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Abstract

Pedigrees contain information about the genealogical relationships among individuals
and are of fundamental importance in many areas of genetic studies. However, pedigrees
are often unknown and must be inferred from genetic data. Despite the importance of
pedigree inference, existing methods are limited to inferring only close relationships or
analyzing a small number of individuals or loci. We present a simulated annealing
method for estimating pedigrees in large samples of otherwise seemingly unrelated
individuals using genome-wide SNP data. The method supports complex pedigree
structures such as polygamous families, multi-generational families, and pedigrees in
which many of the member individuals are missing. Computational speed is greatly
enhanced by the use of a composite likelihood function which approximates the full
likelihood. We validate our method on simulated data and show that it can infer distant
relatives more accurately than existing methods. Furthermore, we illustrate the utility
of the method on a sample of Greenlandic Inuit.

Author Summary

Pedigrees contain information about the genealogical relationships among individuals.
This information can be used in many areas of genetic studies such as disease
association studies, conservation efforts, and learning about the demographic history
and social structure of a population. Despite their importance, pedigrees are often
unknown and must be estimated from genetic information. However, pedigree inference
remains a difficult problem due to the high cost of likelihood computation and the
enormous number of possible pedigrees we must consider. These difficulties limit
existing methods in their ability to infer pedigrees when the sample size or the number
of markers is large, or when the sample contains only distant relatives. In this report,
we present a method that circumvents these computational barriers in order to infer
pedigrees of complex structure for a large number of individuals. From our simulation
studies, we found that our method can infer distant relatives much more accurately
than existing methods. Our ability to infer pedigrees with a greater accuracy opens up
possibilities for developing or improving pedigree-based methods in many areas research
such as linkage analysis, demographic inference, association studies, and conservation.
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Introduction 1

Pedigree information is used in many areas of human genetic analysis, including 2

discovery of trait-associated markers in linkage analyses and family-based association 3

studies [1], pedigree-informed phasing and imputation [2], and in estimating 4

heritabilities [3]. Furthermore, pedigree information can be used to improve the 5

performance of methods that otherwise assume unrelated individuals. For instance, in 6

large association studies samples can harbor cryptic relatedness, which may result in 7

spurious associations [4]. In such cases, pedigree information can be used to remove 8

related samples or explicitly model relatedness to increase the power of association 9

studies [5]. 10

At the population level, pedigrees can elucidate the social organization and behavior 11

of a group, such as mating patterns and variance in reproductive success among 12

individuals [6]. Furthermore, pedigree information can be used to infer population 13

parameters such as migration rates between subpopulations at very recent time scales. 14

Most population genetic inference methods are based on coalescence theory, which 15

models the genealogical relationships among samples of genetic data at a time scale of 16

N generations. However, standard coalescence models, such as Kingman’s 17

coalescent [7–9] ignore pedigree structure. Simulation studies have shown that the 18

coalescent is a poor approximation of the genealogical process over short time frames 19

(< log2N generations, where N is the population size), potentially leading to inaccurate 20

inferences at these time scales [10,11]. Therefore using the pedigree, which contains 21

more detailed information about the genealogical history of the samples, should provide 22

more power in inferring population parameters for the very recent past. 23

Pedigree information is undoubtedly valuable. In many cases, however, pedigrees are 24

not directly observable and must be inferred from genetic data. Although numerous 25

pedigree inference methods have been developed to date, most are limited to inferring 26

very close relationships or require a prior knowledge of the sample structure. Many 27

existing methods support only single- or two-generation samples. The single-generation 28

methods are sibship inference algorithms which partition the sampled individuals into 29

sibship clusters [12–15]. The parentage inference methods for two generations find the 30

best parent-offspring combinations from a set of offspring and candidate parents [16–18]. 31

Several methods that can support more than two generations have been 32

developed [19–25]. But they are either limited in the number of markers that can be 33

analyzed [20,25]; do not support polygamous pedigrees [23,24]; assume a complete 34

sample (i.e. every member in the pedigree is sampled) [21,22,26]; or assume all sampled 35

individuals belong to a single generation [23,24]. The state-of-the-art method, 36

PRIMUS [27], is the most flexible of the existing methods; it accommodates missing 37

data and is able to infer multi-generational, polygamous pedigrees. Although PRIMUS 38

is a notable improvement from other methods, its accuracy decreases significantly as the 39

number of missing individuals increases. This is problematic as we expect samples to 40

contain only a small fraction of pedigree members unless the sample represents a large 41

portion of the total population or is specifically designed to include close family 42

members. 43

The difficulty in pedigree inference comes from three sources. First, the number of 44

possible pedigrees is enormous even for a small sample size [28,29], making naive 45

enumeration of pedigrees in search for the best one infeasible. Second, computing the 46

likelihood of a pedigree is very expensive. Algorithms for computing the likelihood of a 47

pedigree are either exponential in the number of loci [30], or in the number of 48

individuals [31], which makes the likelihood computation of large pedigrees at many loci 49

prohibitively slow. Finally, inference of pedigree relationships from genetic relationships, 50

measured by the proportion of the genome shared by identical-by-descent (IBD), has 51

high uncertainty. As the pedigree relationship between two individuals becomes more 52
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distant, the coefficient of variation and the magnitude of skew in genome sharing 53

become larger [32]. For example, the distribution of genome sharing between second 54

cousins overlaps significantly with that of third cousins, making these two pedigree 55

relationships difficult to distinguish based on pairwise genome sharing alone. 56

