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Abstract1

Inbreeding results from the mating of related individuals and has negative consequence because it brings together2

deleterious variants in one individual. Inbreeding is associated with recessive diseases and reduced production or3

fitness. In general, inbreeding is estimated with respect to a base population that needs to be defined. Ancestors4

in generations anterior to the base population are considered unrelated. We herein propose a model that estimates5

inbreeding relative to multiple age-based classes. Each inbreeding distribution is associated to a different time in6

the past: recent inbreeding generating longer homozygous streches than more ancient. Our model is a mixture of7

exponential distribution implemented in a hidden Markov model framework that uses marker allele frequencies,8

genetic distances, genotyping error rates and the sequences of observed genotypes. Based on simulations studies,9

we show that the inbreeding coefficients and the age of inbreeding are correctly estimated. Mean absolute errors10

of estimators are low, the efficiency depending on the available information. When several inbreeding classes11

are simulated, the model captures them if their ages are sufficiently different. Genotyping errors or low-fold12

sequencing data are easily accommodated in the hidden Markov model framework. Application to real data sets13

illustrate that the method can reveal different demographic histories among populations, some of them presenting14

very recent bottlenecks or founder effects. The method also clearly identifies individuals resulting from extreme15

consanguineous matings.16
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Introduction17

With his pioneering work on self-fertilization, Darwin early noticed that mating relatives generally leads to off-18

spring with a reduced fitness (Darwin, 1876). This phenomenon now referred to as inbreeding depression may19

mostly result from an increased homozygosity for (recessive) deleterious variants although a lack of heterozygos-20

ity at loci displaying heterozygous advantage (overdominance) might also be involved (Charlesworth and Willis,21

2009). Accordingly, populations displaying high levels of individual inbreeding show a higher prevalence of mono-22

genic disorders (e.g., Charlier et al., 2008) or complex diseases (e.g., Rudan et al., 2003). Inbreeding depression23

can thus increase the risk of extinction by reducing the population growth rate (Hedrick and Kalinowski, 2000;24

Keller and Waller, 2002) although it may be conversely favorable in some conditions by purging deleterious vari-25

ants from the population (Estoup et al., 2016). Assessing individual inbreeding is then of paramount interest to26

improve the management of populations under conservation or selection, and from a more general evolutionary27

perspective to better understand the genetic architecture of inbreeding depression.28

The first standard measure for the level of individual inbreeding was introduced by Wright (1922) as the29

coefficient of inbreeding (F) that he defined in terms of correlations between the parents uniting gametes. Further,30

Malécot (1948) proposed an alternative and more intuitive probabilistic interpretation of F as the probability that31

any two genes each randomly sampled in the parents gametes are identical by descent (IBD), i.e., are themselves32

derived from a common ancestor. In practice, estimation of F has long been only feasible using pedigree data and33

was hence limited to a few populations where such information had been recorded. Nevertheless, pedigrees remain34

usually limited to a few past generations leading to downward bias in the estimates of F since remote relationships35

are ignored (Keller et al., 2011), and they might also contain a non negligible proportion of errors even in well36

recorded domestic breeds (Leroy et al., 2012). In addition, whatever the pedigree depth and accuracy, pedigree-37

based estimates of F are only providing the expected proportion of individual genomic inbreeding which might38

departs from the actual genomic inbreeding due to mendelian sampling and linkage (Hill and Weir, 2011). With39

the advent of next generation sequencing and genotyping technologies, using genomic information to estimate the40

(realized) individual inbreeding proved particularly valuable (Wang, 2016) opening new avenues in the study of41

inbreeding in a wider range of populations including wild ones since genealogy is no more required (Hedrick and42

Garcia-Dorado, 2016; Kardos et al., 2016).43

Genomic approaches to estimate F basically rely on the identity by state (IBS) status of genotyped markers44

and may be divided in two broad categories depending on whether or not they use linkage map information. The45
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first type of methods ranges from simple estimates of individual heterozygosities (e.g., Szulkin et al., 2010) or46

homozygosities (e.g., Bjelland et al., 2013) to more advanced approaches based on the estimation of the real-47

ized genomic relationship matrix (VanRaden, 2008; Yang et al., 2010) or moment-based estimators to correct for48

population-structure in the estimation of population allele frequencies (e.g., Manichaikul et al., 2010). Their accu-49

racy depends strongly on the number and informativeness of the genotyped markers (Kardos et al., 2015) but they50

always remain global in the sense that they can only capture the total amount of individual inbreeding. With genetic51

map information, one may alternatively rely on the identification of stretches of homozygous markers also referred52

to Runs of Homozygosity (RoH) (e.g., McQuillan et al., 2008) to estimate individual inbreeding at both a local53

genome scale and genome-wide (as the proportion of the genome contained in locally inbred regions). RoH are54

indeed most often interpreted as IBD chromosome segments that were inherited from a common ancestor without55

recombination (and mutation) in neither of them. Assessing the distribution of RoH within individual genomes has56

thus become popular to characterize inbreeding in a wide range of model species including humans (Kirin et al.,57

2010; McQuillan et al., 2008; Pemberton et al., 2012) or livestock (Bosse et al., 2012; Ferencakovic et al., 2013).58

RoH also allows to distinguish between recent and more ancient inbreeding (Kirin et al., 2010; Pemberton et al.,59

2012; Purfield et al., 2012) since pairs of IBD chromosomal segments tracing back to more remote ancestors are60

expected to be shorter because of a higher number of historical recombination events.61

However, the main limitations of RoH–based approaches lie in their underlying rule-based procedure. For62

instance, the definition of the minimal number of homozygous markers (and segment length) and the maximum63

proportion of allowed heterozygous markers (to account for genotyping error) is mostly arbitrary. As a model-64

based alternative, Broman and Weber (1999) proposed a formal statistical approach to assess the IBD (or autozy-65

gous) status of the RoH they identified by accounting for population allele frequencies and genotyping error rates.66

Leutenegger et al. (2003) further provided a full probabilistic modeling of the IBD process along the chromo-67

somes by developing a Hidden Markov Model (HMM). The HMM framework allows to make use efficiently of68

the available genetic information contained in the sequences of both homozygous and heterozygous markers and69

the linkage maps and can handle whole-genome sequence data (Narasimhan et al., 2016) including those obtained70

from low-fold sequencing experiments (Vieira et al., 2016). Although powerful, the aforementioned methods rely71

on a two-states HMM considering each marker either belongs to an IBD or a non-IBD chromosome segments.72

The transition probabilities between the (hidden) states of successive markers then depend on their given genetic73

distances, a parameter controlling the rate of changes per unit of genetic distance and the individual inbreeding74

coefficient. Considering only two states (IBD or non-IBD) thus amounts to assume that all the individual inbreed-75
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ing originates from one or several ancestors in a single generation in the past and that all the IBD segments have76

the same expected length. However, in both natural and domesticated populations, the sources of individual in-77

breeding are multiple, since they are all related to their usually complex past demography history, making such an78

hypothesis of a single inbreeding event highly unrealistic.79

We herein propose to extend previous HMM by considering several IBD-classes, each associated with a differ-80

ent inbreeding age. This new model allows to provide a better fit to individual genetic data (either genotyping or81

sequencing data) and to refine the genomic partitioning of inbreeding into stretches of IBD regions from possibly82

different ancestral origins. To evaluate the accuracy of the methods, we carried out comprehensive simulation83

studies. In addition, three real data sets from human, dog and sheep populations were analyzed in more detail to84

illustrate the range of application of the methods. As a by-product of this study, a freely available program, named85

ZooRoH was developed to implement inferences under the newly developed model.86

The Models87

In the following we describe our HMM to model individual genomes as mixtures of IBD and non-IBD segments.88

We first consider a model with only two states (one IBD or autozygous class and one non-IBD class) and then89

describe the extension of the model to combine several IBD classes with varying time to the common ancestor (age90

measured in generations). To deal with the specificities of Next-Generation Sequencing (NGS) data (whole genome91

sequencing, low-fold sequencing, genotype-by-sequencing) that may provide less accurate genotype call than SNP92

chip arrays, we also propose alternative emission probabilities functions that integrate over the uncertainties of93

each possible genotype.94

The two–states model (1G model)95

The 1G model is similar to the HMM previously proposed by Leutenegger et al. (2003) and assumes that the96

genome is partitioned in either IBD and non-IBD tracts that actually correspond to the two hidden states (K = 2).97

The 1G model further relies on a one order Markov process to define the transition probabilities between successive98

hidden states, such a modeling representing a good approximation of the IBD process along the chromosome in99

the absence of interference (Lander and Green, 1987; Leutenegger et al., 2003; Thompson, 2008). Consider two100

adjacent loci Ml−1 and Ml separated by rl Morgans (l > 1) and let G represent the size of the inbreeding loop101

i.e. twice the number of generations from a common ancestor and ρ the mixing coefficient corresponding to the102
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proportion of IBD segments in the genome. Under the 1G model, ρ can be interpreted as a measure of the individual103

inbreeding coefficient F (Leutenegger et al., 2003). Let further S l denote the (hidden) state of Ml with S l = 1 and104

S l = K = 2 for an IBD and non-IBD state respectively. The four transition probabilities between the hidden states105

of every pairs of consecutive markers are then defined as:106



P [S l = 1 | S l−1 = 1] = e−rlG + (1 − e−rlG)ρ

P [S l = 1 | S l−1 = 2] = (1 − e−rlG)ρ

P [S l = 2 | S l−1 = 2] = e−rlG + (1 − e−rlG)(1 − ρ)

P [S l = 2 | S l−1 = 1] = (1 − e−rlG)(1 − ρ)

(1)107

This amounts to assume that co-ancestry changes (leaving an IBD or non-IBD segment) between two adjacent108

markers Ml−1 and Ml occur with a probability equal to 1 − e−rlG. It should thus be noticed that the same rate of109

co-ancestry changes (G) is used for both IBD and non-IBD tracks since we model the inheritance of chromosomal110

segments present in a single generation (that of the common ancestor). Under such assumptions, the length of111

IBD segments (inherited from a single ancestor) is exponentially distributed with an expected mean equal to 1
G .112

