Authors: Sydney M. Nguyen¹†, Kathleen M. Antony¹†, Dawn M. Dudley²†, Sarah Kohn³, Heather A. Simmons⁵, Bryce Wolfe², M. Shahriar Salamat², Leandro B. C. Teixeira¹⁰, Gregory J. Wiepz⁴, Troy H. Thoong⁵, Matthew T. Aliota⁶, Andrea M. Weiler⁵, Gabrielle L. Barry⁵, Kim L. Weisgrau⁵, Logan J. Vosler⁵, Mariel S. Mohns², Meghan E. Breitbach², Laurel M. Stewart², Mustafa N. Rasheed², Christina M. Newman², Michael E. Graham², Oliver E. Wieben³, Patrick A. Turski³, Kevin M. Johnson³, Jennifer Post⁵, Jennifer M. Hayes⁵, Nancy Schultz-Darken⁵, Michele L. Schotzko⁵, Josh A. Eudailey⁷, Sallie R. Permar⁷, Eva G. Rakasz⁵, Emma L. Mohr⁸, Saverio Capuano III⁵, Alice F. Tarantal⁹, Jorge E. Osorio⁶, Shelby L. O'Connor², Thomas C. Friedrich^{5, 6}, David H. O'Connor^{2, 5}, and Thaddeus G. Golos^{1, 4, 5}.

Affiliations:

¹Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, USA

²Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, USA

³Department of Radiology, University of Wisconsin-Madison, Madison, USA

⁴Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, USA

⁵Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison USA

⁶Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, USA

⁷Department of Pediatrics and Human Vaccine Institute, Duke University Medical Center, Durham, USA

⁸Department of Pediatrics, University of Wisconsin-Madison, Madison, USA

⁹Departments of Pediatrics and Cell Biology and Human Anatomy, University of California-Davis, California National Primate Research Center, Davis, USA

¹⁰School of Veterinary Medicine, University of Wisconsin-Madison, Madison, USA

[†]These authors contributed equally to this work.

^{*}Correspondence and request for materials should be addressed to T.G.G. (email: golos@primate.wisc.edu).

Abstract

1

Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model 2 3 fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary 4 with the current report clear viremia within 10-12 days, maternal viremia was prolonged in 3 of 4 5 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound 6 assessment of head circumference was decreased in comparison with biparietal diameter and 7 femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues 8 from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was 9 present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal 10 tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent 11 vertical transmission in this primate model may provide a platform to assess risk factors and test 12 therapeutic interventions for interruption of fetal infection. The results may also suggest that 13 14 maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated. 15 16 **Author summary** 17

18

19

20

21

22

23

Maternal ZIKV infection in pregnancy is associated with severe fetal anomalies, including microcephaly. It has been shown that infection manifests differently in pregnancy than in the non-pregnant state, with prolonged maternal viremia. ZIKV is spread by mosquitos and through sexual contact and since its first detection in early 2015, has become endemic to the Americas. While much has been learned from studying infected human pregnancies, there are still many questions concerning transmission of ZIKV from mother to fetus. Investigating ZIKV infection

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

rhesus macaques (Macaca mulatta) has been established [27-29]. Viremia in nonpregnant Indian

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

357676 were infected at 103 or 118 days gestation, respectively (late second/early third

trimester). ZIKV RNA was measured in plasma, urine, saliva, and amniotic fluid, and ultrasound

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

imaging of the fetus was performed following infection through ~155 days gestation (Figs. 1A, S1). All monkeys had detectable plasma viremia for 11 to 70 days post-inoculation (dpi) (Figs. 1B, 2A) and at least one day of detectable vRNA in urine. Two macaques had detectable vRNA in saliva, and one macaque infected at the beginning of the third trimester had detectable vRNA in amniotic fluid on 15, 22, and 36 dpi (118, 125, and 139 days gestation, respectively) (Fig. 1B). Innate and adaptive immune responses to ZIKV The duration of viremia was prolonged in three of four pregnant macaques in comparison to nonpregnant animals infected by the same route, dose, and strain of ZIKV in a previous study [28] (Fig. 2A; compare colored and gray lines). Those animals were infected contemporaneously (within 4 weeks) with the monkeys in the current study. To evaluate maternal immune responses, peripheral blood CD16+ natural killer (NK) cell and CD95+CD28- CD8 effector T cell proliferation were monitored by flow cytometry for Ki-67 expression. Although responses were variable, there was generally higher proliferation relative to baseline in peripheral blood CD16+ NK cells than in CD95+CD28- CD8+ effector T cells (Fig. 2B), and these responses were not qualitatively different from nonpregnant animals (Fig. 2B, grey tracings). The numbers of circulating plasmablasts tended to increase more slowly in third-trimester infections; however, the response did not distinctly differ between the first and third trimesters (Fig. 2C). Sera from macaques that were infected with ZIKV in the first or third trimesters neutralized ZIKV-FP across a range of serum dilutions. Indeed, neutralization curves prepared using sera from all 4 animals revealed a similar profile as compared to sera from ZIKV-infected nonpregnant animals (Fig. 2D). All animals developed neutralizing antibodies (nAb) with a 90% plaque reduction

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

neutralizing antibody test (PRNT₉₀) titer of 1:160 (827577 and 598248) or 1:640 (660875 and 357676) by 28 dpi. Interestingly, animal 660875 (first trimester infection) had more vigorous and prolonged NK, T cell, and plasmablast responses to infection compared to the other three pregnancies. ZIKV infection was not associated with consistent changes in complete blood cell counts or serum chemistry in pregnant animals (Fig. 3). Assessment of fetal growth Sonographic images (e.g., Fig. 4) were obtained approximately weekly to monitor fetal growth and viability. No significant fetal or placental abnormalities were observed. Fetal femur length (FL) was typically within one standard deviation (SD) of mean database values for fetal rhesus macaques across gestation [35], suggesting absence of symmetrical growth restriction (Fig. 4A). The biparietal diameter (BPD) was within two SD of expected values across gestation (Fig. 4B). However, during the last month of pregnancy, head circumference (HC) in all animals was between one and three SD below the mean (Fig. 4C). To discern changes in fetal growth trajectories, we extrapolated the predicted gestational ages (pGA) by mapping the observed fetal biometric measures in individual pregnancies onto normative growth curves for BPD, FL, and HC [35, 36]. Figs. 5A-D compare within each animal the pGA estimated by an average of BPD and FL with that estimated by HC. In 3 of 4 pregnancies, pGA as estimated by HC lagged 16.5 to 19 days behind the pGA estimated by an average of BPD and FL. HC reflects both BPD and occipitofrontal diameters. Human fetuses and infants affected by severe microcephaly in congenital ZIKV infection have vermis agenesis

(growth failure of the cerebellum) and reduced frontal cortex growth [11, 15, 18, 37]: regions of

the brain where growth deficits will give rise to a reduced occipitofrontal diameter. Fetal Magnetic Resonance Imaging (MRI) was also performed for the dams infected in the first trimester (827577, imaged at 102 dpi [140 days gestation], and 660875, imaged at 60 dpi [91 days gestation]). These images provided evidence of normal volume, cortical thickness, sulcation, and ventricular and extra-axial spaces (Supplementary Fig. S2). However, it has been reported that human infants whose mothers were infected with ZIKV during pregnancy have been born with normal cranial anatomy, but developed microcephaly within 6 months [19, 38]. Thus, further studies focused on macaque postnatal development are warranted.