In this report, we present a new pedigree inference method that addresses the 57

drawbacks of the existing methods. More specifically, our method can utilize many 58

markers genome-wide, support multi-generational pedigrees (up to 5 generations) and 59

polygamous reproduction, and allows many missing individuals in the sample. We 60

assume that all individuals are outbred and that the pedigrees do not create cycles, 61

except in the case of full-sibs. To increase computation efficiency, we use a composite 62

likelihood to approximate the full likelihood based on pairwise likelihoods, and use 63

simulated annealing as a heuristic optimization algorithm for maximizing the composite 64

likelihood. We validate our method on simulated data and show that it outperforms 65

existing methods for inferring distant relatives. Furthermore, we demonstrate our 66

method’s application to real data on a sample of Greenlandic Inuit. 67

Materials and Methods 68

Composite Likelihood 69

Our inference method is based on the idea of forming a composite likelihood function 70

based on marginal likelihood functions calculated for pairs of individuals. While even 71

pairwise likelihoods are slow to calculate for full genomic data, they can be tabulated 72

and stored in computer memory. It is thereby possible to estimate pedigrees, based on a 73

composite likelihood function, by only calculating the likelihood function between pairs 74

of individuals once. This makes our method potentially applicable to large data sets 75

containing thousands of individuals. As we will later discuss, using some heuristics, the 76

method may even be applicable to large GWAS data sets. 77

We define a pedigree as undirected graphs where a node represents an individual and 78

an edge represents a parent-offspring relationship (S1 Text). Each individual has a sex 79

and is associated with 0, 1 or 2 edges connecting the individual to its parents, which 80

mush be of different sexes if the individuals has two identified parents. An individual in 81

the pedigree may or may not be represented in the sample, but if individual i is 82

represented in the sample it is associated with genotype vector, Xi. For each pedigree, 83

the set of k sampled individuals is denoted by H, and the composite likelihood for such 84

a pedigree is defined as 85

CL(H) =

{
P (Xi), if k = 1∏

(i,j)∈H P (Xi,Xj |Ri,j)∏
i∈H P (Xi)k−2 , otherwise

(1)

where Ri,j is the relationship between i and j induced by the pedigree. For a singleton 86

pedigree (i.e. pedigree consisting of one individual), the likelihood is simply the 87

likelihood of the member individual’s genotypes. For k > 1 the composite likelihood is 88

obtained as the product of marginal pairwise likelihoods. However, to obtain a more 89

natural scaling of the composite likelihood we note that the probability of the data for 90

each individual has been calculated k − 1 times and we therefore divide the composite 91

likelihood function with the marginal likelihood of each individual k − 2 times. This has 92

several desirable properties such as convergence of the composite likelihood to the true 93

likelihood as the relatedness among individuals goes to zero. Another way to think of 94

this composite likelihood function is in terms of products of conditional likelihoods. We 95

can factor the full likelihood as 96
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P (X1, · · · , Xk|H) = P (X1|H)P (X2|X1, H) · · ·P (Xn|X1, · · · , Xk−1, H).

Since computing the conditional likelihoods P (Xi|X1, · · · , Xi−1, H) is difficult, we
approximate them with

P (Xi|H)
i−1∏
j=1

P (Xi|Xj , H)

P (Xi)
.

That is, we multiply the marginal probability of our current observation P (Xi|H) by 97

the likelihood ratio
P (Xi|Xj ,H)

P (Xi)
for each previous observation Xj . If the previous 98

observation informs our current observation, then P (Xi|Xk,H)
P (Xi|H) 6= 1, so the likelihood of 99

the current observation increases or decreases accordingly. Using this approximation, we 100

arrive at (1). 101

The pairwise likelihood P (Xi, Xj |Ri,j) can be computed efficiently using the Hidden 102

Markov Model (HMM) approximation by [33], which is used in this study. However, we 103

note that any other definition of the pairwise likelihood function could have been used. 104

For a set of possible outbred relationships in a 5-generation pedigree (See S1 Table), the 105

pairwise likelihood for each pair (i, j) is precomputed and stored in memory. The total 106

pre-computation time for
(
n
2

)
pairs of individuals, s types of relationships, and L loci, 107

therefore, is O(n2sL). Since the composite likelihood of a pedigree is a simple function 108

of the pairwise and marginal likelihoods, it can be computed fast by accessing the 109

precomputed values stored in memory. The full composite likelihood for a set of local 110

pedigrees is then computed by taking the product of the composite likelihood for each 111

local pedigree. 112

It is worthwhile to note alternative ways to construct a composite likelihood. 113