Because consecutive segments in the genome might belong to the same class, the overall lengths of the IBD and113

non-IBD segments have expected means equal to 1
G(1−ρ) and 1

Gρ respectively (Leutenegger et al., 2003). Vieira114

et al. (2016) also used a similar approach to model the transition probabilities whereas Narasimhan et al. (2016)115

relied on a unique parameter for the transition probabilities that integrates both G and ρ.116

Extension to multi-states models (KG models)117

With a unique IBD class, the 1G model described above considers that all the IBD segments have approximately118

the same age either because they originate from a single ancestor (one strong inbreeding event) or from multiple119

ancestors in the same generation (e.g., during a bottleneck). Population history might however lead to far more120

complex patterns. For instance, common ancestors tracing back to different generations can be frequent in small121

populations, in populations under strong selection or in endangered populations with declining size. We therefore122

propose to extend the model to KIBD different IBD classes, each characterized by their own mixing coefficient ρc123

and rate Gc (c ∈ (1,KIBD)). Note that Gc might be interpreted as twice the age (in generations) of the inbreeding124

class c. Common ancestors from IBD class c transmitted IBD segments whose lengths are exponentially distributed125

with a mean equal to 1
Gc

. For the sake of generality, we may include several non-IBD classes but in the present126
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study we only used one non-IBD class labeled K (i.e., the total number of classes K = KIBD + 1) with a mixing127

proportion ρK and a change rate GK . The transition probabilities between the hidden states S l−1 and S l of two128

adjacent loci Ml−1 and Ml read:129


P [S l = a | S l−1 = a] = e−rlGa + (1 − e−rlGa )ρa

P [S l = a | S l−1 = b] = (1 − e−rlGb )ρa

(2)130

where a ∈ (1,K) and b ∈ (1,K) represents the identifier of the K different states (recalling that K also represents131

the non-IBD state). It is important to note that when K = 2, i.e. we only consider two states (KIBD = 1 state and132

one non-IBD), the 2G model is slightly different than the 1G model since the two states are not constrained to have133

the same rate G.134

Emission probabilities and extension to NGS data.135

To complete the specification of the HMM we need to specify the emission probabilities, i.e., the probabilities136

of the data Yl observed at each marker Ml given the underlying state S l of the two individual chromosomes that137

might either be IBD (S l , K) or non-IBD (S l = K). Let Il represent the number of alleles observed for marker Ml138

(in the rest of the study we only considered bi-allelic SNP i.e., Il = 2 for all l) and Ali the corresponding alleles139

(i ∈ (1, Il)). Depending on the technology and the analyses performed, Yl then either consists of i) a genotype140

AliAl j (where i ∈ (1, Il) and j ∈ (1, Il)) among the Jl =
Il(Il+1)

2 possible genotypes; or ii) a vector of likelihoods141

P
[
Yl | AliAl j

]
for each possible genotypes as provided by a genotype calling model as implemented within standard142

and popular softwares such as GATK (McKenna et al., 2010) or SAMTOOLS (Li et al., 2009). This allows to account143

for the genotype uncertainty which is highly recommended when dealing with NGS, particularly with low-fold144

sequencing data.145

Emission probabilities for genotyping data.146

Let pli be the population allele frequency of allele Ali which is assumed to be known. If the two chromosomes are147

IBD in Ml (S l , K), we define the emission probabilities of the genotype AliAl j as follows:148

P
[
AliAl j | S l , K, pli, ε

]
=


(1 − ε)pli if i = j

2ε
Il(Il−1) if i , j

(3)149
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where ε is the probability (assumed to be known) to observe an heterozygous marker when the two underlying150

chromosomes are IBD in Ml either resulting from a genotyping error or a recent mutation. In other words, we151

assume that the vast majority of the polymorphic markers were segregating in the population before the common152

ancestors of the IBD segments and thus interpret recent mutations as genotyping errors. For non-IBD segments153

(tracing back to much more ancient ancestors), each genotype emission probabilities are derived assuming Hardy-154

Weinberg equilibrium and disregarding genotyping error (or recent mutation):155

P
[
AliAl j | S l = K, pli, pl j

]
=


p2

li if i = j

2pli pl j if i , j
(4)156

Note that these emission probabilities slightly differ from those considered in Leutenegger et al. (2003).157

Emission probabilities for genotype likelihood data.158

To account for genotype uncertainty, emission probabilities are obtained by integrating over all the possible geno-159

types:160 
P [Yl | S l , K] =

∑
Jl

P
[
Yl | AliAl j

]
P
[
AliAl j | S l , K

]
P [Yl | S l = K] =

∑
Jl

P
[
Yl | AliAl j

]
P
[
AliAl j | S l = K

] (5)161

where P
[
AliAl j | S l , K

]
and P

[
AliAl j | S l = K

]
are as defined in equation 3 above (the error term ε then mostly162

capturing the effect of recent mutations). This modeling is similar to that recently proposed by Vieira et al. (2016).163

Materials and Methods164

Inference165

Estimation of model parameters.166

Assuming the population allele frequencies (pli) of each marker Ml and the error term ε are known, the set of167

parameters Θ that needs to be estimated consists of the mixing proportions ρ and the rates (interpreted as ages168

for the inbreeding classes) G of the defined IBD and non-IBD classes. Therefore, Θ consists of two parameters169

(ρ and one rate G) for the 1G model and 2K parameters for a multi-classes KG model (with KIBD = K − 1170

inbreeding classes). For multiple-IBD models, we alternatively consider reducing the parameter space by pre-171
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defining the ages Gk of the K classes leading to only estimate the K mixing proportions ρk (hereafter called172

mixKG model). For all the models, parameter estimation was achieved with the Expectation-Maximization (EM)173

algorithm known as the Baum-Welch algorithm that is very popular in the HMM literature (Rabiner, 1989). The174

program ZooRoH implementing the algorithm for the different models is freely available at https://github.175

com/tdruet/ZooRoH. Unless otherwise stated, model parameters were estimated with 1000 iterations of the EM176

algorithm and setting ε to 0.001.177

Estimation of the realized local (locus-specific) inbreeding (φl).178

The Baum-Welch algorithm allows to estimate the local state probabilities that correspond in our case to the K179

probabilities P
(
S l = c | Θ̂,Y

)
that the two chromosome segments belong to the IBD class c (c ∈ (1,KIBD)) or to180

the non-IBD class (c = K) at the marker Ml position given the estimated parameter set Θ̂ and the observed genetic181

data Y. These probabilities can be used to estimate both the realized genome-wide (over all the markers) and local182

(for each and every marker) inbreeding. Indeed, genetic data allows to directly infer the realized IBD status of an183

individual for each locus in the genome as opposed to pedigree-based inbreeding estimates that infer the expected184

IBD status for all the loci. More precisely, the local estimate φ̂l of the realized inbreeding at marker Ml is defined185

as the probability that this marker lies in an IBD segment and may thus be computed by summing over all its local186

IBD state probabilities (i.e., excluding the non-IBD class):187

φ̂l =

KIBD∑
c=1

P
(
S l = c | Θ̂,Y

)
(6)188

Estimation of the realized inbreeding associated to each IBD age-based classes (F(c)
g ) and the genome-wide189

inbreeding (Fg).190

As above, the inbreeding F̂(c)
g associated to IBD class c (c ∈ (1,KIBD)) can be defined as the proportion of the191

genome belonging to the class c and is estimated as the average of the corresponding local state probabilities over192

all the L locus:193

F̂(c)
g =

1
L

L∑
l=1

P
(
S l = c | Θ̂,Y

)
(7)194

Finally, the genome-wide estimate of the realized individual inbreeding F̂G is simply the average over the195
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genome of the local estimates obtained for the L markers:196

F̂g =
1
L

L∑
l=1

φ̂l =

KIBD∑
c=1

F̂(c)
g (8)197

Model assessment.198

Because the optimal number of states (KIBD or K) is usually unknown, we may be interested in characterizing, for199

a given data set, the strength of evidence for alternative number of states. To that end we relied on the Bayesian200

Information Criterion (BIC) which is a standard criterion for model selection among a finite set of models and was201

computed as:202

BIC = −2ln
(
P
(
Y | Θ̂

))
+ npln(L) (9)203

where P
(
Y | Θ̂

)
is the maximum of the likelihood function obtained with the estimated parameters Θ̂ (computed204

with the forward algorithm (Rabiner, 1989)), L is the number of markers and np is the number of parameters, i.e.,205

np = 2K − 1 for a KG model (with K-1 IBD classes) and np = K − 1 for a mixKG model (see above).206

Simulated data sets207

Simulation under the inference model.208

The model was first tested by simulating data under the inference models. We simulated genotyping data at bi-209

allelic markers (SNPs) for 500 individuals considering a genome that consisted of 25 chromosomes of 100 cM210

length (i.e., 100 Mb length assuming a cM to Mb ratio of 1). The marker density was set to 10, 100 or 1,000211

evenly spaced SNPs per Mb (i.e., 25,000, 250,000 or 2,500,000 SNPs in total). When simulating data under212

the 1G inference model, the individual genome is a mosaic of either IBD or non-IBD segments whose length213

is exponentially distributed with the same rate equals to the simulated G (twice the age in generations of the214

inbreeding event). For each chromosome in turn, we successively generated consecutive segments by sampling215

their length in the corresponding exponential distribution and randomly declaring them as IBD or non-IBD with216

a probability ρ and 1 − ρ (where ρ represents the simulated mixing coefficients). The process stops when the217

cumulative length of the simulated segments was greater than 100 cM (the last simulated segment being trimmed218

to obtain a chromosome length exactly equal to 100 cM). Under the multi-states model with several IBD classes,219

simulations were performed sequentially, with successive waves of inbreeding starting with the most ancient. We220

started by simulating the most ancient IBD class with the process described above. Then, each new IBD class was221
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simulated similarly (with its own Gi and ρi) except that new inbreeding (IBD) masked previous classes whereas222

non-IBD segments did not change previously simulated states.223

To simulate genotyping data, we first randomly sampled for each SNP the population frequency of an arbitrarily224

chosen reference allele either i) from an empirical distribution derived from real cattle genotyping SNP assay225

and WGS data (Figure S1), or ii) from a (U-Shaped) distribution β (0.2, 0.2) that mimics NGS data (Figure S1).226