Fetal viral burden and histopathology

All ZIKV pregnancies progressed without overt adverse outcomes. At 153-158 days gestation, fetuses were surgically delivered, euthanized, and tissues collected. None of the fetuses had evidence of microcephaly or other abnormalities upon gross examination. Approximately 50 fetal and maternal tissues (Supplementary Fig. S3) were collected from each pregnancy for histopathology and vRNA by qRT-PCR. Results are summarized in Fig 6. ZIKV RNA was detected in all four fetuses, albeit in different tissues in individual fetuses, and in some maternal tissues including spleen, liver, lymph node, and decidua (Fig. 6A). Notably, the pregnancy with the longest duration of viremia (827577; 70 days viremia (39-109 days gestation) had fetal tissues (optic nerve, axillary lymph node) with the highest vRNA burden. However, the fetus from the short (9 day) duration maternal viremia (119-127 days gestation) also had vRNA in fetal lymph node, pericardium, and lung (Fig. 6A).

Pathologists were blinded to vRNA and trimester of infection findings for histology evaluation

and scoring (Fig. 6B; see Supplementary Data S1 for a full listing of pathology findings). The maternal-fetal interface in all four ZIKV infections presented minimal to moderate suppurative placentitis with variable mineralization and necrosis, as well as minimal to moderate suppurative deciduitis (Fig. 7). Three of four pregnancies had suppurative amnionitis and three of four dams had mild to moderate suppurative splenitis. Histology confirmed normal CNS structures and absence of encephalitis (inflammation) in all four fetuses. Morphologic fetal diagnoses included: suppurative splenitis, suppurative to lymphoplasmacytic hepatitis, suppurative alveolitis (pneumonia), and suppurative lymphadenitis (Supplementary Data S1). The duration of viremia or trimester of maternal infection did not generally correlate with the severity or distribution of scored fetal pathologies (Table 1), however it is significant that both fetuses infected during the first trimester, but not the third trimester, had ocular pathology: inflammation of retina, choroid, and optic nerve (Fig. 8, Supplementary Data S1). A segment of the fetal axillary lymph node with the highest vRNA burden was immunostained for ZIKV. ZIKV NS2B-positive cells were observed in lymph node medullary cords, a subset of which were CD163-positive macrophages (Fig. 9).

Discussion

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

This study demonstrates that similar to human pregnancy, Indian rhesus macaque fetuses are susceptible to congenital infection following maternal subcutaneous infection with a moderate infectious dose of Asian-lineage ZIKV during the first or late second/early third trimesters.

Maternal-fetal transmission in the rhesus macaque is highly efficient: 4 of 4 maternal infections resulted in infected fetuses, and all pregnancies demonstrated pathology at the maternal-fetal interface and in the fetus, with variable fetal vRNA distribution. Fetal infection was

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

accompanied by an apparent reduced trajectory of fetal HC in the last month of gestation, without overall fetal growth restriction. While we hypothesize that the duration of maternal viremia correlates with risk for fetal impact, pathology at the maternal-fetal interface and fetal vRNA in the pregnancy with the shortest duration of viremia following third trimester infection suggests that the fetus is at risk even with a brief exposure to circulating maternal virus, as reported in human pregnancy [12]. Indeed, our findings are consistent with the emerging picture of congenital Zika syndrome, in which microcephaly is the most severe of a range of potential sequelae. Given the high rate of vertical transmission in our model in the absence of severe developmental defects, it seems possible that there is a higher rate of human fetal in utero ZIKV exposure than is currently appreciated, exposures which do not result in malformations obvious at birth, but may manifest later in postnatal development. Models of vertical ZIKV transmission have been developed in mice [39, 40, 41, 42]. Mice are generally not susceptible to ZIKV infection because ZIKV cannot subvert the interferon response in mice as it does in humans [43]. However, studies have now been conducted with mouse strains carrying deletions of the IFNAR or pattern recognition receptor genes (e.g., IRF3, IRF7) [40, 41]. In these models, placental infection and pathology is revealed, and there is maternalfetal transmission and fetal growth defects, loss and brain injury [39, 40, 41]. More recently, an alternate approach in which virus is directly injected into the uterine wall adjacent to the conceptuses has been reported in immunocompetent mice, and this model also results in placental infection and transmission of the virus to the fetus [42]. However, neither

immunodeficient nor uterine injection models are directly relevant to the mode of transmission

by which the human fetus is exposed to ZIKV. While murine genetic models allow mechanistic

investigation of ZIKV pathophysiology that cannot be explored with samples from human clinical patients, the murine maternal-fetal interface, placental structure, and pace and complexity of fetal brain development are quite different from humans, whereas nonhuman primate pregnancy is very similar to human pregnancy in these critical areas for understanding the impact of ZIKV on the fetus.

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

The NHP has previously been used to model TORCH infections (e.g., cytomegalovirus, toxoplasma) on fetal infection and neuropathology [44-46], and listeriosis and other bacterial infections on fetal loss and stillbirth [47, 48] and preterm labor [49]. Congenital ZIKV infection in macaques provides a tractable and translational model of human disease. While it has previously been reported that infection of a pregnant pigtail macaque with a Cambodian ZIKV strain resulted in severe fetal malformations of the central nervous system [34], we did not observe this outcome in our study. It is theoretically possible that the lack of severe outcomes, including microcephaly, in our study may be due to the use of a specific ZIKV strain or dose, that rhesus monkeys, in general, are resistant to ZIKV-induced fetal neuropathology, or that there is a difference in ZIKV susceptibility between the rhesus macaques in our study and the single pigtail macaque used in the previous study. Regardless, lack of a severe outcome should not be considered a limitation of our study, since it is also known that only a subset of human maternal infections result in severe fetal outcomes [50], and our current study significantly expands the data available regarding ZIKV infection in nonhuman primates. Modest fetal neurodevelopmental outcomes with the model we have described in this current report may provide an opportunity to further evaluate factors which foster severe fetal developmental impact, such as co-infection or previous exposure to other pathogens, and support the

development of strategies to prevent maternal-fetal transmission and reduce fetal virus burden. Further information on the ontogeny of fetal infection and distribution of virus in the fetus during gestation using relevant animal models will be important to establish before consideration of interventional strategies, such as maternal or fetal passive immunization [51] in pregnant women presenting with symptoms of ZIKV infection.

Methods

Experimental design

Four pregnant rhesus macaques (*Macaca mulatta*) of Indian ancestry were infected subcutaneously with 1x10⁴ PFU ZIKV (Zika virus/H.sapiens-tc/FRA/2013/FrenchPolynesia-01_v1c1) at 31, 38, 104, or 119 days gestation (term 165±10 days). All macaques utilized in the study were free of Macacine herpesvirus 1, Simian Retrovirus Type D (SRV), Simian T-lymphotropic virus Type 1 (STLV), and Simian Immunodeficiency Virus as part of the Specific Pathogen Free (SPF) colony at WNPRC.

Ethics Statement

The rhesus macaques used in this study were cared for by the staff at the Wisconsin National Primate Research Center (WNPRC) according to regulations and guidelines of the University of Wisconsin Institutional Animal Care and Use Committee, which approved this study (protocol g005401) in accordance with recommendations of the Weatherall report and according to the principles described in the National Research Council's Guide for the Care and Use of Laboratory Animals. All animals were housed in enclosures with at least 4.3, 6.0, or 8.0 sq. ft. of floor space, measuring 30, 32, or 36 inches high, and containing a tubular PVC or stainless steel

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

perch. Each individual enclosure was equipped with a horizontal or vertical sliding door, an automatic water lixit, and a stainless steel feed hopper. All animals were fed using a nutritional plan based on recommendations published by the National Research Council. Twice daily macaques were fed a fixed formula, extruded dry diet (2050 Teklad Global 20% Protein Primate Diet) with adequate carbohydrate, energy, fat, fiber (10%), mineral, protein, and vitamin content. Dry diets were supplemented with fruits, vegetables, and other edible objects (e.g., nuts, cereals, seed mixtures, yogurt, peanut butter, popcorn, marshmallows, etc.) to provide variety to the diet and to inspire species-specific behaviors such as foraging. To further promote psychological well-being, animals were provided with food enrichment, human-to-monkey interaction, structural enrichment, and manipulanda. Environmental enrichment objects were selected to minimize chances of pathogen transmission from one animal to another and from animals to care staff. While on study, all animals were evaluated by trained animal care staff at least twice each day for signs of pain, distress, and illness by observing appetite, stool quality, activity level, physical condition. Animals exhibiting abnormal presentation for any of these clinical parameters were provided appropriate care by attending veterinarians. Prior to all minor/brief experimental procedures, animals were sedated using ketamine anesthesia, which was reversed at the conclusion of a procedure using atipamizole. Animals undergoing surgical delivery of fetuses were pre-medicated with ketamine and general anesthesia was maintained during the course of the procedure with isoflurane gas using an endotracheal tube. Animals were monitored regularly until fully recovered from anesthesia. Delivered fetuses were anesthetized with ketamine, and then euthanized by an intramuscular or intraperitoneal overdose injection of sodium pentobarbital. Adult animals were not euthanized as part of these studies.