Another, perhaps more intuitive, formulation that also ensures that the composite 114

likelihood converges to the true likelihood as the relatedness among individuals goes to 115

zero, is 116∏
i 6=j

P (Xi, Xj)
1

n−1 , (2)

which scales the product of pairwise likelihoods by 1
n−1 to account for the multiple 117

counting of each sample. However, as we will discuss in the Results section, this 118

formulation leads to a worse approximation of the full likelihood function. 119

Simulated Annealing 120

Because the number of possible pedigrees grows very rapidly with sample size, an 121

exhaustive search for the most likely pedigree is infeasible for even a moderate number 122

of individuals. Therefore, we use simulated annealing [34] to maximize the composite 123

likelihood function. In this algorithm, a perturbation of the pedigree is generated by 124

locally modifying the edges and nodes of the current pedigree (S1 Text). We explore the 125

pedigrees with high likelihoods by always accepting proposals with higher likelihoods 126

and occasionally accepting those with lower likelihoods to avoid getting stuck in local 127

maxima. We implemented 24 different perturbations (moves) detailed in S1 Text. These 128

moves can be broadly categorized into three classes. The first class of moves involves 129

choosing two individuals and modifying their pairwise relationship. These moves include 130

transitions between: parent-offspring and full siblings; full siblings and half siblings; first 131

cousins and great avuncular; first cousins and half avuncular; and full avuncular and 132

half siblings. Related to these are moves that add or subtract an edge between two 133

nodes. For example, adding an edge causes parent-offspring relationships to become 134
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grandparent-grandchild relationship, whereas subtracting an edge has the opposite 135

effect. The motivation for this class of moves is that these pairs of relationships have 136

similar IBD coefficients, hence similar likelihoods. So these perturbations allow 137

transitions between pedigrees with similar likelihoods. 138

The second class of moves allows bigger perturbations in the current pedigree. These 139

moves include splitting a pedigree into two, joining two pedigrees into one, or the 140

combination of splitting and joining. Splitting a pedigree can be done in two ways: we 141

can either detach a chosen individual’s sub-pedigree (i.e. its descendant and itself) from 142

its ancestors, or split off a randomly selected subset of its children to form a new 143

pedigree. Joining two pedigrees involves creating a common ancestor between two 144

individuals that belong to different local pedigrees. 145

The last class of moves is designed to transition between similar pedigrees when sex 146

or age information is missing. For example, one move allows an individual and its 147

descendant to swap places if age information is not present to resolve the directionality 148

of the relationship. Another move changes the sex of an individual if sex information is 149

not available, which in turn switches the sex of its potential spouses. 150

All of these transitions modify a small part of the current pedigree to generate a new 151

configuration. Since the composite likelihood is a function of the pairwise and marginal 152

likelihoods, the likelihood of the new configuration can be computed fast by adjusting 153

the old likelihood by the changes made to the modified part of the pedigree. 154

The outline of the simulated algorithm is described below: 155

156

Initialization: Let each individual be a singleton pedigree (i.e. everyone is unrelated), 157

except if there are known relationships that can be incorporated into the initial 158

pedigree. Compute and store the composite likelihood of the current configuration. 159

160

Recursion: 161

1. Choose one of the 24 moves at random and generate a new configuration 162

accordingly. 163

2. If the new configuration is an invalid pedigree, reject and go back to step 1. If it is 164

a valid pedigree, compute the composite likelihood CL(Hnew) for the new 165

configuration. Accept with probability min[(CL(Hnew)/CL(Hold))t, 1], where t is 166

the annealing temperature. 167

3. Repeat steps 1-2 C times. 168

4. Decrease the temperature to t/f , where f > 1 and go to step 1. 169

Termination: Terminate after I iterations or when the change in composite likelihood 170

is less than e. 171

The tuning parameters C, f , I, and e were optimized for fast convergence using a 172

number of trial runs on different simulated data sets. We run multiple instances of the 173

algorithm with different random seeds. The algorithm then reports the pedigree with 174

the highest likelihood encountered among all runs. 175

Background Relatedness 176

Since the composite likelihood function is based on pairwise likelihood values, any 177

inference based on it is limited by the quality of the pairwise likelihoods. One important 178

factor that confounds the likelihood computation is linkage disequilibrium (LD), which 179

often causes relationships to be overestimated [35]. Unrelated pairs of individuals often 180
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have higher likelihoods for being distantly related (S1 Fig), which leads to false 181

detection of relatives. The method of [33] attempts to correct for LD by conditioning on 182

nearby markers. However, in our experience residual effects of LD will still tend to bias 183

inferences when markers are in high LD. One way to further reduce the effects of LD is 184

pruning, or thinning, of markers. However, there is no consensus on how best to choose 185