Given the simulated IBD status of the segments on which each SNP lie (see above), we used these sampled allele227

frequencies to simulate SNP genotypes as described for the emission probabilities above (eqs. 3 and 4). We used228

the parameter ε set to either 0.1% or 1% to introduce random genotyping errors (changing one genotype to one of229

the two other genotypes) and to evaluate the robustness of the models.230

To simulate low-fold sequencing data (50 individuals) we sampled at each marker a number of reads t according231

to a Poisson distribution with mean λ (the average coverage). For homozygote genotypes (simulated as described232

above), the t sampled reads always carried the same allele (no sequencing error) and for heterozygotes, we used233

a binomial distributions (with parameters t and 1
2 ) to sample the read counts for the two possible alleles. We then234

considered for each simulated SNP l, the read counts tl1 and tl2 observed for each of the two alleles to derive the235

three genotype likelihoods of the three genotypes Al1Al1, Al1Al2 and Al2Al2:236



P [Yl | Al1Al1] = 1cl1 0tl2

P [Yl | Al1Al2] =
(

1
2

)tl1+tl2

P [Yl | Al2Al2] = 1cl2 0tl1

(10)237

Finally, to assess the accuracies of the model estimation, we computed the Mean Absolute Error (MAE) for238

each parameter α of interest as:239

MAE(α) =
1
N

N∑
n=1

|̂αn − αn| (11)240

where N is the number of simulated individuals, α̂n is the estimated parameter value for individual n and α is the241

corresponding simulated value.242

Simulations under a discrete time Wright-Fischer process.243

The inference model we used is based on hypotheses (exponential distribution for length of IBD segments, Hardy-244

Weinberg equilibrium in non-IBD states, etc.) commonly used and that have been proven to work well (e.g.,245

Leutenegger et al., 2003; Vieira et al., 2016). Still, we performed additional simulations relying on population246
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genetics models to obtain simulated data less dependent on these assumptions. To that end we used the program247

ARGON (Palamara, 2016) that simulates data under a discrete time Wright-Fischer process.248

With constant and large effective population size Ne, inbreeding is expected to be low and to be spread over249

many generations. To concentrate inbreeding in specific age classes we simulated bottlenecks keeping large Ne250

outside these events to reduce the noise due to inbreeding coming from other generations. In the first scenario WF1,251

we considered an ancestral population P0 with a constant haploid effective population size equal to Ne0=20,000 that252

split in two populations P1 and P2 at generation time Ts in the past with respective population sizes Ne1=10,000 or253

100,000 (according to the scenario) and Ne2=10,000. During four generations centered around generation Tb � Ts254

in the past, P1 experienced a bottleneck with an (haploid) effective population size equal to Neb and recovered its255

initial size. Population P2 that always maintains a constant size is actually used to select markers that were also256

segregating in the ancestral population P0 (only markers segregating at MAF > 0.05 in both populations P1 and257

P2 were kept for further analyses). The different simulation parameters are expected to have various impacts on258

the distribution of inbreeding. For instance for larger Ts, inbreeding tends to accumulate after the two populations259

split and selected markers will have an older origin. Similarly, the larger Ne1, the less inbreeding is accumulating260

outside the bottleneck while with smaller Neb, more inbreeding is created during the bottleneck. In total, 50261

diploid individuals were simulated in both populations P1 and P2 considering a genome that consisted of a single262

chromosome of 250 cM length (i.e., 250 Mb assuming a cM to Mb ratio of 1). The mutation rate was set to263

µ = 10−8 and we use the functionalities of ARGON to identify all the IBD segments > 10 kb and to obtain their264

ages (generation time of the most recent common ancestor).265

A second scenario WF2 was also considered for simulations in which similar parameters were used but the266

bottleneck occurred at generation Tb = 20 and Ne1 was kept constant for subsequent and more recent generations267

(instead of returning to its initial size as in scenario WF1). This scenario with a strong reduction of Ne was aimed268

at mimicking livestock populations for which inbreeding is expected to be mostly due to ancestors in the most269

recent generations.270

Human, dog and sheep real data sets271

For illustration purposes, we used publicly available genotyping data from i) the Human Genome Diversity Panel272

(HGDP) (Jakobsson et al., 2008) as downloaded from ftp://ftp.cephb.fr/hgdp_supp10/Harvard_HGDP-CEPH;273

ii) the dog LUPA project (Vaysse et al., 2011) as downloaded from http://dogs.genouest.org/SWEEP.dir/274

Supplemental.html; and iii) the Sheep Diversity panel (Kijas et al., 2012) as downloaded from the WIDDE275

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2017. ; https://doi.org/10.1101/106765doi: bioRxiv preprint 

https://doi.org/10.1101/106765
http://creativecommons.org/licenses/by-nc-nd/4.0/


database (Sempere et al., 2015). We then used the software plink (Purcell et al., 2007) to process and filter the276

genotyping data by removing individuals with a genotyping call rate below 90% and only keeping autosomal SNPs277

that had call rate > 95% and a MAF > 0.01 (in the original data set). As a result, the final data sets consisted of278

304,406, 152,151 and 48,872 SNPs in human, dog and sheep respectively. For each species, we restricted our anal-279

ysis to a subset of six populations corresponding to i) Karitiana (n=13), Pima (n=14), Melanesian (n=11), Papuan280

(n=17), French (n=28) and Yoruba (n=22) in humans; ii) Doberman Pinschers (n=25), Irish Wolfhounds (n=11),281

Jack Russell Terriers (n=12), English Bulldogs (n=13), Border Terriers (n=25) and Wolves (n=12) for the dog data282

set; and iii) Soay (n=110), Wiltshire (n=23), Dorset Horn (n=21), Milk Lacaune (n=103), Rasa Aragonesa (n=22)283

and Rambouillet (n=102) in sheep. Note that, within each population, markers with a MAF below 0.01 (within a284

population) were discarded from the analysis.285

Data Availability286

All data sets used in the present study are publicly available. the Human Genome Diversity Panel (HGDP)287

data was downloaded from ftp://ftp.cephb.fr/hgdp_supp10/Harvard_HGDP-CEPH, the dog LUPA project288

from http://dogs.genouest.org/SWEEP.dir/Supplemental.html and the Sheep Diversity panel from the289

WIDDE data base (Sempere et al., 2015). The program ZooRoH implementing our model can be freely obtained290

at https://github.com/tdruet/ZooRoH.291

Results292

Performance of the different models293

Analyzing data simulated under the 1G inference model.294

We first analyzed individual genomes of 2,500 cM (with a marker density of 10 SNPs per cM) that were simulated295

under the 1G inference model, i.e., the simplest model. Depending on the two chosen simulation parameters (age296

of inbreeding G and mixing proportion ρ), these individual genomes thus consisted of a mosaic of IBD and non-297

IBD segments (in proportions ρ and 1 − ρ respectively) that both originated from the same ancestral generation298

(G/2 generations ago). In total, we analyzed with the 1G, the 2G, the 3G and the 4G models, 500 individuals per299

simulated scenarios, considering in total 33 different scenarios representatives of a wide range of values for both300

G (from G = 2 to G = 256) and ρ (from ρ = 0.0075 to ρ = 0.5). As mentioned in the Model section above, under301
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the 1G model that was used for these simulations, ρ is highly similar to the individual inbreeding Fg. The results302

obtained from the analyses under the 1G model are detailed in Table 1 for 20 different scenarios. In addition, tables303

S1 and S2 give the results from the analyses under all the four models (1G, 2G, 3G and 4G) for all the 33 different304

scenarios.305

Overall, estimates of both model parameters (Ĝ and ρ̂) and individual inbreeding Fg obtained under the 1G306

model (Table 1 and Table S1) were found virtually unbiased and quite accurate (small MAE) irrespective of the307

considered scenarios. As expected, the 1G model performed even better when the number of IBD segments was308

higher and these were longer (smaller G) since more SNPs are available for their identification. For instance, for a309

given simulated ρ (e.g., ρ ' Fg = 0.100), the MAE of F̂g increased with larger simulated G (e.g., from 1.1 × 10−3
310

when G = 16 to 4.6 × 10−3 when G = 256). The performance of the 1G model to estimate local inbreeding (φl)311

was further evaluated by computing the corresponding MAE either for all the SNPs (φ̂l) or for the SNPs lying312

within IBD segments only (φ̂lIBD ) (Table 1 and Table S1). Note that for every simulated SNP l, the actual φl value313

is known (i.e., φl = 0 or φl = 1 if the SNPs is within a non-IBD or a IBD segment respectively). Hence, if the314

model performs well and all the φl are accurately estimated (i.e., φ̂l close to 0 or 1 for SNPs within a non-IBD or315

a IBD segment respectively), the MAE of φ̂l should be close to 0. Conversely, departure of the φ̂l MAE from 0316

indicates that IBD (respectively non-IBD) positions have non-zero probability to be non-IBD (respectively IBD).317

Besides, inspecting the φ̂lIBD MAE allows to restrict attention to the prediction accuracy of truly IBD segments. As318

shown in Table 1, when inbreeding is recent (G < 32, i.e. less than 16 generations ago) MAE for both φ̂l and φ̂lIBD319

are close to 0 indicating that both IBD and non-IBD positions are correctly identified with a high support. Also, at320

constant level of overall (simulated) inbreeding (e.g., ρ ' Fg = 0.125) the accuracy decreases with higher value of321

G (e.g., from 1.0× 10−2 when G = 4 to 2.1× 10−2 when G = 8 for the φ̂lIBD MAE). When considering more ancient322

(and/or) lower simulated inbreeding values, the φ̂lIBD MAE increased faster than the overall φ̂l MAE. This indicates323

that there is not enough information (number of SNPs per IBD segments) to confidently classify some positions,324

in particular those within the shortest IBD segments, the longest IBS segments or the segments boundaries. It is325

however important to notice that the local inbreeding estimates φ̂l always remained very well calibrated, i.e., for326

any p ∈ (0, 1), the proportion of SNPs truly lying within IBD segments among the SNPs with φ̂l ' p was close to327

p (Figure S2). Accordingly, and as mentioned above, the global estimators of individual inbreeding (Fg) and the328

model parameters (ρ and G) remained accurate (Table 1).329

[Table 1 about here.]330
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As shown in Table S1, the estimates of G for the IBD class under the 2G model started to be substantially331

biased for scenario with G ≥ 128. More interestingly, the performances of the 2G model (Table S1) and both the332