Care and use of macaques

Female monkeys were co-housed with compatible males and observed daily for menses and breeding. Pregnancy was detected by ultrasound examination of the uterus at approximately 20-24 days gestation following the predicted day of ovulation. The day of gestation was estimated (+/- 2 days) based on the dams menstrual cycle and previous pregnancy history, observation of copulation, and the greatest length of the fetus at initial ultrasound examination which was compared to normative growth data in this species [35]. Ultrasound examination of the conceptus was performed subsequent to ZIKV infection as described below. For all procedures (i.e., physical examinations, virus inoculations, ultrasound examinations, blood and swab collection), animals were anesthetized with an intramuscular dose of ketamine (10 mg/kg). Blood samples from the femoral or saphenous vein were obtained using a vacutainer system or needle and syringe. The four pregnant macaques were monitored daily prior to and after infection for any physical signs (e.g., diarrhea, inappetance, inactivity, atypical behaviors).

Inoculations

Zika virus/H.sapiens-tc/FRA/2013/FrenchPolynesia-01_v1c1, originally isolated from a 51-year-old female in France returning from French Polynesia with a single round of amplification on Vero cells, was obtained from Xavier de Lamballerie (European Virus Archive, Marseille France). The inoculating stock was prepared and validated as previously described [28]. A single harvest of virus with a titer of 1.26 x 10⁶ PFU/mL (equivalent to 1.43 x 10⁹ vRNA copies/mL) was used for all 4 challenges. Animals were anesthetized as described above, and 1 mL of inocula was administered subcutaneously over the cranial dorsum. Post-inoculation, animals were closely monitored by veterinary and animal care staff for adverse reactions or any

signs of disease.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Immunophenotyping

The number of activated/proliferating peripheral blood lymphocyte subset cells was quantified using a modified version of our protocol detailed step-by-step in OMIP-028 [52] as previously reported [28]. Briefly, 0.1 mL of EDTA-anticoagulated whole blood samples were incubated for 15 min at room temperature in the presence of a mastermix of antibodies against CD45 (clone D058-1283, Brilliant Violet 786 conjugate, 2.5 µl), CD3 (clone SP34-2 Alexa Fluor 700 conjugate, 5 µl), CD8 (clone SK2, Brilliant Violet 510, 2.5 µl), NKG2A/C (clone Z199, PE-Cy7 conjugate, 5 µl), CD16 (clone 3G8, Pacific Blue conjugate, 5 µl), CD69 (clone TP1.55.3, ECD conjugate, 3 µl), HLA-DR (clone 1D11, Brilliant Violet 650 conjugate, 1 µl), CD4 (clone SK3, Brilliant Violet 711 conjugate, 5 ul), CD28 (clone CD28.2, PE conjugate, 5 ul), and CD95 (clone DX2, PE-Cy5 conjugate, 10 µl) antigens. All antibodies were obtained from BD BioSciences, with the exception of the NKG2A/C-specific antibody, which was purchased from Beckman Coulter, and the CCR7 antibody that was purchased from R&D Systems. The cells were permeabilized using Bulk Permeabilization Reagent (Life Technology), then stained for 15 min with Ki-67 (clone B56, Alexa Fluor 647 conjugate) while the permeabilizer was present. The cells were then washed twice in media and resuspended in 0.125 ml of 2% paraformaldehyde until they were run on a BD LSRII Flow Cytometer. Flow data were analyzed using Flowjo software version 9.9.3.

Plasmablast detection

Peripheral blood mononuclear cells (PBMCs) isolated from four ZIKV-infected pregnant rhesus

monkeys at 3, 7, 11, and 14 dpi were stained with the following panel of fluorescently labeled antibodies (Abs) specific for the following surface markers to analyze for plasmablast presence: CD20 FITC (L27), CD80 PE (L307.4), CD123 PE-Cy7(7G3), CD3 APC-Cy7 (SP34-2), IgG BV605 (G18-145) (all from BD Biosciences, San Jose, CA), CD14 AF700 (M5E2), CD11c BV421 (3.9), CD16 BV570 (3G8), CD27 BV650(O323) (all from BioLegend, San Diego, CA), IgD AF647 (polyclonal) (Southern Biotech, Birmingham, AL), and HLA-DR PE-TxRed (TÜ36) (Invitrogen, Carlsbad, CA). LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Invitrogen, Carlsbad, CA) was used to discriminate live cells. Cells were analyzed exactly as previously described [28].

Complete blood count (CBC) and serum chemistry panels

CBCs with white blood cell (WBC) differential counts were performed on EDTA-anticoagulated whole blood samples on a Sysmex XS-1000i automated hematology analyzer (Sysmex Corporation, Kobe, Japan). CBCs included the following tests: absolute WBC count, absolute counts and percentages for WBC differentials, red blood cell (RBC) count, hemoglobin and hematocrit, RBC indices (mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and red blood cell distribution width), platelet count, and mean platelet volume. Blood smears were prepared and stained with Wright-Giemsa stain (Wescor Aerospray Hematology Slide Stainer; Wescor Inc, Logan, UT). Manual slide evaluations were performed on samples when laboratory-defined criteria were met (absolute WBC count, WBC differential percentages, hemoglobin, hematocrit, or platelet count outside of reference intervals; automated WBC differential counts unreported by the analyzer; and the presence of analyzer-generated abnormal flags). Manual slide evaluations included WBC

differential and platelet counts with evaluation of WBC, RBC, and platelet morphologies.

Chemistry panels composed of 20 tests were performed on serum using a Cobas 6000 analyzer (Roche Diagnostics, Risch-Rotkreuz, Switzerland). Tests in each panel included glucose, blood urea nitrogen, creatinine, creatine kinase, cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, lactic acid dehydrogenase, total bilirubin, gamma-glutamyl transferase, total protein, albumin, alkaline phosphatase, calcium, phosphorous, iron, sodium, potassium, and chloride. CBC and serum chemistry panel results were recorded in the WNPRC Electronic Health Record (EHR) system with species, age, and sex-specific reference intervals provided within the reports generated through the EHR.

Plaque reduction neutralization test (PRNT90)

Macaque serum samples were screened for ZIKV neutralizing antibodies utilizing a plaque reduction neutralization test (PRNT) on Vero cells (ATCC #CCL-81). Endpoint titrations of reactive sera, utilizing a 90% cutoff (PRNT90) were performed as previously reported [28, 53] against ZIKV strain H.sapiens-tc/FRA/2013/FrenchPolynesia-01_v1c1 [28]. Briefly, ZIKV was mixed with serial 2-fold dilutions of serum for 1 hour at 37°C prior to being added to Vero cells and neutralization curves were generated using GraphPad Prism software. The resulting data were analyzed by non-linear regression to estimate the dilution of serum required to inhibit both 90% and 50% of infection.