a set of markers that contains minimal LD and yet harbors enough information to 186

detect distant relatives. To get a better sense of the effects of LD pruning on 187

relationship inference, we simulated various pairwise relationships (i.e. second cousins, 188

third cousins, unrelated) at linked loci. We then measured the pairwise prediction 189

accuracy under different levels of LD pruning to choose an appropriate level of pruning 190

threshold (See Results). 191

In addition to LD pruning, we further controlled for false detection of relatives by 192

adding a regularization term to the composite likelihood. The regularizer was designed 193

to weight against individuals from forming family clusters, motivated by the fact that in 194

large data sets there are so many potential pedigree relationships for each individual, 195

that most individuals will be inferred to have some pedigree relationship to at least one 196

individual in the sample, even when they are unrelated. This is essentially a multiple 197

testing problem in which an increasing number of individuals in the sample implies a 198

reduced probability of inferring an individual to be unrelated to all individuals in the 199

sample. There are natural ways of addressing this problem in a Bayesian framework 200

that we might also be able to appeal to in the current framework. In particular, we will 201

assign a probability distribution on the number of local pedigrees inferred. More 202

specifically, we used the regularized composite likelihood 203

CL∗(X) = CL(X)Pr(Q = q), (3)

where q is the number of local pedigrees. We chose a Poisson distribution with mean n, 204

the sample size, as the distribution of Q. This regularization is conservative in the sense 205

that it favors every individual to remain a singleton unless there is strong evidence 206

otherwise. Our choice to use the Poisson distribution was made, in part, for 207

computational convenience but, as we will discuss in the Results section, resulted in 208

good statistical properties of the method. 209

Simulated Dataset 210

We tested the performance of our method on simulated pedigrees. We generated human 211

autosomal haplotypes using msprime [36] with effective population size of 10,000, 212

average recombination rate of 1.3e-8, and mutation rate of 1.25e-8. Using these founder 213

haplotypes, we simulated three pedigree structures shown in Fig 1. 214

Simulation A consisted of 10 singletons and a 45-person family that spanned 5 215

generations. Of the 45 family members, 10 were sampled and 35 were missing. The 216

kinship coefficients of the sampled relative pairs ranged from 1/4 (e.g. full siblings) to 217

1/256 (e.g. third cousins). Simulation B was designed to study the performance of our 218

method on smaller family clusters. It consisted of 4 family clusters and 4 singletons. 219

Each family cluster contained 15 to 18 members, of which only 4 of them were sampled. 220

The sampled individuals spanned multiple generations and formed pairwise relationships 221

with kinship coefficients ranging from 1/4 to 1/256. Finally, Simulation C was designed 222

the test the method on pedigree structures in which every sampled individual, excluding 223

singletons, has at least one close relative in the data. It consisted of 9 singletons and a 224

16-person pedigree that spanned 5 generations. The 16-person pedigree contained 7 225

missing individuals and 9 sampled individuals, where each sampled individual formed a 226

parent-offspring relationship with at least one other sample. 227
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Each simulation scenario was replicated 100 times. For each sampled individual, we 228

simulated genotyping error by switching each allele to the alternate allele with 229

probability 0.01. To reduce the level of LD among markers, we used PLINK [37] to 230

prune the original set of markers at r2 = .05, resulting in about 10,000 markers. The 231

sex of each sample was assumed known, whereas the age was assumed unknown. 232

Empirical Dataset 233

We applied our method to reconstruct the previously unreported pedigrees of 100 234

individuals in Tasiilaq villages in Greenland which had been genotyped [38] using the 235

Illumina CardioMetaboChip, consisting of 196,224 SNPs. Since the European admixture 236

into the Greenlandic population can confound relationship inference, we selected 237

individuals from Tasiilaq villages, which showed one of the lowest levels of European 238

admixture in the sample. In particular, the 100 individuals we selected were estimated 239

to have European admixture proportion of 5 percent or less. To reduce the effects of LD, 240

with pruned the markers using PLINK at r2 = 0.05. Due to the unusually high level of 241

LD in the Greenlandic population, we were left with 1868 SNPs after LD-pruning. 242

Competing Methods for Comparison 243

We compared the performance of our method on simulated data to PRIMUS, arguably 244

the state-of-the-art pedigree reconstruction method. Although many pedigree inference 245

methods exist, we chose to use PRIMUS as a benchmark since it is the most flexible of 246

the existing methods in the types of pedigrees it can infer. More specifically, PRIMUS 247

supports the inference of multi-generational, polygamous pedigrees and allows for 248

missing individuals. PRIMUS reconstructs pedigrees that are consistent with pairwise 249

IBD estimates and reports high-scoring configurations. To estimate the pairwise IBD 250

coefficients for our simulated data, we first estimated the population allele frequencies 251

from 200 simulated founder haplotypes. We then used PLINK to estimate the IBD 252

coefficients for the individuals in our simulated pedigrees, where the population allele 253

frequency estimates were provided as input. The IBD estimates were then used by 254