3G and 4G models (Table S2) were highly similar to those of the 1G model for the estimation of both genome-wide333

(Fg) and local (φl) individual inbreeding.334

Analyzing simulated data with several underlying IBD classes.335

We further evaluated the performances of the different models on simulated data sets with more than one class336

for the underlying IBD segments, i.e. for which inbreeding originated from several sources of different ages Gk337

and contributions F(k)
g to the overall inbreeding. We detail hereafter the analyses of individual genomes of 2,500338

cM (with a marker density of 10 SNPs per cM) that were simulated under the 3G inference model, i.e., assuming339

two different classes for IBD segments and one non-IBD class. Each simulation scenario was thus defined by the340

ages of inbreeding (G1 and G2) and the mixing proportions (ρ1 and ρ2) of the two classes of IBD segments. It341

should be noticed that the simulated mixing proportions (ρ1 and ρ2) directly controlled (and are generally close to)342

the amount of inbreeding originating from their corresponding IBD class. As shown in Table 2 for six different343

scenarios (and Tables S3 and S4 for a total of 23 different scenarios), estimates of the overall individual inbreeding344

(Fg), of the ages (G1 and G2) and of the inbreeding contributions (F(1)
g and F(2)

g ) for the two IBD classes were close345

(but slightly biased) to the simulated values providing the differences between the ages of the two IBD classes346

was large enough (e.g., G1/G2 ≥ 16), i.e., the overlap between the distributions of the IBD segments lengths is347

reduced. As the difference between the ratio of successive Gi became smaller, all inbreeding tended to concentrate348

in the first IBD class that had an overestimated age for small simulated G1 (Table 2 and Table S3). For instance,349

for the scenario with G1 = 4 (ρ1 = 0.125) and G2 = 16 (ρ1 = 0.100), med(F̂(1)
g ) = 0.195 (med standing for median)350

and med(F̂(2)
g ) = 0.004 while med(Ĝ1) = 7.20 and med(Ĝ2) = 391 across the 500 simulated individuals (Table 2).351

Strikingly however, the overall individual inbreeding Fg always remained very well estimated with MAE≤ 0.005352

for all scenarios (Table 2 and Table S4). Finally, as for the simulations under the 1G model previously considered,353

accuracy in the estimation of local inbreeding was found to mostly depend on the ages G1 and G2 (Table 2 and354

Table S5), the MAE for both φ̂l and φ̂lIBD lying in a similar range than the one observed previously on data simulated355

under the 1G model. More precisely, given the relatively sparse SNP density considered, MAE remained accurate356

(i.e., ≤ 0.05) while G1 < G2 ≤ 64 but started to increase for higher values probably due to the inclusion of smaller357

IBD segments.358

[Table 2 about here.]359
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To provide insights on the behavior of our model to a misspecification of the underlying number of IBD classes,360

we also analyzed these data simulated under the 3G model with the 1G, the 2G and 4G models. As expected, when361

considering the 1G and 2G models, the estimated age of the single assumed IBD class was intermediate between362

the two simulated G1 and G2 actual values (Table S3). In agreement with previous findings, the 1G and 2G lead to363

highly similar estimates except for large G1 and G2 for which the estimated G tended to be higher with the 2G than364

the 1G model (e.g., med(Ĝ) = 181 and med(Ĝ) = 201 respectively for the scenario with G1 = 128 and G2 = 256).365

More interestingly, using the 1G and 2G models (i.e., with a single IBD class) to analyze these data resulted in an366

underestimation of Fg for scenarios with a marked differences between G1 and G2 (Table S4). Conversely, using367

an over-parameterized model such as the 4G did not introduce any additional bias compare to the 3G model. For368

instance, for the scenario with G1 = 4 (ρ1 = 0.125) and G2 = 256 (ρ1 = 0.100) that lead to a median realized369

inbreeding equal to 0.211 across the 500 simulated individuals, the median estimated inbreeding was equal to 0.162370

with both the 1G and 2G models while it was equal to 0.208 and 0.209 with the 3G and 4G models respectively371

(Table S4). This suggested that the 1G and 2G model failed to capture some inbreeding. Accordingly, when372

focusing on the estimation of local inbreeding (Table S5), although the 1G and 2G models displayed a lower MAE373

for φ̂l (i.e., computed over all the SNPs), this was essentially driven by SNPs lying in non-IBD segments. Indeed,374

both the 3G and 4G resulted in a lower MAE for φ̂lIBD (i.e., computed over SNPs lying within IBD segments)375

suggesting these model allowed to better capture IBD segments at the expense of a slightly higher misassignment376

of SNP lying in non-IBD segments.377

Overall, similar conclusions about the performance of the models to estimate the simulated parameters could378

be drawn when considering data sets with more than two underlying IBD classes (see Table S6 for results on data379

sets simulated and analyzed under the 4G model). It should however be noticed that increasing the number of IBD380

classes in the model also increased misassignment of IBD segments to their actual IBD class (Figure S3). In other381

words, some IBD segments, although correctly identified as IBD, might display a non-zero probability to belong to382

an incorrect IBD class (most generally a neighboring one). As a result, when increasing the number of simulated383

IBD classes, higher deviations of the estimated inbreeding age (Gc) and contribution (F(c)
g ) of each classes from384

their actual values could be observed (e.g., Table S6). Nevertheless, for higher ratio between successive class ages,385

these estimates remained fairly good. Importantly and as shown in previous simulations, the overall individual386

inbreeding (Fg) was accurately estimated in all scenarios and MAE for local inbreeding mostly depended on the387

age of the IBD segments.388
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Using a set of K predefined IBD-classes (the mixKG model).389

For a given model, instead of estimating the ages Gk of the different IBD classes, an alternative is to use a set of390

predefined age-classes and to only estimate the mixing proportions (ρk). To illustrate and evaluate this strategy391

we hereby considered models consisting of 9, 11 or 13 IBD-classes depending on the simulated marker density392

(see below) and one non-IBD class leading to the so-called mix10G, mix12G and mix14G models according to393

our nomenclature. For each model, the predefined ages of the K − 1 IBD-classes always ranged from 2 to 2K−1
394

(with Gk = 2k for each class k ∈ (1,K − 1)) while the age of the unique non-IBD class was the same as the395

older IBD class (i.e., GK = GK−1 = 8192). Application of these mixKG models to the various data sets previously396

generated under the 1G, the 3G and the 4G inference models proved highly efficient (Table S7 and S8). For instance397

and in agreement with above results, the mix10G model provided accurate estimation of the overall inbreeding398

Fg (MAE always lower than 0.005 irrespective of the simulated scenarios) but also of the local inbreeding as399

indicated by MAE’s that were always as good as the best alternative model (e.g., compare Table S7 and Table S5).400

Moreover, such models with pre-defined ages for the IBD classes allowed to provide indications on the actual ages401

of inbreeding Gk. We indeed observed that the estimated inbreeding contributions (F(k)
g ) for the K − 1 IBD classes402

were mainly concentrated in those IBD-classes with pre-defined ages close to the true simulated ones as shown in403

Figure 1 for a dense SNP data sets (1000 SNPs per Mb) analyzed under the mix14G models and in Figures S4 to404

S8 for additional simulated data sets with smaller SNP density (either 10 or 100 SNPs per Mb) that were analyzed405

under mix10G or mix12G models.406

[Figure 1 about here.]407

Model comparisons and selection.408

We finally evaluated the BIC criteria to compare the models. When comparing different KG models (from 1G to409

6G) applied to various simulation scenarios (ranging from 1 to 4 simulated IBD-distributions), we observed that410

the BIC criterion tended to support the correct underlying models and never provided support for models with a411

number of classes K higher than the simulated ones (Tables S9 and S10). Nevertheless, for simulations involving412

IBD segments from several classes (i.e., simulated under the 3G to 5G inference models), BIC may favor a model413

with a smaller number of IBD classes than the actual ones when the ages between successive classes are too close,414

although increasing SNP density improves the BIC resolution (Table S10). It should also be noticed that the BIC415

criterion never provided a stronger support in favor of the MixKG model (as defined above) when compared to the416
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6 others models considered (from 1G to 6G), possibly due to its higher number of parameters (e.g., np = 13 for417

the Mix14G model against np = 11 for the 6G model) (Tables S11 and S12). Yet, for simulations with several IBD418

classes (Table S12), the BIC support was generally higher than for the 1G and 2G models.419

Sensitivity of the models to genotyping error and marker informativeness420

As only partially investigated above, when analyzing data with different SNP density, we expected that SNP in-421

formation content, both in terms of marker density and genotyping accuracy, might be a key determinant of the422

resolution of the models. As a matter of expedience, we investigated this further by focusing on the 1G model (for423

both simulation and analyses) and evaluated the effect on its overall performances of changing the marker density424

and the SNP informativeness as summarized by the SNP allele frequency spectrum (AFS). Results reported in Ta-425

ble 3 confirmed that both the estimation of G and the identification of IBD positions associated to older inbreeding426

events always improved when increasing marker density and informativeness. For instance, when the simulated427

G = 256, the MAE for Ĝ (respectively φ̂lIBD ) dropped from 36.9 (respectively 0.7313) with a marker density of 10428

SNPs per cM and a β (0.2, 0.2) AFS to 8.06 (respectively 0.1994) with a marker density of 100 SNPs per cM and to429

5.79 (respectively 0.0824) if, in addition, AFS was array-like. We also observe a better assignation of IBD segment430

to the correct IBD class with higher marker density (Figure S3). It is interesting to note that, at least for the range431

of parameters considered, Fg was accurately estimated irrespective of the marker densities and informativeness.432