Fetal Rhesus Biometric Measurements

Dams were sedated with ketamine hydrochloride (10 mg/kg) for sonographic assessments and

amniocentesis. The biparietal diameter (BPD) and head circumference (HC) were measured on an axial image at the level of the hypoechoic thalami, with the echogenic interhemispheric fissure/falx all well visualized [54, 55]. The BPD was measured from the outer margin of the near calvarial echo to the inner margin of the deep calvarial echo. The HC was measured circumferentially at the outer margin of the calvaria [55-57]. The abdominal circumference was measured on an axial plane at the level of the stomach and the bifurcation of the main portal vein into the left and right branches, approximately perpendicular to the spine; the abdominal circumference was measured around the outside of the margin of the fetal abdomen [55, 58]. The femur length (FL) was measured from the greater trochanter to the lateral condyle along the distal end of the shaft, excluding the femoral head and the distal epiphysis [57]. Growth curves were developed [55] for ZIKV-infected monkeys for BPD, HC, and FL. Mean measurements and standard deviations at specified days of gestation in Rhesus macaques were retrieved from Tarantal [35].

Fetal Rhesus Amniocentesis

Under real-time ultrasound guidance, a 22 gauge, 3.5 inch Quincke spinal needle was inserted into the amniotic sac. After 1.5-2 mL of fluid were removed and discarded due to potential maternal contamination, an additional 3-4 mL of amniotic fluid were removed for viral qRT-PCR analysis as described elsewhere [28]. These samples were obtained at the gestational ages specified in Fig. 1A. All fluids were free of any blood contamination.

Magnetic Resonance Imaging

Noninvasive imaging of the fetal brain was performed on isoflurane-anesthetized monkeys on a

clinical 3T Magnetic Resonance Imaging (MRI) system (MR750, GE Healthcare, Waukesha, WI). T1 and T2-weighted axial and sagittal images were acquired. T2-weighted axial images were acquired with a single shot fast spin echo (SSFSE) sequence. Scan protocol for Supplementary Fig. S2A: respiratory gated multislice 2D acquisition; TE/TR = 141 / 2526 ms; Slice thickness: 2 mm; acquired spatial resolution = 1.25 mm x 1.25 mm; receiver bandwidth = 651 Hz/pixel. For Supplementary Fig. S2B, T1-weighted axial images were acquired with a multiecho spoiled gradient echo sequence. The scan protocol for respiratory gated 3D acquisition under isoflurane anesthesia was iterative decomposition with echo asymmetry and least-squares estimation (IDEAL) processing for reconstruction of in-phase images from 8 echoes; 2 shots, 4 echoes each shot; flip angle = 15 deg; TE min = 1.6 ms; TR = 15.4 ms; Slice thickness: 1 mm; acquired spatial resolution = 1.1 mm x 1.1 mm; receiver bandwidth = 488 Hz/pixel. Animals were intubated for anesthesia under ketamine sedation, and imaging sessions lasted for approximately 1 hour.

Viral RNA isolation from urine, amniotic fluid, and oral/vaginal swabs

RNA was isolated from maternal and fetal plasma and PBMC, urine, amniotic fluid, and oral and vaginal swabs using the Viral Total Nucleic Acid Purification Kit (Promega, Madison, WI) on a Maxwell 16 MDx instrument as previously reported [28].

Viral RNA isolation from fetal and maternal tissues

Fetal and maternal tissues were processed with RNAlater (Invitrogen, Carlsbad, CA) according to the manufacturer protocols. Viral RNA was isolated from the tissues using the Maxwell 16 LEV simplyRNA Tissue Kit (Promega, Madison, WI) on a Maxwell 16 MDx instrument

(Promega, Madison, WI). A range of 20-40 mg of each tissue was homogenized using homogenization buffer from the Maxwell 16 LEV simplyRNA Tissue Kit, the TissueLyser (Qiagen, Hilden, Germany) and two 5 mm stainless steel beads (Qiagen, Hilden, Germany) in a 2 ml snapcap tube, shaking twice for 3 minutes at 20 Hz each side. The isolation was continued according to the Maxwell 16 LEV simplyRNA Tissue Kit protocol, and samples were eluted into 50 μ l RNase free water.

Quantitative reverse transcription PCR (qRT-PCR)

Viral RNA isolated from plasma, urine, oral swabs, amniotic fluid, and maternal or fetal tissues was quantified by qRT-PCR using modified primers and probe adapted from Lanciotti *et al.* [59] as previously described [53]. The SuperScript III Platinum one-step quantitative RT-PCR system was used (Invitrogen, Carlsbad, CA) on the LightCycler 480 instrument (Roche Diagnostics, Indianapolis, IN). Assay probes were used at final concentrations of 600 nM and 100 nM respectively, along with 150 ng random primers (Promega, Madison, WI). Conditions and methods were as previously described [28]. Tissue viral loads were calculated per mg of tissue.

Cesarean Section and Tissue Collection (Necropsy)

At ~155 days gestation, fetal and maternal tissues were surgically removed at laparotomy. These were survival surgeries for the dams. The entire conceptus within the gestational sac (fetus, placenta, fetal membranes, umbilical cord, and amniotic fluid) was collected and submitted for necropsy. The fetus was euthanized with an overdose of sodium pentobarbitol (50 mg/kg). Tissues were carefully dissected using sterile instruments that were changed between each organ and tissue type to minimize possible cross contamination. Each organ/tissue was evaluated

grossly *in situ*, removed with sterile instruments, placed in a sterile culture dish, and sectioned for histology, viral burden assay, or banked for future assays. Sampling priority for small or limited fetal tissue volumes (e.g., thyroid gland, eyes) was vRNA followed by histopathology, so not all tissues were available for both analyses. Sampling of all major organ systems and associated biological samples included the CNS (brain, spinal cord, eyes), digestive, urogenital, endocrine, musculoskeletal, cardiovascular, hematopoietic, and respiratory systems as well as amniotic fluid, gastric fluid, bile, and urine. A comprehensive listing of all specific tissues collected and analyzed is presented in Fig. 6 and Supplementary Fig. S3.

Biopsies of the placental bed (uterine placental attachment site containing deep decidua basalis and myometrium), maternal liver, spleen, and a mesenteric lymph node were collected aseptically during surgery into sterile petri dishes, weighed, and further processed for viral burden and when sufficient sample size was obtained, histology. Maternal decidua was dissected from the maternal surface of the placenta.

Histology

Tissues were fixed in 10% neutral buffered formalin for 14 days and transferred into 70% ethanol until routinely processed and embedded in paraffin. Paraffin sections (5 µm) were stained with hematoxylin and eosin (H&E). Pathologists were blinded to vRNA findings when tissue sections were evaluated microscopically. Lesions in each tissue were described and scored for severity as shown in Fig. 6B, and assigned morphologic diagnoses assigned as listed in Supplementary Data S1. Photomicrographs were obtained using a bright light microscope Olympus BX43 and Olympus BX46 (Olympus Inc., Center Valley, PA) with attached Olympus

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

DP72 digital camera (Olympus Inc.) and Spot Flex 152 64 Mp camera (Spot Imaging), and captured using commercially available image-analysis software (cellSens Dimension^R, Olympus Inc. and spot software 5.2). For immunohistochemistry, tissues were fixed in 4% paraformaldehyde/PBS overnight then paraffin embedded. 5 um sections were cut and deparaffinized. Antigen retrieval was accomplished by incubation in heated (95°C) 10 mM citrate buffer (pH 6.0) plus 0.05% Tween-20. The sections were blocked with 5% normal donkey serum for 1 hour at room temp then incubated overnight at 4°C with rabbit anti Zika NS2B 1:100 (GeneTex GTX133308, Irvine, CA) and mouse anti-CD163 1:100 (Novus, NB110-40686, Littleton, CO) or comparable control IgGs (Santa Cruz, Santa Cruz CA). Sections were rinsed with TBS + tween-20 (TBST) 3x and incubated with the appropriate secondary antibodies; donkey anti-rabbit Alexa 647 (1:5000), donkey anti-mouse Alexa 488 (1:2500) for 1 hour at room temperature (Jackson ImmunoResearch Laboratories, West Grove, PA). Sections were washed (3x TBST), exposed to DAPI and mounted with Aqua Poly Seal (Polysciences Inc, Warrington, PA). Sections were evaluated on a Leica SP8 confocal microscope. Data availability Primary data that support the findings of this study are available at the Zika Open-Research Portal (https://zika.labkey.com). Zika virus/H.sapiens-tc/FRA/2013/FrenchPolynesia-01_v1c1 sequence data have been deposited in the Sequence Read Archive (SRA) with accession code SRP072852. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files.