PRIMUS to reconstruct likely pedigrees. This mimics the inference procedure 255

recommended in the PRIMUS documentation. 256

We also compared our method to the pairwise inference method. In this method, we 257

used the HMM by [33] to compute the pairwise likelihood under each possible 258

relationship (S1 Table) for all pairs of individuals. Then we assigned each pair the 259

relationship with the highest pairwise likelihood. We controlled the false positive rate 260

by multiplying the likelihood of being unrelated by a scalar c > 0, in order to provide 261

comparable results between methods. The pairwise inference method produces only the 262

best relationship for each pair, which may not result in a valid pedigree when all 263

pairwise relationships are pieced together. Still, it serves as a useful benchmark to 264

evaluate the accuracy of pairwise predictions by our method. 265

Measuring the Error Rate 266

We evaluated the performance of our method by comparing the pairwise relationships
induced by the true pedigree to those induced by the estimated pedigree. We define the
error rate for each pair as

e =

{
0, if ŵ1 = w1 and ŵ2 = w2

1, otherwise

where wi is the probability that two individuals share i pairs of alleles IBD at a random 267

locus under the true relationship; and ŵi is the corresponding probability for the 268
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estimated relationship. In other words, the estimated relationship is correct if its three 269

Jacquard coefficients [39] are exactly the same as those of the true relationship. For 270

PRIMUS, which reports all pedigrees with the high likelihood scores, we compute the 271

error rate by taking the average across all highest-scoring pedigrees. 272

Furthermore, to measure the distance between the estimated relationship and the
true relationship for each pair, we compute the kinship coefficient distance

d = |φ̂− φ|,

where φ̂ = 1
4 ŵ1 + 1

2 ŵ2 and φ = 1
4w1 + 1

2w2 . 273

Results 274

Behavior of the Composite Likelihood 275

To examine the behavior of the composite likelihood, we simulated a nuclear family with 276

two parents and their four children at 3,000 independent loci. We then computed the 277

likelihood of the data under various pedigree configurations, ranging from the pedigree 278

in which no one is related to the true pedigree. For each pedigree configuration, we 279

computed the likelihood value with three different formulas: the full likelihood using 280

MERLIN [40], composite likelihood A, given by (2), and composite likelihood B, given 281

by (1). 282

The comparison of the three likelihood formulas are shown in S2 Fig. The x-axis is 283

the distance of the test pedigree to the true pedigree, measured by the proportion of 284

pairwise relationships that are correct in the test pedigree. As expected, the full 285

likelihood increases as the test configuration becomes closer to the true pedigree. Both 286

composite likelihood formulas preserve the ordering of the pedigrees induced by the full 287

likelihood. That is, the order of pedigrees from the least likely to the most likely based 288

on the full likelihood corresponds to the ordering based on the composite likelihood 289

formulas. Although both composite likelihood formulas preserve this ordering, the 290

likelihood surface given by (2) is much flatter than the full likelihood, whereas the 291

likelihood surface of (1) is roughly on the same order of magnitude as the full likelihood. 292

Effects of Linkage Disequilibrium on Pairwise Relationship 293

Inference 294

As mentioned in the Methods section, we examined different thresholds for LD pruning. 295

The appropriate level of pruning depends both on the genome length and the types of 296

relationships we want to infer accurately. As shown in Fig 2, there is a trade-off 297

between keeping enough markers to estimate distant relationships and removing 298

markers to reduce false detection of relatives. For unrelated pairs, the most stringent 299

LD pruning we tested (r2 = .025) showed the best relationship prediction accuracy. For 300

third cousin relationships, however, pruning the markers too severely caused too much 301

information loss, leading to a decrease in prediction accuracy. A similar pattern is 302

observed for the second cousin relationships. For our simulated and empirical data, we 303

prune the markers at r2 = .05, which according to our simulations, retained enough 304

information to estimate second and third cousins while keeping the false positive rate 305

(i.e. estimating unrelated pairs as related) relatively low. We note that finding optimal 306

strategies for dealing with background LD when inferring relatedness is an important 307

topic that merits further research. 308
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Estimating Simulated Pedigrees 309

Fig 3 shows the average pairwise error rate across all replicate experiments, categorized 310

by different levels of true relatedness, φ. For Simulation A, both our method and 311

PRIMUS had a very low false positive rate (i.e. error rate for φ = 0), and similarly low 312

error rates for estimating close relationships. For more distant relatives such as first 313

cousins and beyond (φ ≤ 1/32), however, our method was able to estimate the 314

relationships more accurately. PRIMUS estimated the distant relatives as unrelated in 315

almost all instances, whereas our method was able to correctly infer such relationships 316

about 50 percent of the time. 317

The middle panel in Fig 3 shows the error rate for Simulation B, which contains 318

smaller family clusters than Simulation A. Again, our method outperformed PRIMUS 319

in estimating relationships with φ ≤ 1/32. Unexpectedly, PRIMUS also showed higher 320

error rates for close relationships such as avuncular relationship. This may be due to 321

the uncertainty in pairwise IBD estimates, which PRIMUS uses to reconstruct the 322

pedigree. With smaller family clusters, there are fewer pairwise relationships to inform 323

and resolve more uncertain relationship assignments, which may lead to incorrect 324

assignments of even close relationships. In that respect, simulation B is a more difficult 325

pedigree to infer than Simulation A, and this is reflected in the error rates of our 326

method as well, which are higher than the corresponding error rates in Simulation A. 327