[Table 3 about here.]433

We also investigated the sensitivity of the 1G model to the quality of genotyping or sequencing data. As shown434

in Table S13, when considering genotyping data (analyzed by setting ε = 0 for comparison purposes), we found435

that the presence of genotyping errors (either 1% or 0.1%) had little impact on the estimation of Fg, moderate436

effects on the estimation of local inbreeding φl but estimates of G were strongly affected with an upward bias and437

an increased MAE. The magnitude of these effects was actually a function of the number of incorrect genotypes438

per IBD segment that increased the probability of observing heterozygotes and thus to cut the IBD segment into439

smaller ROH. As a result, the impact of genotyping errors was stronger for more recent inbreeding, at higher440

marker density and for higher error rate (Table S13). Interestingly, when analyzing the genotyping data with an441

appropriate error term i.e., setting ε = 0.01 (respectively ε = 0.001) for data simulated with a genotyping error442

of 1% (respectively 0.1%), the estimates of G became unbiased (Table S13). The accuracies with a 0.1% error443

were similar than without error but the MAE still remained larger with 1% genotyping errors and older inbreeding444
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origins. Note that including a small error term in the model (ε , 0) had little influence in the absence of genotyping445

errors.446

We finally evaluated the sensitivity of the 1G model to various confidence levels in genotype calling by sim-447

ulating data that mimic low-fold sequencing (or GBS) data for which several genotypes may have a non-zero448

probability. In these cases, read count data were simulated with a higher SNP density than above (1,000 SNP per449

cM) and variable coverage (from 1 to 10X). For each simulated SNP, the likelihood of the three possible genotypes450

were derived from the read count data as described in the Material and Methods section. The analyzed data sets451

then either consisted of i) the actual SNP genotypes (ideal situation) or ii) vectors of genotype likelihoods. As452

detailed in Table S14, we found that the model performed well in estimating the global parameters G and Fg with453

sequencing data. As expected, the performances improved with higher coverages and were similar than those ob-454

tained with the corresponding genotyping data as coverages > 5X. Lowering sequencing coverages might indeed455

be viewed as decreasing SNP informativeness thereby leading to less accurate estimates for the different parame-456

ters (increased MAE), particularly for simulation in which inbreeding had an older origin (smaller IBD segments).457

For instance, for simulated G > 512 and 1X coverage, both Fg and G were slightly underestimated (and to a lesser458

extent with 2X coverage) while for G 6 256, both global and local (φl) estimates were accurate even with coverage459

as low as 1X (Table S14).460

Simulations under a discrete time Wright-Fischer process461

To evaluate the robustness of the model to departure from model assumptions, we analyzed data simulated under462

a discrete-time Wright-Fisher process using the recently developed program ARGON (Palamara, 2016). For our463

purposes, a decisive advantage of ARGON is that it allowed to identify all the IBD segments (here we only464

considered those > 10 kb) and to obtain their age (i.e., time to most recent ancestor or TMRCA). Inbreeding was465

generated by assuming population histories with either i) a strong bottleneck in the recent past followed by a rapid466

expansion as might be observed in invasive populations (WF1 scenarios) or ii) a reduced effective population size467

in the last twenty generations as might be observed in some domestic populations (WF2 scenarios). In total we468

considered 12 different WF1 scenarios and two different WF2 scenarios (see Material and Methods) and simulated469

50 diploid individuals per scenario. As illustrated in Figure 2A for one WF1 scenario (see Figures S9 and S10470

for all the 12 WP1 and the 2 WP2 scenarios respectively), the simulated history lead as expected to an enrichment471

in IBD segments that trace back to the bottleneck period within the simulated individual genomes (about 20% on472

average in Figure 2A). Yet, in most scenarios, a substantial proportion of inbreeding was associated to more ancient473
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classes that accumulate inbreeding over many more generations. Indeed, a segment was considered IBD if it traced474

back to an ancestor from a generation more recent than the split time (Ts = 103 or Ts = 104 generations depending475

on the scenarios) of two modeled populations (see Material and Methods). Accordingly, in WF1 scenarios, this476

proportion increased with lower effective population size (Ne1), older split time (Ts) and to a lesser extent higher477

bottleneck population size (Neb) and timing (Tb) (Figures S9 and S10).478

We analyzed all these simulated data sets with a mix10G model that consisted of 9 IBD-classes with predefined479

ages ranging from 2 to 512 (with Gk = 2k for each class k) and one non-IBD class that had the same age as the480

older IBD class (i.e., G10 = G9 = 512). The choice for a MixKG model was motivated by our previous findings481

that demonstrated it was informative to date the origin of inbreeding and performed as well as other models in482

estimating local and overall inbreeding. In addition, it allowed to compare all the simulated individuals according483

to the same age-based partitioning of inbreeding.484

[Figure 2 about here.]485

As shown in Figure 2B (see Figures S11 and S12 for all the 12 WP1 and the 2 WP2 scenarios respectively),486

our HMM always allowed to efficiently identify IBD segments tracing back to common ancestors with TMRCA487

smaller than 80 generations, since the underlying SNPs displayed an estimated local inbreeding probability (φl)488

close to one. In agreement with results obtained on simulations performed under the inference model (see above),489

the power to identify IBD segments of older origin gradually decreased (towards values almost always lower than490

20% for TMRCA older than 5000 generations). Note that analyses of data sets simulated under the inference model491

showed that although the power was below one, overall inbreeding remained correctly estimated (see above).492

In addition, the model was found to perform well in assigning the identified IBD segments associated to the493

simulated bottlenecks since they were in their vast majority either assigned to their actual IBD class (i.e., with494

an age the closest to twice the age of the TMRCA) or to an immediately neighboring one. For instance, in the495

scenario considered in Figure 2, the estimated proportions of the individual genomes assigned to IBD segments496

were concentrated in the IBD class with predefined ages equal to 32 (G32), 16 (G16) and to a lesser (but less497

variable) extent in the oldest IBD-class (G512) (Figure 2C and Figures S13 and S14 for all the 12 WP1 and the498

2 WP2 scenarios respectively). This was in agreement with the actual characteristics of the simulated individuals499

since IBD segments with a TMRCA≈ 16 that contributed on average to about 20% of their genome (Figure 2A)500

were mainly assigned (up to 70%) to the IBD classes G32 and G16 (Figure 2D). Note that the oldest IBD class501

G512 also captured some of these IBD segments together with a small proportion of those with an older TMRCA502
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probably because these older IBD classes then become more frequent and have higher mixing coefficients. This503

effect was stronger when the bottleneck contributed less to the overall inbreeding and when the bottleneck was504

older. The performances of the model to correctly assign IBD segments however declined as the timing of the505

bottleneck was older or more generally as the proportion of inbreeding resulting from the period of reduced Ne506

was lower (Figures S13 and S14). Note that misassignment of IBD segments might also result from simulated507

segments being smaller/larger than expectations for a given pre-defined age Gk of the IBD class due to the stochastic508

nature of the Wright-Fisher process. In all cases however, we observed a peak of inbreeding in the IBD-class(es)509

corresponding to the period of reduced Ne or its neighbors (Figures S13 and S14). Overall, this simulation study510

thus confirmed that our model correctly identifies IBD-segments and gives good indications of the inbreeding’s511

age.512

Application to human, canine and ovine real data sets513

We applied our model to individuals from human, dog and sheep populations, i.e., species representative of a wide514

range of demographic histories. Individuals were genotyped, as part of previous experiments (see Material and515

Methods) with assays containing various number SNPs (ca. 300K, 150K and 50K for human, dog and sheep indi-516

viduals respectively) leading to different SNP density (ca., 1 SNP per 10kb, per 20 kb and per 60 kb respectively).517

As a result, and for the reasons mentioned above, the genotyping data were further analyzed with i) a mix14G518

model that consisted of 13 IBD-classes with predefined ages ranging from 2 to 8192 (with Gk = 2k for each class519

k) and one non-IBD class that had the same age as the older IBD class (i.e., G14 = G13 = 8192) for humans and520

dogs; and ii) a mix9G model that consisted of 8 IBD-classes with predefined ages ranging from 2 to 256 (with521

Gk = 2k for each class k) and one non-IBD class (G10 = G9 = 512) for sheep to account for the smaller SNP522

density. To interpret the results, it is useful to remind that the ages Gk of the predefined classes are approximately523

twice the TMRCA and that populations have variable ratio between genetic and physical distances when averaged524

between sexes: 1.16 cM/Mb for human (Kong et al., 2010), 1.26 cM/Mb for sheep (Johnston et al., 2016) and 0.88525

cM/Mb for dog (Campbell et al., 2016). Indeed, we used for the analyses the SNP position on the physical maps526

accompanying the respective data sets. The estimated contribution of each pre-defined IBD class (averaged over527

all the individuals) are detailed for each populations and each species in Figure 3.528

[Figure 3 about here.]529

Regarding humans, the six populations considered here (French, Yoruba, Melanesian, Papuan, Pima and Kari-530
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tiana) have already been thoroughly analyzed in other studies (e.g., Jakobsson et al., 2008) including a study that531

provided a detailed assessment of the distribution of ROH of different lenghts (Kirin et al., 2010). Our results532

showed that the amount of overall inbreeding increased from Africans, Europeans, Oceanians to Native Americans533

from Central and Southern America with a generally remote origin (Figure 3A,B and Figure S17). More precisely,534

the ages of the main contributing IBD-classes that were generally consistent within population were clearly related535

to the Ne of the corresponding populations (the older the larger). Hence, the peak of inbreeding was i) in the class536

with Gk = 512 for Pima and Karitianas; ii) in classes with Gk = 512 and Gk = 1024 for Papuans and Melanesians;537

iii) in the class with Gk = 1024 for French; and iv) in the class with Gk = 2048 for Yoruba. Nevertheless it should538

be noticed that in French or Oceanian populations we observed some individuals with more recent inbreeding but539

this remained limited compared to Pima and Karitiana where there is strong evidence of recent inbreeding, some540

of the individuals having more than 10% inbreeding in very young classes from Gk = 2 to Gk = 8 (Figure 4A541

and Figure S17). These observations are consistent with previous findings by Kirin et al. (2010) based on ROH542

that suggested the presence of both recent (long ROH) and ancient (short ROH) inbreeding in Native Americans.543

Conversely, individuals from Oceanian populations did not display long ROH (several Mb long) but had an excess544

of ROH of intermediate length (between 1 and 2 Mb) indicating a reduced Ne in the past. Finally, individuals545

from European and African populations mostly showed background inbreeding (short ROH) that correlated with546

the underlying Ne. One major difference of our results with the aforementioned study by Kirin et al. (2010) is that547

they only considered ROH > 500 kb leading to a lower estimated value (most probably downwardly biased) for548

the overall individual inbreeding.549

Modern dog breeds present large amounts of inbreeding and are known to have experienced strong bottlenecks550

associated with the recent breed creation from a small number of founders (e.g., Vaysse et al., 2011). In addition,551

strong artificial selection and matings in small closed populations further contributed to increase inbreeding in the552

last decades (Lewis et al., 2015). Accordingly, as shown in Figure 3C,D and Figure S18, we observed massive553

inbreeding (sometimes higher than 20%) in the IBD-class with Gk = 16 (a common ancestor approximately554