Acknowledgements

We thank the WNPRC Veterinary, Scientific Protocol Implementation, and Pathology Services staff for assistance with animal procedures, including breeding, ultrasound monitoring, and sample collection, and Ms. Rebecca Black for editorial assistance. We thank Adam Ericsen, Jenna Kropp, and Jiro Wada for help in figure design and illustration.

References

467

- Hahn MB, Eisen RJ, Eisen L, Boegler KA, Moore CG, McAllister J, et al. Reported
- Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the
- United States, 1995-2016 (Diptera: Culicidae). J Med Entomol. 2016.
- 471 2. Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 2016;29(3):487-524.
- 3. Barzon L, Pacenti M, Franchin E, Lavezzo E, Trevisan M, Sgarabotto D, et al. Infection
- dynamics in a traveller with persistent shedding of Zika virus RNA in semen for six
- 474 months after returning from Haiti to Italy, January 2016. Euro Surveill. 2016;21(32).
- 475 4. Brooks JT, Friedman A, Kachur RE, LaFlam M, Peters PJ, Jamieson DJ. Update: Interim
- Guidance for Prevention of Sexual Transmission of Zika Virus United States, July
- 477 2016. MMWR Morb Mortal Wkly Rep. 2016;65(29):745-7.
- 5. Davidson A, Slavinski S, Komoto K, Rakeman J, Weiss D. Suspected Female-to-Male
- Sexual Transmission of Zika Virus New York City, 2016. MMWR Morb Mortal Wkly
- 480 Rep. 2016;65(28):716-7.
- 481 6. Deckard DT, Chung WM, Brooks JT, Smith JC, Woldai S, Hennessey M, et al. Male-to-
- 482 Male Sexual Transmission of Zika Virus--Texas, January 2016. MMWR Morb Mortal
- 483 Wkly Rep. 2016;65(14):372-4.
- 484 7. Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow
- 485 AD, et al. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg
- 486 Infect Dis. 2011;17(5):880-2.
- 487 8. Hills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, et al.
- 488 Transmission of Zika Virus Through Sexual Contact with Travelers to Areas of Ongoing

- 489 Transmission Continental United States, 2016. MMWR Morb Mortal Wkly Rep.
- 490 2016;65(8):215-6.
- 9. Rowland A, Washington CI, Sheffield JS, Pardo-Villamizar CA, Segars JH. Zika virus
- infection in semen: a call to action and research. J Assist Reprod Genet. 2016;33(4):435-
- 493 7.
- 494 10. Cauchemez S, Besnard M, Bompard P, Dub T, Guillemette-Artur P, Eyrolle-Guignot D,
- et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: a
- 496 retrospective study. Lancet. 2016;387(10033):2125-32.
- 497 11. Schuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DD, Cavalcanti DP, Pessoa A, et al.
- 498 Possible Association Between Zika Virus Infection and Microcephaly Brazil, 2015.
- 499 MMWR Morb Mortal Wkly Rep. 2016;65(3):59-62.
- 500 12. Brasil P, Pereira JP, Jr., Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto
- M, et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N Engl J Med.
- 502 2016;375(24):2321-34.
- 503 13. Martines RB, Bhatnagar J, de Oliveira Ramos AM, Davi HP, Iglezias SD, Kanamura CT,
- et al. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet.
- 505 2016;388(10047):898-904.
- 506 14. Noronha L, Zanluca C, Azevedo ML, Luz KG, Santos CN. Zika virus damages the
- human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo
- 508 Cruz. 2016;111(5):287-93.
- 509 15. Oliveira Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo de
- 510 Filippis AM. Zika virus intrauterine infection causes fetal brain abnormality and
- microcephaly: tip of the iceberg? Ultrasound Obstet Gynecol. 2016;47(1):6-7.

- 512 16. Soares de Oliveira-Szejnfeld P, Levine D, Melo AS, Amorim MM, Batista AG, Chimelli
- L, et al. Congenital Brain Abnormalities and Zika Virus: What the Radiologist Can
- Expect to See Prenatally and Postnatally. Radiology. 2016;281(1):203-18.
- 515 17. de Paula Freitas B, de Oliveira Dias JR, Prazeres J, Sacramento GA, Ko AI, Maia M, et
- al. Ocular Findings in Infants With Microcephaly Associated With Presumed Zika Virus
- 517 Congenital Infection in Salvador, Brazil. JAMA Ophthalmol. 2016.
- 518 18. Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Fonseca EB, et al.
- Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric
- 520 Clinicians. JAMA Pediatr. 2016.
- 521 19. van der Linden V, Filho EL, Lins OG, van der Linden A, Aragao Mde F, Brainer-Lima
- AM, et al. Congenital Zika syndrome with arthrogryposis: retrospective case series study.
- 523 BMJ. 2016;354:i3899.
- 524 20. Leal MC, Muniz LF, Ferreira TS, Santos CM, Almeida LC, Van Der Linden V, et al.
- Hearing Loss in Infants with Microcephaly and Evidence of Congenital Zika Virus
- Infection Brazil, November 2015-May 2016. MMWR Morb Mortal Wkly Rep.
- 527 2016;65(34):917-9.
- 528 21. Costello A, Dua T, Duran P, Gulmezoglu M, Oladapo OT, Perea W, et al. Defining the
- syndrome associated with congenital Zika virus infection. Bull World Health Organ.
- 530 2016;94(6):406-A.
- 531 22. Franca GV, Schuler-Faccini L, Oliveira WK, Henriques CM, Carmo EH, Pedi VD, et al.
- 532 Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with
- complete investigation. Lancet. 2016;388(10047):891-7.

- 534 23. Miranda-Filho Dde B, Martelli CM, Ximenes RA, Araujo TV, Rocha MA, Ramos RC, et
- al. Initial Description of the Presumed Congenital Zika Syndrome. Am J Public Health.
- 536 2016;106(4):598-600.
- 537 24. Meaney-Delman D, Oduyebo T, Polen KN, White JL, Bingham AM, Slavinski SA, et al.
- Prolonged Detection of Zika Virus RNA in Pregnant Women. Obstet Gynecol.
- 539 2016;128(4):724-30.
- 540 25. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jaaskelainen AJ, Smura T, et al. Zika
- Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. N Engl
- 542 J Med. 2016.
- 543 26. van der Eijk AA, van Genderen PJ, Verdijk RM, Reusken CB, Mogling R, van Kampen
- JJ, et al. Miscarriage Associated with Zika Virus Infection. N Engl J Med.
- 545 2016;375(10):1002-4.
- 546 27. Abbink P, Larocca RA, De La Barrera RA, Bricault CA, Moseley ET, Boyd M, et al.
- Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus
- 548 monkeys. Science. 2016;353(6304):1129-32.
- 549 28. Dudley DM, Aliota MT, Mohr EL, Weiler AM, Lehrer-Brey G, Weisgrau KL, et al. A
- rhesus macaque model of Asian-lineage Zika virus infection. Nat Commun.
- 551 2016;7:12204.
- 552 29. Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D, Schroeder LT, et al. Zika viral
- dynamics and shedding in rhesus and cynomolgus macaques. Nature medicine.
- 554 2016;22(12):1448-55.