For Simulation C, our method was able to find the correct pedigree in 96 of the 100 328

experiments. When the 4 experiments that converged to an incorrect pedigree were run 329

again with a slower annealing rate, we were able to recover the correct pedigree in each 330

case. The results for simulation C showed that when the sampled individuals are 331

connected by close relationships, our method can unambiguously find the correct 332

pedigree in most instances. 333

Our method also performed considerably better than the pairwise inference method. 334

The likelihoods in the pairwise prediction were weighted so that its false positive rate 335

roughly matched that of our method. Fig 4 shows that at similar false positive rates, 336

our method estimated pairwise relationships with a greater accuracy than the pairwise 337

method across almost all relationship categories. Fig 5 further demonstrates that our 338

method has a significant advantage over the pairwise prediction method in detecting 339

relatives. If the purpose of relationship inference is to find relatives–to discover the 340

number of family clusters present in the data, for example–Fig 5 demonstrates that our 341

method is able to detect relatives far more accurately than the pairwise method. These 342

figures show that even though our method and the pairwise inference method both use 343

the same pairwise likelihood values to estimate relationships, leveraging information 344

from all pairs of relationships improves the inference significantly compared to 345

considering each pair in isolation. 346

Furthermore, Fig 6. shows that even when the estimated relationship is wrong, it is 347

generally close to the true relationship. For example, the maximum distance 348

encountered in category φ = 1/32 was about 0.03 which is equivalent to predicting a 349

first cousins once-removed relationship as first cousins. For the most distant relationship 350

category we considered, φ = 1/256, most errors came from estimating these relationships 351

as unrelated. The outliers in Simulation C resulted from 4 percent of experiments that 352

converged to an incorrect pedigree in which a parent-offspring relationship was 353

estimated as avuncular, thereby propagating errors down other related individuals. 354

Each experiment was run 3 times with different random number seeds, where each 355

run consisted of 80 million iterations. The runtime of our method depends on many 356

factors, including the number of individuals, the hidden pedigree structure, the number 357

of missing individuals, and the annealing schedule in the simulated annealing algorithm. 358

That said, each run on our simulated data took about 90 seconds on 2.5 GHz Intel Core 359

i5 processor. 360
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Estimating the Greelandic Inuit Pedigrees 361

To demonstrate our method’s ability to infer pedigrees in practical applications, we 362

estimated the previously unreportesd pedigrees of 100 individuals from Tasiilaq villages 363

in Greenland. Because the Greenlandic Inuit population has high levels of LD, only 364

1868 SNPs remained after pruning the markers at r2 = .05. Our simulation study 365

showed that at this number of SNPs, regularization with Poi(n) caused the error rate 366

for estimating distant relatives (φ < 1/32) to be very high; but using no regularization 367

at all led to a high false positive rate (S3 Fig). So we chose to use Poi(n/2) as our 368

regularization, which still produced a lower false positive rate, yet performed better in 369

inferring distant relatives on simulated data. 370

We ran our algorithm 5 times with different random number seeds. Each run, which 371

consisted of 80 million iterations, finished in about 24 minutes on 2.5 GHz Intel Core i5 372

processor. We used CraneFoot [41] to draw the estimated pedigree (S4 Fig). The 373

reconstructed pedigree consisted of 38 singletons and 8 non-singleton family clusters. 374

Many of these clusters consisted of close relationships such as parent-offspring, full 375

siblings, half-siblings, and avuncular relationships. Based on our simulations, we expect 376

more than 90 percent of the estimated relationships in these categories to be correct. 377

Discussion 378

Our method provides a computationally tractable way to estimate pedigrees for a large 379

number of individuals at many loci. The use of composite likelihood allows us to 380

analyze pedigrees containing many individuals at many loci, where computing the full 381

likelihood would be prohibitively slow. Furthermore, our method can estimate pedigrees 382

when the number of possible pedigrees is too large to enumerate, which is true even for 383

tens of individuals in a multi-generational pedigree. Our method is also one of the very 384

few methods that can support complex pedigree structures such as polygamy, 385

multigenerational pedigrees (up to 5 generations), and missing individuals. In addition, 386

we can incorporate information about sex, age, and the number of generations spanned 387

by the sample to better estimate the pedigree. 388

We have shown that our method has a significant advantage over the pairwise 389

inference method. It can better estimate relationships beyond first cousins (Fig 4) and 390

is able to detect relatives much more accurately (Fig 5). The composite likelihood 391

considers all pairwise likelihoods jointly, which in turn can help resolve uncertain 392

relationships in the context of other pairwise relationships. Therefore, even for pairwise 393

relationship inference, where estimating the entire pedigrees may not necessarily be of 394

interest, our method can be used to estimate the relationships more accurately. 395