8 generations ago) in all the five breeds we analyzed but the Jack Russell Terrier that has a larger Ne (Vaysse555

et al., 2011). As expected also, wolves that did not experienced domestication did not present such an excess of556

inbreeding in recent generations. In each population (including wolves), some individuals were found to be highly557

inbred with an Fg ≈ 50% and approximately 25% of this inbreeding associated to an estimated common ancestor558

living only one or two generations ago (Figure 4B and Figure S18).559

Finally, among the six sheep populations we investigated, three (the Rasa Aragonesa, Milk Lacaune and Ram-560
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bouillet) displayed a large Ne (> 700) as described in Kijas et al. (2012). Hence, individuals from the Rasa561

Aragonesa displayed almost no trace of inbreeding (max = 1.3% when cumulated up to the IBD-class with Gk = 8)562

while the cumulative inbreeding remained lower than 5% on average for individuals from the Milk Lacaune and563

Rambouillet breeds up to classes Gk = 32 (Figure 3E,F and Figure S19). Yet, some Rambouillet individuals pre-564

sented high levels (> 20%) of recent inbreeding (Figure 4C and Figure S19). Conversely, the Wiltshire (Ne = 100)565

and Dorsethorn (Ne = 137) populations that went through a strong reduction in size in the early 1900’s (Dorsethorn566

to a lesser extent) were both found to have a high level of recent inbreeding (Figure 3 and Figure S19). The main567

contributing IBD-class was the one with age Gk = 16 for Wiltshire and Gk = 4 to Gk = 32 for Dorsethorn.568

Interestingly, the Wiltshire individuals were sampled from a New-Zealand flock that experienced several strong569

and successive bottlenecks in its recent history. Indeed, its founders were imported in 1974 from Australia where570

the breed had previously been introduced in 1952 and survived as a remnant population of as few as 12 ewes571

(O’Connell et al., 2012). Assuming a generation time of approximately 4 years in sheep, the distribution of the572

contribution of the most recent classes to the overall inbreeding is thus consistent with this demographic history.573

The sixth sheep population we investigated was the well known Soay sheep that had an estimated Ne = 194 (Kijas574

et al., 2012) and experienced a strong founder effect since the current population derives from a flock of 107 indi-575

viduals that were transferred on the Hirta island in 1932 and then lived in complete isolation (Clutton-Brock and576

Pemberton, 2004). We observed for this population a small amount of recent inbreeding (for IBD classes with age577

Gk ≤ 16), even lower than in Milk Lacaune or Rambouillet, but rather high levels of inbreeding associated with578

IBD classes of ages between between 32 and 64 generations (Figure 3E,F and Figure S19). Integrating over all the579

generations, the Soay sheep thus appeared on average even more inbred than Dorsethorn, which explains the small580

estimated Ne. However, despite this strong founder effect and the high resulting inbreeding level, we observed581

almost no individual with an inbreeding Fg > 5% in the most recent generations. The Soay breed represents an582

interesting example of a wild population resulting from a founder effect and in expansion. To summarize, our583

model allowed to provide deeper insights into the very different patterns of individual inbreeding observable in the584

sheep breeds. Indeed, these inbreeding patterns ranged from small as in the Rasa Aragonesa or limited level (with585

a few overly and recently inbred individuals) as in the Rambouillet breed, to moderate to high inbreeding level that586

either originated from strong bottleneck in the very recent (Wiltshire) or recent (Soay) past, or that resulted from587

the cumulative effect of a less pronounced population size reduction over more generations (Dorsethorn).588

[Figure 4 about here.]589
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Importantly, besides providing a global estimator of inbreeding for each individual, the model also informs590

on the partitioning of this individual inbreeding which is highly valuable. For instance, individuals born from591

extremely consanguineous marriages might be easily identified. As an illustration, Figure 4B showed three dogs592

(Doberman #1 and #7, Border Terrier #1) that displayed approximately 25% inbreeding associated with the Gk = 2593

or Gk = 4 IBD-class (ancestors living one or two generations ago) unlike other dogs from the same population594

(Doberman #12 and Border Terrier #13). These three individuals are likely resulting from matings between a595

sire and its daughter. This indicates that inbreeding is still present in these populations and is not only due to596

the breed creation event but to further management practices. High level of inbreeding associated to parents or597

grand-parents are also observed in sheep (19.2% for Rambouillet #92 in Figure 4C) and even in human (8.9% for598

Karitiana #13 in Figure 4A). For all these individuals, however, these recent events accounts only for a fraction of599

total inbreeding and a substantial proportion of inbreeding is due to more remote ancestors. More generally, by600

partitioning the total amount of inbreeding among ancestors from different generations, our model provides a better601

understanding of the origins of inbreeding in each individual. Hence, individuals with a similar overall inbreeding602

might display a quite different pattern of ancestral contributions captured by our model. For instance, for the603

three sheep individuals (Rambouillet #87, Wiltshire #4 and Soay #26) represented in Figure 4C that all displayed604

an overall inbreeding of approximately 20%, the inbreeding is mostly associated to the IBD-class Gk = 16 for605

the Wiltshire #4, to the two IBD-classes Gk = 32 and Gk = 64 for the Soay #26 whereas for the Rambouillet606

#87 individual, ancestors contributing to inbreeding trace back to a wide spectrum of generations (from Gk = 4607

to Gk = 256). These observations are consistent with patterns at the population level. Interestingly, individuals608

with higher levels of inbreeding (Wiltshire #14 and Rambouillet #92) display comparable patterns with inbreeding609

concentrated in the IBD-class Gk = 16 for Wiltshire #14 and associated to several IBD classes for Rambouillet #92610

(Figure 4C). In humans (Figure 4A), Native Americans from Central and Southern America were found to display611

different make-ups than Oceanians with similar levels of overall inbreeding (e.g., Karitiana #7 vs Melanesian #11612

or Pima #4 vs Papuan #16). As expected from previous results, Oceanians actually displayed little traces of very613

recent inbreeding but accumulated more inbreeding in distant generations.614

Discussion615

In this study, we developed and evaluated HMM models that use genomic data to estimate and to partition individ-616

ual inbreeding into classes of different ages. There actually exist a wide variety of methods to estimate individual617
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inbreeding and these have different properties. Pedigree-based methods rely on a genealogy (the inbreeding can618

only result from individuals within the genealogy) and predict the expected IBD status at a locus whereas genomic619

measures estimate realized inbreeding (the observed level of inbreeding). Genomic estimates can either be global,620

giving a unique measure per individual, or local. Obviously, these latter measures provide more information but621

require a higher marker density. Assessing the distribution of ROH within individual genome have recently be-622

come popular to characterize global and local inbreeding (Kirin et al., 2010; McQuillan et al., 2008; Pemberton623

et al., 2012). Most often, however, estimators relying on ROH are categorizing pairs of chromosome segments as624

IBD or non-IBD and do not provide intermediate values. They rely on the assumption that if stretches of homozy-625

gous markers are sufficiently long, they are IBD. Many parameters must be defined (including minimal number626

of homozygous markers, minimal length of an homozygous track, maximal spacing between successive markers,627

maximal number of heterozygous SNPs in a RoH) and these depend on the population under study and on the628

genotyping technology used. HMM’s as those developed in this study make a better use of all the information629

since they take into account the marker allele frequencies, the genotyping error rates, the genetic marker map630

(the genetic distance between successive markers) and the expected length of IBD tracks. Initially designed for631

genotyping arrays (Leutenegger et al., 2003), they can easily be extended to NGS data (Narasimhan et al., 2016)632

including low-fold sequencing data (Vieira et al., 2016) or genotype-by-sequencing data as done in our study,633

whereas simple ROH are inappropriate in such conditions. HMM’s also allow to automatically estimate some pa-634

rameter of interest such as the frequency of IBD segments (a measure similar to the expected inbreeding if only one635

IBD-class is modeled) and their expected length. Finally, when relying on the Forward-Backward algorithm (as636

in our study), these models integrate all the available information to estimate the IBD probabilities of each marker637

in opposition to a binary classification as obtained with ROH or with a Viterbi algorithm in HMM (Leutenegger638

et al., 2003; Narasimhan et al., 2016; Vieira et al., 2016). Using a probabilistic model is particularly valuable when639

information is sparser and classification is more uncertain (e.g., for smaller and older IBD tracts, at lower marker640

density or informativeness, with higher genotyping error rates or with low-fold sequencing).641

The most simple HMM we considered consists of a single IBD state (1G model) and is similar to several previ-642

ously proposed ones (Leutenegger et al., 2003; Narasimhan et al., 2016; Vieira et al., 2016). This amounts to either643

assume that a single common ancestor is responsible for inbreeding or that the vast majority of IBD segments trace644

back to ancestors that lived in the same past generation. However, most populations have complex demographic645

histories, with varying Ne and common ancestors of IBD segments are thus expected to originate from many dif-646

ferent generations in the past. As shown by our application in real data sets, even in domestic populations for647
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which inbreeding might be expected to result from a limited number of founder individuals, individual inbreeding648

generally result from ancestors in different generations back in time probably due to the subsequent intense use of649

some key (selected) breeders. Hence, extending the model to several IBD-classes is highly valuable and might be650

viewed as defining multiple reference populations instead of a single one. Inbreeding is then captured as distantly651

in the past as made possible by the available marker density and informativeness. There is thus no need to arbitrar-652

ily define any base population with unrelated ancestors nor to select an arbitrary threshold below which stretches653

of homozygous markers are considered non-IBD. The first benefit of a multiple IBD-classes model is to better fit654

the data and to obtain more accurate estimators of inbreeding both locally and globally. Indeed, our simulations655

under the inference model with several IBD classes clearly showed that the 1G (and 2G) model underestimated656