- 555 30. Blankenship TN, Enders AC, King BF. Trophoblastic invasion and the development of uteroplacental arteries in the macaque: immunohistochemical localization of cytokeratins, 556 desmin, type IV collagen, laminin, and fibronectin. Cell Tissue Res. 1993;272(2):227-36. 557 31. Bondarenko GI, Burleigh DW, Durning M, Breburda EE, Grendell RL, Golos TG. 558 Passive immunization against the MHC class I molecule Mamu-AG disrupts rhesus 559 placental development and endometrial responses. J Immunol. 2007;179(12):8042-50. 560 32. Enders AC. Implantation in the macaque: expansion of the implantation site during the 561 first week of implantation. Placenta. 2007;28(8-9):794-802. 562 Adams Waldorf KM, Rubens CE, Gravett MG. Use of nonhuman primate models to 563 33. investigate mechanisms of infection-associated preterm birth. BJOG. 2011;118(2):136-564 44. 565 34. Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, 566 Vornhagen J, et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a 567 pregnant nonhuman primate. Nature medicine. 2016;22(11):1256-9. 568 35. Tarantal AF. Ultrasound Imaging in Rhesus (Macaca mulatta) and Long-tailes (Macaca 569 fascicularis) Macaques: Reproductuve and Research Applications. In: Wolfe-Coote S, 570 editor. The Laboratory Primate. London: Elsevier; 2005. p. 317-52. 571 36. Tarantal AF, Hendrickx AG. Prenatal Growth in the Cynomolgus and Rhesus Macaque (572 Macaca fascicularis and Macaca mulatta): A Comparison by Ultrasonography. American 573 journal of primatology. 1988;15:309-23. 574
- Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, et al. Zika Virus
 Associated with Microcephaly. N Engl J Med. 2016;374(10):951-8.

- 577 38. van der Linden V, Pessoa A, Dobyns W, Barkovich AJ, Junior HV, Filho EL, et al.
- Description of 13 Infants Born During October 2015-January 2016 With Congenital Zika
- Virus Infection Without Microcephaly at Birth Brazil. MMWR Morb Mortal Wkly Rep.
- 580 2016;65(47):1343-8.
- 581 39. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, et al. The
- Brazilian Zika virus strain causes birth defects in experimental models. Nature.
- 583 2016;534(7606):267-71.
- 40. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, et al. Zika Virus infection
- during pregnancy in mice causes placental damage and fetal demise. Cell.
- 586 2016;165(5):1081-91.
- 41. Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, et al. Vaginal
- exposure to Zika virus during pregnancy leads to fetal brain infection. Cell.
- 589 2016;166(5):1247-56.
- 590 42. Vermillion MS, Lei J, Shabi Y, Baxter VK, Crilly NP, McLane M, et al. Intrauterine Zika
- virus infection of pregnant immunocompetent mice models transplacental transmission
- and adverse perinatal outcomes. Nat Commun. 2017;8:14575.
- 593 43. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, et al. Zika
- virus targets human STAT2 to inhibit type I Interferon signaling. Cell Host Microbe.
- 595 2016;19(6):882-90.
- 596 44. Tarantal AF, Salamat MS, Britt WJ, Luciw PA, Hendrickx AG, and Barry PA.
- Neuropathogenesis induced by rhesus cytomegalovirus in fetal rhesus monkeys (Macaca
- 598 mulatta). J Infect Dis. 1998;177(2):446-50.

- 599 45. Bialas KM, Tanaka T, Tran D, Varner V, Cisneros De La Rosa E, Chiuppesi F, et al.
- Maternal CD4+ T cells protect against severe congenital cytomegalovirus disease in a
- novel nonhuman primate model of placental cytomegalovirus transmission. Proc Natl
- 602 Acad Sci U S A. 2015;112(44):13645-50.
- 46. Schoondermark-van de Ven EM, Melchers WJ, Galama JM, Meuwissen JH, and Eskes TK.
- Prenatal diagnosis and treatment of congenital Toxoplasma gondii infections: an
- experimental study in rhesus monkeys. Eur J Obstet Gynecol Reprod Biol.
- 606 1997;77(2):183-8.
- 47. Smith MA, Takeuchi K, Anderson G, Ware GO, McClure HM, Raybourne RB, et al. Dose-
- response model for Listeria monocytogenes-induced stillbirths in nonhuman primates.
- Infect Immun. 2008;76(2):726-31.
- 48. Wolfe B, Wiepz GJ, Schotzko M, Bondarenko GI, Durning M, Simmons HA, et al. Acute
- fetal demise with first trimester maternal infection resulting from Listeria monocytogenes
- in a nonhuman primate model. MBio. 2017;8(1).
- 49. Adams Waldorf KM, Rubens CE, and Gravett MG. Use of nonhuman primate models to
- investigate mechanisms of infection-associated preterm birth. BJOG. 2011;118(2):136-
- 615 44.
- 50. Reynolds MR, Jones AM, Petersen EE, Lee EH, Rice ME, Bingham A, et al. Vital Signs:
- 617 Update on Zika virus-associated birth defects and evaluation of all U.S. infants with
- congenital Zika virus exposure U.S. Zika Pregnancy Registry, 2016. MMWR Morb
- 619 Mortal Wkly Rep. 2017;66(13)366-73.

- 51. Juckstock J, Rothenburger M, Friese K, Traunmuller F. Passive Immunization against
- 621 Congenital Cytomegalovirus Infection: Current State of Knowledge. Pharmacology.
- 622 2015;95(5-6):209-17.
- 623 52. Pomplun N, Weisgrau KL, Evans DT, Rakasz EG. OMIP-028: Activation panel for
- Rhesus macaque NK cell subsets. Cytometry Part A. 2015;87(10):890-3.
- 625 53. Aliota MT, Dudley DM, Newman CM, Mohr EL, Gellerup DD, Breitbach ME, et al.
- Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques. PLoS
- 627 Negl Trop Dis. 2016;10(12):e0005168.
- 628 54. Shepard M, Filly RA. A standardized plane for biparietal diameter measurement. J
- 629 Ultrasound Med. 1982;1(4):145-50.
- 55. Tarantal AF, Hendrickx AG. Use of ultrasound for early pregnancy detection in the
- rhesus and cynomolgus macaque (Macaca mulatta and Macaca fascicularis). J Med
- 632 Primatol. 1988;17(2):105-12.
- 633 56. Altman DG, Chitty LS. New charts for ultrasound dating of pregnancy. Ultrasound
- 634 Obstet Gynecol. 1997;10(3):174-91.
- 635 57. Ville Y, Nyberg DA. Growth, Doppler, and Fetal Assessment. In: Nyberg DA, McGahan
- JP, Pretorius DH, Pilu G, editors. Diagnostic Imaging of Fetal Anomalies. Philadelphia,
- PA: Lippincott Williams & Wilkins; 2003. p. 32-4.
- 58. Deter RL, Harrist RB, Hadlock FP, Carpenter RJ. The use of ultrasound in the assessment
- of normal fetal growth: a review. J Clin Ultrasound. 1981;9(9):481-93.
- 640 59. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and
- serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia,
- 642 2007. Emerg Infect Dis. 2008;14(8):1232-9.