Our method also showed an improvement over PRIMUS, the state-of-the-art 396

pedigree reconstruction method, in inferring distant relatives when the number of 397

missing individuals is large. PRIMUS’s reconstruction algorithm relies on accurate 398

pairwise relationship assignments based on IBD estimates. If the sample consists mostly 399

of distant relatives, however, relationship assignment becomes uncertain due to high 400

variance in IBD sharing, which often leads to incorrect pedigree reconstruction. 401

Although our method also relies on pairwise information, we showed that working 402

directly with pairwise likelihood values rather than IBD-based relationships assignments 403

improved the power significantly. Furthermore, PRIMUS’s enumeration of possible 404

pedigrees becomes computationally cumbersome as the number of likely pedigrees 405

increases rapidly for a set of distantly related samples. If the data contains many close 406

relationships, however, PRIMUS can reconstruct all likely pedigrees very fast, whereas 407

our method produces a single best pedigree, which may be close but not exactly correct. 408

Thus the performance of each method depends on the sample structure and a suitable 409
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method must be chosen accordingly. 410

We applied our method on the Greenlandic Inuit dataset to demonstrate its ability 411

infer previously unknown pedigrees from genetic data. Although the estimates of 412

distant relationships are uncertain, we can still get a general sense of pedigree structures 413

hidden in the data and take appropriate actions for downstream analyses. For example, 414

the inferred pedigree can be used to filter out close relatives or model relatedness among 415

samples in association studies. Furthermore, we can validate or improve the estimated 416

pedigree with other evidence such as age. 417

Pedigree inference based on our composite likelihood is heavily influenced by how 418

well we can compute the pairwise likelihoods. An important factor that affects the 419

pairwise likelihood computation is LD, which often leads to overestimation of 420

relatedness. Although the HMM by [33] conditions on nearby markers, it does not 421

remove the effects of LD completely and necessitates LD-pruning. Unfortunately, there 422

is no consensus on how best to prune markers while still retaining enough information 423

to infer distant relatives. Although we carried out a simple simulation study to get a 424

rough sense of appropriate level of pruning, it is by no means a complete solution. More 425

work is needed on the effects of LD on relatedness inferences and how to remedy the 426

problem, whether it be by more extensive simulations studies, or by modeling LD in the 427

likelihood computation. Furthermore, care must be taken to use appropriate allele 428

frequencies in likelihood computation to account for other potentially confounding 429

factors such as population substructure [42,43] and admixture [44,45]. As better 430

methods for estimating pairwise likelihoods become available, our method for estimating 431

pedgirees should also improve. 432

There are limitations of our method that require further work. Our method assumes 433

that all individuals are outbred, which may not be true of many systems including some 434

human populations [46,47]. It currently does not support pedigrees with cycles caused 435

by inbreeding or complex cyclic relationships such as double first cousins. Another 436

limitation of our method is that it does not provide any uncertainty measure on the 437

estimated pedigree. A possible solution to this problem is to extend our method to a 438

Monte Carlo Markov Chain (MCMC) algorithm to estimate the posterior distribution of 439

the pedigrees. Casting our method in a Bayesian framework would also allow us to use 440

a prior distribution to control the false detection of relatives. Furthermore, while 441

computationally efficient compared to full likelihood methods, our method is still based 442

on calculation of pairwise relationships and does, therefore, not scale up to GWAS data 443

sets with hundreds of thousands of individuals. However, it may be possible to use a 444

divide-and-conquer approach in which individuals are first divided into clusters using 445

methods such as [48], then estimating the pedigree of each cluster separately, and finally 446

estimating more distant relationships among clusters. 447

Overall, our method provides a computationally efficient way to estimate pedigrees 448

of seemingly unrelated individuals. It improves our ability to validate and discover 449

pedigrees in realistic genetic datasets where we expect a high level of missing data. The 450

ability to estimate pedigrees more accurately opens up possibilities to develop and 451

improve numerous pedigree-based or pedigree-aware studies, from correcting cryptic 452

relatedness in GWAS to estimating demographic parameters of the very recent past. 453

Our software is available for download at https://github.com/amyko/pedigreeSA. 454