Fg as some IBD segments were missed while the power to detect IBD segments was decreased. In addition, in657

the presence of ancient inbreeding, 1G model will tend to interpret recent (and thus longer) IBD segments as658

consecutive smaller segments of older origins because the estimated age of the single IBD class would tend to be659

older. Of course, in the absence of genotyping errors, the entire segment would then be correctly declared IBD660

and would appear as a long tract. However, at higher genotyping error rates (as with NGS data) such segments661

would be cut into smaller pieces. This would not happen when analyzing data with a model with multiple classes662

since recent IBD segments would then be associated to a class with a smaller age and the penalty in the HMM663

to leave the IBD-class and start a new IBD segment would be too large. Under a single-IBD class model, the664

age of the longest ROH further tends to be overestimated which might introduce substantial biases in applications665

that rely on the age of the IBD tracts to estimate some parameters of interest (e.g., the mutation rate). With two666

states HMM (Leutenegger et al.,2003), LD pruning is sometimes used to get rid of background LD and to force667

the model to concentrate on recent inbreeding (and hence avoiding the aforementioned problem). With multiple668

IBD-classes model (> 2G models), ancient inbreeding associated with background population LD is automatically669

assigned to the eldest IBD classes making LD pruning unnecessary for that purpose. Also, HMM with multiple670

IBD classes allows to determine whether there is a single or multiple IBD distribution(s) and to infer the relatively671

recent demographic history of the population, providing Ne was reduced at some recent time in the past. Such a672

modeling actually explores more recent generations and can be considered as complementary to approaches that673

infer past Ne thousands generations ago and many more as proposed by Li and Durbin (2011). Application to674

real populations demonstrated than the model can capture very different patterns including presence or absence of675

consanguineous matings, large Ne and low inbreeding, bottlenecks at varying time in the past, founder effects and676

reduced Ne due to isolation in the past (Gi > 100). Finally, with multiple classes, we can clearly identify individu-677
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als from extreme consanguineous matings (sire x daughter, first cousins, etc) because the recent inbreeding due to678

this recent ancestor is distinguished from the background inbreeding. Such examples with 25% inbreeding in class679

Gi 6 4 were observed in dogs or sheep populations.680

Our modeling approach actually allows to explore inbreeding in several dimensions: the global (Fg), the lo-681

cal (φl) and age-variable (F(k)
g ). It has been stated that more ancient inbreeding should not be considered since682

deleterious variants are expected to be rapidly purged from populations. Yet, the number of generations for this683

purging to complete depends on the population history. For instance, strong bottlenecks tend to reduce the ef-684

ficiency of purging deleterious variants (”The cost of domestication”) and artificial selection might favor some685

breeders carrying deleterious variants. Thanks to our model we could estimate the inbreeding depression associ-686

ated with different age-classes. This requires appropriate data sets (individuals genotyped at high marker density687

to capture old inbreeding and with own fitness records) and sufficient variation in all IBD-classes. Alternatively,688

recent and old inbreeding can be compared by functional annotations of different segments. For instance, Szpiech689

et al. (2013) showed that long ROH are enriched for deleterious variants in humans. We can also use our model to690

test for local inbreeding depression and identify regions or variants where homozygosity seems more deleterious691

(e.g., Leutenegger et al., 2006).692

Several strategies can be used to infer inbreeding in populations with our model. First, when using only one693

IBD class as in Leutenegger et al. (2003), we can either estimate a single age common to both IBD and non-IBD694

classes or a different value for both states. The first option results in a model similar to Leutenegger et al. (2003)695

and Vieira et al. (2016) (note that the model by Narasimhan et al. (2016) does not estimate the age but a single696

transition parameters combining G and the mixing proportions) and results in better estimates of age. Next, we697

can select the best number of IBD-classes according to the BIC criterion to compare the different models. When698

evaluated under simulated data, the BIC appeared to be conservative since the selected values were smaller or equal699

to the simulated ones. Note that with this approach we select the number of classes that best fit the data (merging700

several close classes if necessary) and not the real number of classes. Finally, we can use a set of IBD (and non-701

IBD) classes with predefined ages (the so-called MixKG models). It is then recommended to well separate these702

ages (e.g., using a ratio of 2 between successive ages to limit the overlap between the exponential distributions703

assumed for the IBD segment lengths) and cover a range of generations compatible with the available marker704

density. That strategy proved particularly efficient in most cases since it provided accurate estimates of the overall705

and local inbreeding while providing insights into the partitioning of inbreeding in the different age-classes and706

more easily comparable results across individuals from the same population. Such a model was only sub-optimal707
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when a single and rare IBD class was simulated (which might not be usual in real populations) but required larger708

computational resources since more classes are simultaneously fitted.709

Some precautions must be taken regarding interpretation of results. In our model, the mixing proportion and710

the rate of the exponential distribution are both estimated contrary to the model by Narasimhan et al. (2016) where711

a single parameter is used. The mixing proportion can be interpreted as an expected inbreeding (the proportion712

of IBD segments among all segments) only if we have one IBD class and a single estimator for the age G. When713

segments from different distributions have different lengths, that interpretation is no longer correct (see the model714

section). The estimation of G might further be influenced by approximations in the model since we assume that the715

map is known without error, the recombination rate is not variable, there is no mutation and the population allele716

frequencies are known and did not vary over time. The estimation of this parameter is based on the distribution717

of lengths of IBD segments but this is a random process, for the same true G we can obtain segments of different718

lengths. For estimation from few IBD segments, the relative variation is higher. The presence of multiple-IBD719

classes generates also noise and the estimated distributions are often combinations of true underlying distributions.720

Therefore, the estimated inbreeding distribution must not be considered as exact but rather indicative. This is721

particularly true for ancient inbreeding classes for which there is less information and approximations are accu-722

mulated over many generations. Ancient inbreeding captures ancient demographic history (past Ne and resulting723

LD) and presents less variation among individuals (ancient inbreeding is the results of many lineages and variance724

decreases for large samples). Note that some methods do not consider as inbreeding such shorts ROH reflecting725

homozygosity for ancient haplotypes and contributing to local LD patterns although Broman and Weber (1999)726

declared that homozygosity resulting of ”linkage disequilibrium is indeed the result of the mating of (very dis-727

tantly) related individuals”. With our model, such inbreeding is automatically associated to ancient IBD-classes728

and separated from more recent inbreeding. Hence, users are free to interpret this as true inbreeding or background729

LD. Globally, estimation of different parameters is less accurate when less information is available (fewer IBD730

segments and less informative marker per segment). The model relies on two important hypotheses. First, it is731

assumed that most of the variants trace back further in time than the ancestors: the mutation did not happen in the732

path between the individual and its ancestor. With standard mutation and recombination rates (e.g., as in human733

or cattle), few mutations per IBD segment are expected on these paths (the value is relatively constant regardless734

of the age since older segments are smaller but have more time for mutations). So, as long as enough SNPs are735

present per segment, the impact of mutations should be low and accounted for by the genotyping error rate param-736

eter. In addition, markers from genotyping arrays are old due ascertainment bias favoring polymorphism in several737
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populations. Still the model should be used cautiously when this condition is not met e.g., in populations distantly738

related from all of those represented in the discovery panel of the genotyping array (monomorphic SNPs in all the739

individuals of the considered population should then be discarded). The second hypothesis is that the marker allele740

frequencies in the base populations are known but we have only estimates. A special attention must be taken when741

working with several very different populations and markers have been selected based on their frequencies in one742

of these. When many markers are not segregating in one population (due to ascertainment bias) but frequencies743

are estimated across populations, these markers will be considered variable. Their fixation in the breed might then744

be considered as inbreeding. It is therefore important either to estimate the frequencies within population or use745

markers segregating in all the populations.746

We are working on several extensions of our model, for instance to better take into account the possibility of747

mutations or to estimate the allele frequencies. Another possible extension to capitalize on individual inbreeding748

for past demographic inference of the whole population would be to explicitly relate the contribution of each749

IBD-class to each and every individual inbreeding to the corresponding past effective population size and further750

consider all the individuals jointly to estimate these (hyper–)parameters. Such a development might be viewed as751

an extension of our individual-oriented model to the population level.752
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Figure 1. Estimated inbreeding contributions F(k)
g for 13 IBD classes with pre-defined ages (mix14G model)

on data simulated under the 5G model (4 IBD classes). The simulated genome consisted of 25 chromosomes
of 100 cM with a marker density of 1000 SNPs per cM. Genotyping data for 50 individuals were simulated under
the 5G inference model i.e., with 4 IBD-classes with the following realized ages (inbreeding contributions) as
indicated by a star in the plot: G1 = 4 (F(1)

g = 0.125), G2 = 128 (F(2)
g = 0.08), G3 = 1024 (F(3)

g = 0.04) and G1 = 4
(F(4)
g = 0.11). The data were analyzed with the mix14G that consisted of 13 IBD-classes with predefined ages

ranging from 2 to 8192 (with Gk = 2k for each class k) and one non-IBD class that had the same age as the older
IBD class (i.e., GK = GK−1 = 8192). For each of these 13 IBD classes, the boxplots give the distribution of the

estimated inbreeding contribution (F̂(k)
g ) over the 50 simulated individuals.
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Figure 2. Evaluation of the mix10G model on a data set consisting of 50 diploid individuals simulated under
a Wright–Fisher demographic history with varying population sizes. The population evolved under a WF1
scenario (see the Material and Methods section) with Ne1 = 105, Ts = 104 and a bottleneck lasting from
generations 17 to 14 in the past and during which the population size was Neb = 20. A) Realized distribution of
the proportions of the simulated individual genomes lying within IBD segments as a function of their TMRCA
(the interval G14-17 contains IBD segments tracing back to the bottleneck period, i.e., 14 to 17 generations
backward in time) and within non-IBD segments (background). B) Estimated local inbreeding probabilities (φl)
averaged over all the simulated individuals and markers as a function of the actual TMRCA of the underlying
IBD segments. C) Distributions of the estimated proportion of the individual genomes assigned to each of the 9
predefined IBD classes (over the 50 simulated individuals). D) Proportion of the SNPs lying in IBD segments
originating from the bottleneck period (i.e., 14 to 17 generations backward in time) that are assigned to the 9
different IBD classes of the mix10G model (summed over all the 50 individuals).
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Figure 3. Average estimated proportions of inbreeding contribution of a set of K predefined IBD classes for
human (A, K = 13), dog (C, K = 13) and sheep (E, K = 8) populations and corresponding average
cumulative inbreeding (B, D and F for human, dog and sheep populations respectively).
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Figure 4. Estimated partitioning of inbreeding in five humans (A), five dogs (B) and five sheeps (C).
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Scenario Realized median values Median estimated values (1G model)
G ρ G ρ Fg #Tracts Ĝ (MAE) ρ̂ (MAE) F̂g (MAE) MAE for φ̂l (φ̂lIBD )
2 0.500 2.00 0.507 0.500 38.0 2.00 (0.34) 0.503 (0.0325) 0.500 (0.0005) 0.002 (0.002)
3 0.250 3.00 0.249 0.251 25.0 3.00 (0.43) 0.248 (0.0287) 0.251 (0.0005) 0.003 (0.006)
4 0.125 3.90 0.124 0.125 15.0 4.00 (0.57) 0.126 (0.0194) 0.124 (0.0005) 0.003 (0.010)
8 0.125 8.10 0.126 0.124 28.0 8.00 (0.82) 0.124 (0.0148) 0.124 (0.0008) 0.005 (0.021)