Figure Legends

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

Figure 1. Study layout and viral RNA burden in pregnant rhesus fluids. (A) Schematic representation of the timeline of infection, sampling for maternal viral burden, and experimental cesarean section, for all animals in the study. Animals received a ZIKV challenge in the first or late second/early third trimesters of pregnancy, and blood and other fluid samples were collected according to the schedule indicated in detail in supplementary Fig. S1. (B) ZIKV viral load in pregnant macaque fluids. Viral RNA loads (vRNA copies/ml) measured in plasma, urine, saliva, and amniotic fluid presented individually for the four pregnant animals. The day post-inoculation is indicated below each graph, and gestational age (days) for each animal is indicated above (term = 165 ± 10 days). Limit of assay quantification is 100 copies/mL. Limit of detection is 33 copies/mL. Colors for individual animals are continued through the rest of the Figures, including the Supplementary Figures. Figure 2. Maternal viral control and immune responses to ZIKV inoculation. (A) Peripheral blood plasma viremia in pregnant macaques infected with ZIKV. Results are shown for animals infected at 38 days gestation (animal 827577, dark blue), 31 days gestation (animal 660875, light blue), 103 days gestation (animal 357676, red) or 118 days gestation (animal 598248, yellow). The day of gestation is estimated +/- 2 days. Grey tracings represent viremia in nonpregnant/male rhesus monkeys infected with the identical dose and strain of ZIKV in a previous study [28]. The horizontal line indicates the quantitative limit of detection. (B) Peripheral blood cell response to infection. Absolute numbers of Ki67+ NK cells (left) or CD8+TEM cells (right) are presented as a percentage relative to baseline set at 100% (dashed

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

line), with first trimester and third trimester animals represented in the same colors as presented in Fig. 1A. (C) Plasmablast expansion over time from each pregnant animal. The plasmablast expansions of two nonpregnant animals from Dudley et al [28] are shown as grey lines. (**D**) Neutralization by ZIKV immune sera from pregnant and nonpregnant ZIKV-infected macaques. Immune sera from macaques infected with ZIKV in either the first trimester (dark or light blue), third trimester (red or yellow), or nonpregnant contemporary controls (gray) from Dudley et al [28] were tested for their capacity to neutralize ZIKV-FP. Infection was measured by plaque reduction neutralization test (PRNT) and is expressed relative to the infectivity of ZIKV-FP in the absence of serum. The concentration of sera indicated on the x-axis is expressed as \log_{10} (dilution factor of serum). The EC90 and EC50, estimated by non-linear regression analysis, are also indicated by a dashed line. Neutralization curves for each animal at 28 dpi are shown. Figure 3. Complete blood counts (CBCs) and serum chemistries for pregnant macaques infected with ZIKV. Animals were infected with 10⁴ PFU of ZIKV. Animals infected in the first or third trimesters are represented by color coding (A) as presented in Fig. 1. All animals had CBC analysis performed on EDTA blood and chemistry analysis performed on serum at -7, -3, 0, 1-10 and additional indicated dpi. B. AST blood chemistries, C. ALT serum chemistries, D. CK serum chemistries, E. WBC counts, F. % lymphocytes, G. red blood cell (RBC) counts. Figure 4. Fetal growth following ZIKV infection. Growth curves of femur length (FL), biparietal diameter (BPD), and head circumference (HC) obtained from fetal ultrasound images throughout gestation are presented as individual lines or symbols with specific colors as in Fig. 1. (A) FL, (B) BPD (C) and HC were determined for the fetuses in this study and plotted against

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

data from Tarantal [35], which is presented as the mean (solid black line) and 1, 2, and 3 standard deviations from the mean as grey lines above and below the mean. The data from the last month of pregnancy are also presented as a magnified view of the scatter of individual data points on the right. Representative ultrasound images of FL, BPD, and HC are also shown at the right. **Figure 5.** Fetal growth as assessed by predicted gestational ages. The predicted gestational age (pGA) as described by Tarantal [35] from each of the pregnancies is plotted against the actual day of gestation estimated from breeding activity and animal menstrual records. The pGA was derived from the average of BPD+FL (dashed lines), or the HC (solid lines). A (animal 827577) and **B** (animal 660875), first trimester infection. **C** (animal 357676) and **D** (animal 598248), late second/early third trimester infection. Figure 6. Charts summarizing (A) ZIKV RNA copy numbers, and (B) histologic evaluation and semiquantitative scoring of all normal and lesioned tissues, presenting all maternal and fetal tissues analyzed. Keys for ZIKV RNA copy number burden per mg of tissue, and description of histopathology scores ("Normal" to "Severe") appear at the left. Animal numbers are color coded as introduced in Fig. 1. Figure 7. Maternal and fetal histopathology analyses: hematoxylin and eosin (H&E) staining of selected tissues. Maternal spleen, 660875: increased neutrophils (arrows) throughout splenic sinusoids. Maternal decidua, 827577: multifocal stromal, intravascular, and perivascular

inflammation (arrows). Placenta, 660875: moderate multifocal necrosis and loss of trophoblastic

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

epithelium (+) with viable and degenerative neutrophils (arrows) between villi (*) and throughout the intervillous space. Chorionic membrane, 598248: diffuse suppurative inflammation throughout the chorionic membrane (ch) with rare single neutrophils (arrows) within the overlying amnion. Amniotic membrane, 598248: scattered neutrophils within the amniotic basement membrane and underlying perivascular stroma. Umbilical cord, 660875: segmental thrombosis (*) with entrapped neutrophils (arrows). Fetal lung, 660875: fetal squamous cells (*) and neutrophils (arrows) admixed with fibrin within alveolar spaces. Figure 8. H&E Staining of fetal tissues of the visual system. Panels 1A-C, animal 660875. Panel 1A: Mild infiltration of lymphocytes in the bulbar conjunctival substantia propria (arrow). Panel 1B: Moderate neutrophilic infiltration in the ciliary body stroma (arrows). Panel 1C: Moderate gliosis of the laminar and post-laminar optic nerve characterized by overall hypercellularity of the neuropil especially as indicated by asterisks. **Panels 2A-C**, animal 827577. Panel 2A: Minimal infiltration of lymphocytes in the bulbar conjunctival substantia propria (arrows). Panel 2B: Normal ciliary body stroma. Panel 2C: Moderate gliosis of the laminar and post-laminar optic nerve characterized by overall hypercellularity of the neuropil especially as indicated by asterisks. Panels 3A-C, animal 357676, and Panels 4A-C, animal 598248. Panels 3A and 4A: Normal bulbar conjunctival substantia propria. Panels 3B and 4B: Normal ciliary body stroma. Panels 3C and 4C: Normal optic nerve. **Figure 9.** Immunohistochemical localization of ZIKV in fetal [and maternal] tissues. (A) Immunofluorescent staining for ZIKV NS2B (red) and macrophage marker CD163 (green) in fetal axillary lymph node with a high vRNA burden. The white scale bar = $100 \, \mu m$. (B) H&E

- stained near section of the tissue presented in 9A. (C) Nonspecific immunostaining with control
- isotypes for ZIKV NS2B and CD163.

Table 1. Summary of maternal observations and maternal and fetal pathology and vRNA burden.

ID	Trimester of infection	duration of viremia (days)	Peak plasma viremia	Amn. Fluid*	Saliva	Difference in BPD+FL vs. HC (days)	Score of maternal path	Score of maternal RNA*	Score of MFI path	MFI RNA *	Fetal path	Fetal RNA *	Fetal ocular path
598248	3	11	17,400	0	_	16.5	0	6	7	1	11	6	0
357676	3	28	329,000	4	+	18.5	2	2	12	7	2	0	0
827577	1	71	668,000	0	+	19	2	4	8	0	4	15	2
660875	1	39	402,000	0	-	4.5	3	0	5	1	14	1	7

- Summary of all maternal and fetal outcomes for each individual pregnancy, including quantitative vRNA burden and semiquantitative
- 740 histopathology scores.

