewish families [32], and multiplex bipolar 

families [33] [34]. The linkage peak on 12p13.32 had been previously implicated 

in both BPD and schizophrenia. This region was implicated in general mood 

disorders in a study of Columbian bipolar families [35]. The second most 

significant linkage region was found on chromosome 3p25.3-p24.1 identified 

using the narrow phenotype model and a dominant mode of inheritance. In 

related phenotypes, a larger region on chromosome 3p26-p21 was implicated in 

Indonesian families with schizophrenia [36] and the nearby 3p25-24 in severe 

recurrent depression [37]. 

In conclusion, we have found strong evidence for linkage in regions for bipolar 

disorder, broad mood disorders and also for depression alone. Some of the 

regions are underlain by mutations in neuronally expressed genes that are 

carried by affected family members. The TCTN2 and, in particular, FAM98A 

mutations are of interest. However, our mutation findings must be regarded as 

preliminary and will require replication and follow up of mutation carriers in the 

family. Nevertheless, this family is an unique resource, our results so far are 
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highly promising and our follow up of these results will including integration of 

common variation polygenic scores as well as tracking of mutation carriers within 

the family. 
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Table 1. Phenotype models by number and percentage of affected family members and co-morbid psychosis and anxiety disorders. The 

total number of family members affected with a mood disorder is 111. The total number of interviews conducted is 308. 

 

 

Diagnosis 

Phenotype Model Co-Morbid Disorders 

 Narrow  Broad  Super  Depression Psychosis Anxiety 

 BPI  24  24  24    19  10 

 BPII  15  15  15      3 

 SADB  1  1  1    1   

 BPNOS    10  10    3  1 

 Cyclothymia    2  2     

 RMDD      28  28  1  10 

 MDD      29  29    9 

 Dysthymia      2  2    1 

 Total (Percentage)  40  

 (13%) 

 52  

 (16.9%) 

 111  

 (36%) 

 59  

 (19.2%) 

 24  

 (21.6%) 

 34 

(30.6%) 

 Mean Age Onset 

(SD) 

 27.7 

(±11.2) 

 27.0 (±12.3)  29.6 

(±13.2) 

 32.4 

 (±13.7) 

 

N/A 

 

N/A 
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Table 2. Linkage regions identified. Regions included in this table are those with suggestive or significant genome-wide linkage in any 

analytic configuration. Two asterisks denote SNPs with whole-genome significance and one asterisk denotes SNPs with whole-genome 

suggestive evidence for linkage.  All of the maximum LOD scores presented in the table are from analyses conducted on Branch 1, except 

the maximum LOD score for chromosomal region 1q21.1-q21.3 is from analysis conducted on the BBF.  

Phenotype 
Model  

Number 
Affected 

Chromosomal 
Region 

Software Test Mode 
Transmission 

Maximum 
LOD 

Narrow  40 1p22.2-p21.2 
3p24.3-p24.1  

MERLIN 
McLinkage 

NPLall 
TLOD 

N/A 
Dominant 

2.96* 
4.18** 

Broad  52 1p22.2-p21.3 
22q11.21-q12.1 

MERLIN 
MERLIN 

NPLall 
HLOD 

N/A 
Recessive 

2.93* 
3.76*  

Super 111 1q21.1-q21.3 
2p23.1-p22.3 

MERLIN 
MERLIN 

NPLpairs 
NPLpairs 

N/A 
N/A 

2.83* 
3.83**  

Depression 59 11p15.4 
12p13.32-p13.31 
2q24.22-q24.32 

MERLIN 
McLinkage  
McLinkage 

NPLall 
TLODTLOD 

N/A 
Dominant 
Dominant 

4.49** 
3.09* 
4.74**  
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Linkage Region Phenotype Chr Start (Ref/Alt 
allele) Gene Function snp138 SIFT Polyphen2 Genotype counts 

11p15.4 Depression chr11 3661000 (C/T) ART5 exonic NS NA 0.05 0.38 Depression: 12,4,0 

11p15.4 Depression chr11 6662520 (G/A) DCHS1 exonic NS rs371390544 0.07 1 Depression: 12,4,0 
12q24.22-
12q24.32 Depression chr12 124171449 

(G/A) TCTN2 exonic NS NA 0.38 0.312 Depression: 12,4,0 

1q21.1-1q21.3 Super chr1 150199027 
(C/T) ANP32E exonic NS NA 1 0 Super: 18,3,0 

1q21.1-1q21.3 Super chr1 152080550 
(G/T) TCHH exonic NS NA 0.76 0.411 Super: 16,5,0 

2p23.1-2p22.3 Super chr2 33817255 
(G/T) FAM98A exonic NS NA 0.1 0.996 Super: 14,7,0 

 

Table 3 Sequencing results from exome sequencing of family members. The first and second column contain the linkage region and 

the relevant phenotype. The variant location is stated in column three and four. All variants were annotated using ANNOVAR 

(http://annovar.openbioinformatics.org/) with RefGene annotation, functional prediction, snp138 annotation, in addition to SIFT and 

Polyphen2 predictions in column 9. The last column contains genotype counts within cases of relevant phenotypes (homozygous 

reference, heterozygous, homozygous alternative). .
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