16 0.010 16.0 0.009 0.009 4.00 16.7 (10.1) 0.009 (0.0034) 0.009 (0.0005) 0.001 (0.065)
16 0.020 16.7 0.019 0.018 8.00 16.6 (4.02) 0.018 (0.0054) 0.018 (0.0007) 0.003 (0.062)
16 0.050 16.0 0.049 0.049 21.0 16.2 (1.99) 0.050 (0.0080) 0.048 (0.0009) 0.006 (0.055)
16 0.100 16.0 0.099 0.098 42.0 16.0 (1.35) 0.098 (0.0112) 0.097 (0.0011) 0.010 (0.050)
32 0.010 34.3 0.010 0.009 8.00 34.1 (11.9) 0.009 (0.0028) 0.009 (0.0009) 0.003 (0.160)
32 0.020 32.4 0.019 0.019 16.0 32.8 (6.13) 0.019 (0.0037) 0.019 (0.0011) 0.006 (0.141)
32 0.050 32.3 0.049 0.049 41.0 32.7 (3.62) 0.049 (0.0062) 0.049 (0.0014) 0.012 (0.123)
32 0.100 32.1 0.100 0.100 83.0 32.0 (2.26) 0.100 (0.0085) 0.100 (0.0017) 0.021 (0.103)
64 0.010 65.7 0.010 0.010 16.0 63.7 (17.6) 0.009 (0.0025) 0.009 (0.0016) 0.006 (0.326)
64 0.020 66.1 0.020 0.019 32.0 66.7 (11.2) 0.020 (0.0033) 0.020 (0.0017) 0.012 (0.291)
64 0.050 64.4 0.050 0.050 80.5 64.5 (6.17) 0.049 (0.0046) 0.049 (0.0021) 0.024 (0.243)
64 0.100 64.2 0.099 0.099 162 64.3 (4.06) 0.099 (0.0063) 0.099 (0.0024) 0.041 (0.206)
128 0.050 128 0.050 0.050 162 128 (11.8) 0.049 (0.0044) 0.049 (0.0030) 0.044 (0.439)
128 0.100 128 0.101 0.100 323 127 (8.03) 0.100 (0.0058) 0.100 (0.0037) 0.074 (0.368)
256 0.050 257 0.050 0.050 322 259 (26.7) 0.050 (0.0049) 0.050 (0.0043) 0.066 (0.669)
256 0.100 256 0.100 0.100 643 257 (16.7) 0.099 (0.0055) 0.099 (0.0046) 0.113 (0.569)

Table 1. Performance of the 1G model on data simulated under the 1G inference model. The simulated
genome consisted of 25 chromosomes of 100 cM with a marker density of 10 SNPs per cM. Genotyping data for
500 individuals were simulated under the 1G inference model for each of 20 different scenarios defined by the
simulated G and ρ values reported in the first two columns. The table reports the resulting median realized (true)
values (across the 500 simulated individuals) for the age of inbreeding (G), the mixing proportions (ρ), the
individual inbreeding (Fg) and the number of IBD tracks (#Tracks). Similarly, the table gives the median
estimated values and the Mean Absolute Errors (MAE) for the age of inbreeding (Ĝ), the mixing proportions (̂ρ)
and the individual inbreeding (F̂g). Finally, the table gives the MAE for the estimated local inbreeding (φl) either
for all the SNPs (φ̂l) or for those actually lying within IBD segments (φ̂lIBD ).
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Scenario Realized median values Median estimated values (3G model)

G1 (ρ1) G2 (ρ2) G1 (F(1)
g ) G2 (F(2)

g ) Fg Ĝ1 (MAE) Ĝ2 (MAE) F̂(1)
g (MAE) F̂(2)

g (MAE) F̂g (MAE) MAE for φ̂l (φ̂lIBD )
4 (0.125) 16 (0.100) 4.1 (0.12) 17 (0.09) 0.210 7.20 (3.06) 391 (288) 0.195 (0.075) 0.004 (0.074) 0.210 (0.002) 0.012 (0.025)
4 (0.125) 64 (0.100) 4.1 (0.12) 64 (0.09) 0.211 3.60 (1.01) 64.6 (9.53) 0.123 (0.007) 0.086 (0.007) 0.211 (0.002) 0.038 (0.089)
4 (0.125) 256 (0.100) 4.0 (0.12) 257 (0.09) 0.211 3.60 (0.65) 275 (35.9) 0.120 (0.001) 0.087 (0.004) 0.208 (0.004) 0.101 (0.238)
8 (0.100) 128 (0.100) 8.2 (0.10) 128 (0.09) 0.189 7.20 (1.48) 126 (14.8) 0.098 (0.004) 0.090 (0.005) 0.189 (0.003) 0.069 (0.182)
32 (0.100) 64 (0.100) 32 (0.10) 67 (0.09) 0.190 33.9 (7.08) 102 (140) 0.157 (0.058) 0.030 (0.057) 0.192 (0.003) 0.051 (0.132)
32 (0.100) 256 (0.100) 32 (0.10) 260 (0.09) 0.188 29.6 (4.31) 265 (38.0) 0.097 (0.007) 0.089 (0.007) 0.188 (0.004) 0.114 (0.302)

Table 2. Performance of the 3G model on data simulated under the 3G inference model (i.e., two IBD
classes and one non-IBD class). The simulated genome consisted of 25 chromosomes of 100 cM with a marker
density of 10 SNPs per cM. Genotyping data for 500 individuals were simulated under the 3G inference model
for each of 6 different scenarios defined by the simulated ages of inbreeding G1 and G2 (reported in the two first
columns) and the corresponding mixing proportions ρ1 and ρ2 (reported in the third and fourth columns) of the
two classes of IBD segments. The table reports the resulting median realized (true) values (across the 500
simulated individuals) for the ages of inbreeding (G1 and G2), the amount of inbreeding originating from each
IBD class (F(1)

g and F(2)
g ) and the overall individual inbreeding (Fg). The table further gives the median (and their

associated MAE) of the estimated values (Ĝ1, Ĝ2, F̂(1)
g , F̂(2)

g and F̂g) obtained under the 3G model. The table also
gives the MAE for the estimated local inbreeding (φl) either for all the SNPs (φ̂l) or for those actually lying within
IBD segments only (φ̂lIBD ).
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Simulation Realized median value Estimated median value
G ρ SNP per cM AFS G Fg Ĝ (MAE) F̂g (MAE) MAE for φ̂l (φ̂lIBD )
4 0.125 10 Array-like 3.90 0.125 4.00 (0.57) 0.124 (0.001) 0.0026 (0.0101)
4 0.125 100 Array-like 4.00 0.123 4.00 (0.51) 0.123 (0.000) 0.0002 (0.0009)
4 0.125 10 β (0.2, 0.2) 4.10 0.119 4.00 (0.64) 0.120 (0.002) 0.0068 (0.0272)
4 0.125 100 β (0.2, 0.2) 4.10 0.120 4.00 (0.55) 0.120 (0.000) 0.0006 (0.0023)

64 0.100 10 Array-like 64.2 0.099 64.3 (4.06) 0.099 (0.002) 0.0410 (0.2056)
64 0.100 100 Array-like 64.6 0.099 64.4 (2.00) 0.099 (0.000) 0.0035 (0.0181)
64 0.100 10 β (0.2, 0.2) 64.2 0.100 64.1 (6.26) 0.100 (0.006) 0.0807 (0.4032)
64 0.100 100 β (0.2, 0.2) 64.1 0.099 64.2 (2.50) 0.099 (0.000) 0.0095 (0.0482)
256 0.100 10 Array-like 256 0.100 257 (16.7) 0.099 (0.005) 0.1134 (0.5689)
256 0.100 100 Array-like 255 0.100 256 (5.79) 0.100 (0.000) 0.0164 (0.0824)
256 0.100 10 β (0.2, 0.2) 257 0.100 252 (36.9) 0.100 (0.008) 0.1462 (0.7313)
256 0.100 100 β (0.2, 0.2) 256 0.100 255 (8.06) 0.100 (0.001) 0.0398 (0.1994)

Table 3. Performance of the 1G model on simulated data sets with different SNP density and
informativeness. The simulated genome consisted of 25 chromosomes of 100 cM with a marker density of either
10 or 100 SNPs per cM. Allele frequency spectrum (AFS) of each SNP reference allele were either sampled from
an empirical distribution (array-like) derived from a real (cattle) genotyping assay (i.e., close to uniform) or from
a (U-shape) β (0.2, 0.2) distribution that mimics NGS data. Genotyping data for 500 individuals were simulated
under the 1G inference model for each of 3 different scenarios defined by the simulated G and ρ values reported
in the first two columns. For each simulation, the table reports the resulting realized (true) median value (across
the 500 simulated individuals) for the age of inbreeding (G) and the individual inbreeding (Fg) together with the
median of their estimated values Ĝ and F̂g and corresponding Mean Absolute Errors (MAE). Finally, the table
gives the MAE for the estimated local inbreeding (φl) either for all the SNPs (φ̂l) or for those actually lying within
IBD segments only (φ̂lIBD ).
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