737

738

741

- Scores are summed scoring for either vRNA levels or histopathology:
- *RNA copies/mg tissue scoring: 0 = 0; 1-100 = 1; 100-1000 = 2, 1000-10000 = 3, 10000-50000 = 4.
- Histopathology scoring: 0 = normal; 1 = minimal; 2 = mild; 3 = moderate; 4 = severe.
- 745 MFI = maternal-fetal interface (aggregate of decidua, placenta, amniotic and chorionic membranes)

747

748

749

750

751

752

753

754

755

756

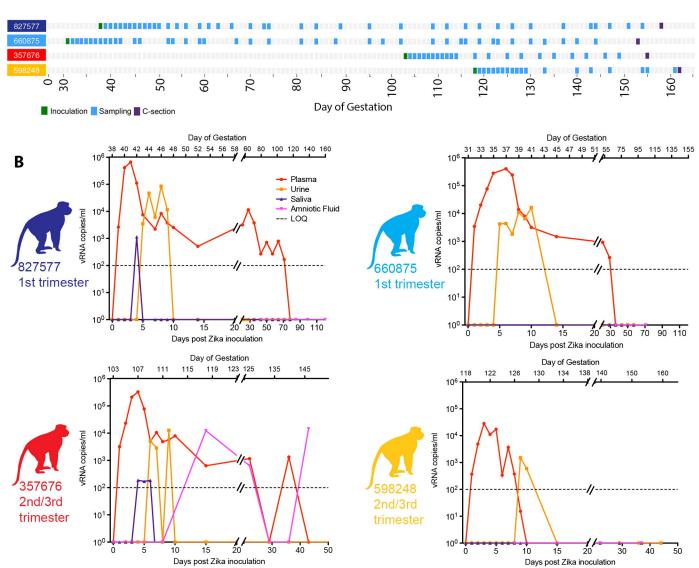
757

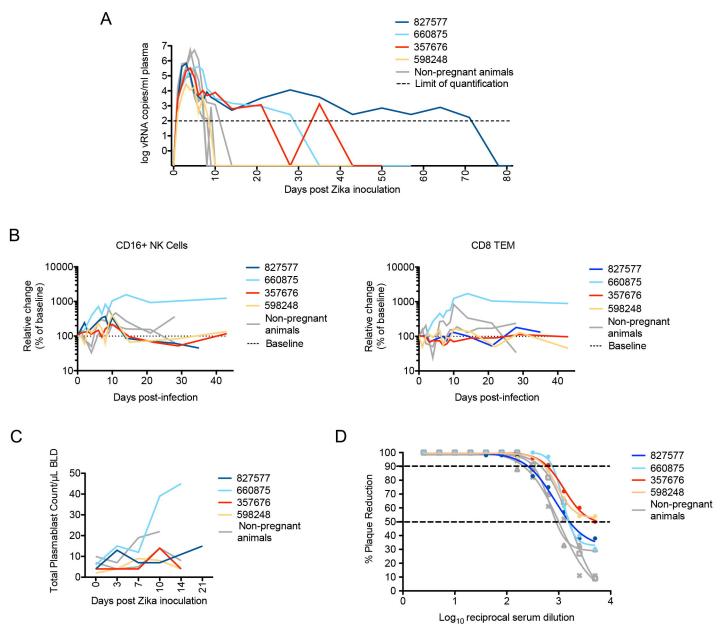
758

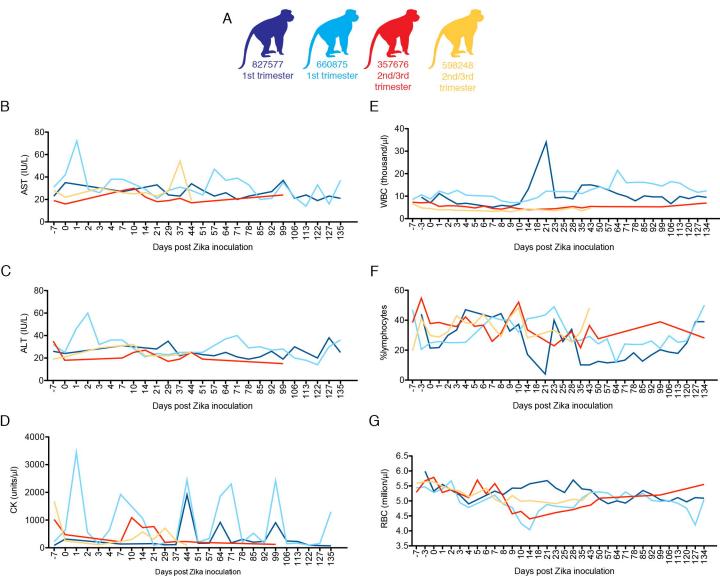
759

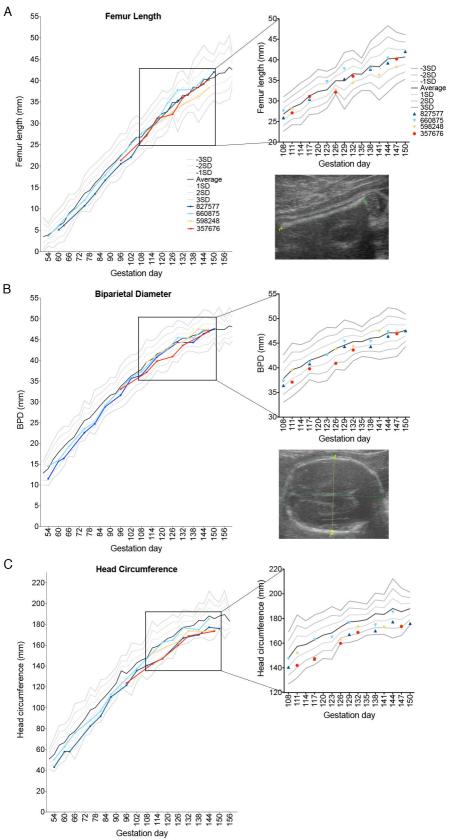
760

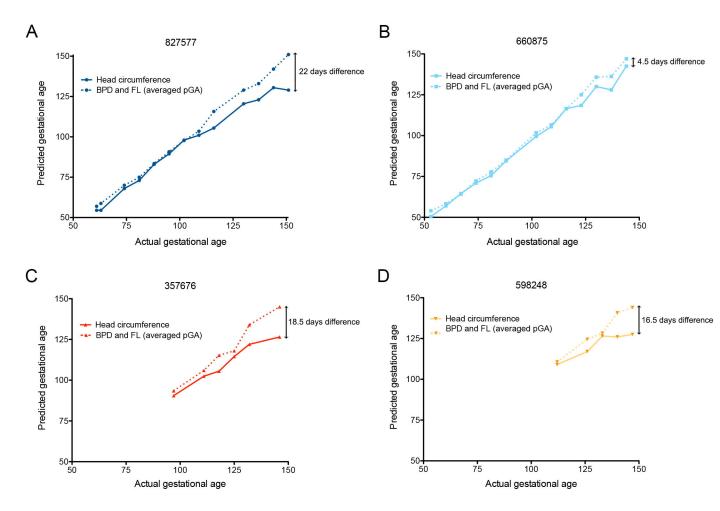
761


762


763


SUPPLEMENTARY FIGURES: Supplementary Figure S1. Comprehensive sampling experimental timeline for pregnant animals in the current study. Each animal in the study is indicated at the left, color blocks represent when specific samples were collected (e.g., CSF on 43 dpi (81 days gestation) for animal 827577). Supplementary Figure S2. Fetal brain imaged by MRI in ZIKV-infected pregnancies. (A) T2weighted axial images of the fetus from dam 660875 at 60 dpi (91 days gestation) acquired with a single shot fast spin echo (SSFSE) sequence. Fluids such as the intraocular fluid, CSF, and amniotic fluid as well as fat appear bright on these images. The brain anatomy appears normal. **(B)** The same fetus acquired with a multiecho spoiled gradient echo sequence. **Supplementary Figure S3.** Descriptive diagram showing all maternal and fetal tissues that were sampled at collection.


Supplementary Data S1. Morphologic diagnoses from gross and histologic examination of


maternal, fetal, and maternal-fetal interface tissues.