Supporting Information 455

S1 Table. Summary of Possible Pairwise Relationships in a 5-generation 456

Pedigree. 457

S1 Text. Description of Transitions between Pedigree Graphs. 458
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S1 Fig. Effects of LD on Relatedness Estimation. The figure shows the 459

histogram of the log likelihood difference, L(unrelated)− L(third cousins), when the 460

true relationship is unrelated. Unrelated pairs often have higher likelihoods for being 461

third cousins when LD is present in the data, as shown by the histogram corresponding 462

to linked markers. The data were simulated with msprime and the full likelihood was 463

computed using MERLIN. 464

S2 Fig. Comparison of Various Likelihood Formulas on Simulated Data. 465

The x-axis measures how close the test pedigree is to the true pedigree; the test 466

pedigree becomes closer to the truth from left to right. In this simulation, the 467

composite likelihood given by (1) approximates the full likelihood more closely than (2). 468

S3 Fig. Effects of Regularization Term. Accuracy of simulated annealing 469

method on simulated data at 2000 markers under different levels of regularization. 470

S4 Fig. Estimated pedigree of 100 Tasiilaq Individuals in the Greenlandic 471

Inuit Dataset. Shaded nodes indicate sampled individuals; unshaded for unsampled; 472

squares for male; circles female; diamonds for unknown sex. Any two individuals 473

connected by colored lines indicate they are the same individual. 474

S5 Fig. Likelihood Convergence for the Greenlandic Inuit Pedigree 475

Estimation. 476
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Figures

Fig 1. Simulated pedigrees. Shaded nodes indicate sampled individuals for which
we have genotype data and unshaded nodes indicate unsampled individuals.

Fig 2. Effects of LD-pruning on pairwise prediction accuracy. The three
panels show different true pairwise relationships: unrelated, third cousins, and second
cousins. Each square in a panel corresponds to the relationship prediction accuracy for
a particular genome length and LD-prune threshold.

Fig 3. Comparison of prediction error rates between simulated annealing
and PRIMUS. Each panel compares the average error rate between PRIMUS and our
method (SA) for a particular simulation scenario: (A) Simulation A; (B) Simulation B;
(C) Simulation C. In each panel, the x-axis shows different relationship categories
measured by the kinship coefficient; the y-axis is the average error rate ē
(See Measuring the Error Rate in Materials and Methods section).
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Fig 4. Comparison of error rates between simulated annealing and pairwise
inference. Each panel compares the average error rate between the pairwise method
and our method (SA) for a particular simulation scenario: (A) Simulation A; (B)
Simulation B; (C) Simulation C.

Fig 5. ROC curve for detecting relatives in a sample: pairwise vs. our
method (SA). (A) Simulation A; (B) Simulation B; (C) Simulation C.

Fig 6. Absolute distance between the expected kinship coefficient under
true and inferred relationships (A) Simulation A; (B) Simulation B; (C) Simulation
C. The x-axis is the relationship category measured by the kinship coefficient; the y-axis
is the distance d between the true relationship and the relationship estimated by our
method (See Measuring the Error Rate in Materials and Methods section).
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41. Mäkinen VP, Parkkonen M, Wessman M, Groop PH, Kanninen T, Kaski K.
High-throughput pedigree drawing. Eur J Hum Genet. 2005;13(8):987–9.
doi:10.1038/sj.ejhg.5201430.

15

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106492doi: bioRxiv preprint 

https://doi.org/10.1101/106492
http://creativecommons.org/licenses/by-nc/4.0/


42. Anderson AD, Weir BS. A maximum-likelihood method for the estimation of
pairwise relatedness in structured populations. Genetics. 2007;176(1):421–440.

43. Wang J. Unbiased relatedness estimation in structured populations. Genetics.
2011;187(3):887–901.

44. Rohlfs RV, Fullerton SM, Weir BS. Familial identification: population structure
and relationship distinguishability. PLoS Genet. 2012;8(2):e1002469.

45. Thornton T, Tang H, Hoffmann TJ, Ochs-Balcom HM, Caan BJ, Risch N.
Estimating kinship in admixed populations. The American Journal of Human
Genetics. 2012;91(1):122–138.

46. Leutenegger AL, Sahbatou M, Gazal S, Cann H, Génin E. Consanguinity around
the world: what do the genomic data of the HGDP-CEPH diversity panel tell
us&amp;quest. European Journal of Human Genetics. 2011;19(5):583–587.

47. Gazal S, Sahbatou M, Babron MC, Génin E, Leutenegger AL. High level of
inbreeding in final phase of 1000 Genomes Project. Scientific reports. 2015;5.

48. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust
relationship inference in genome-wide association studies. Bioinformatics.
2010;26(22):2867–2873.

16

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106492doi: bioRxiv preprint 

https://doi.org/10.1101/106492
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106492doi: bioRxiv preprint 

https://doi.org/10.1101/106492
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106492doi: bioRxiv preprint 

https://doi.org/10.1101/106492
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106492doi: bioRxiv preprint 

https://doi.org/10.1101/106492
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106492doi: bioRxiv preprint 

https://doi.org/10.1101/106492
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106492doi: bioRxiv preprint 

https://doi.org/10.1101/106492
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106492doi: bioRxiv preprint 

https://doi.org/10.1101/106492
http://creativecommons.org/licenses/by-nc/4.0/

