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How much research is spurred when a gene is associated with a complex disease?
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The impact of genome-wide association studies (GWAS) on biomedical research output was quan-
titatively evaluated. GWAS have not changed the historical skew of publications toward genes
involved in Mendelian diseases, but genes newly implicated by GWAS in complex disease do expe-
rience a modest increase in publication activity. The impact of GWAS on biomedical research into
individual genes is declining, however, even as the rate of new GWAS associations increases.

A decade after the first publication of a successful
GWAS [1], few results from GWAS have had clinical im-
pact, because most associated variants have modest ef-
fect sizes or unclear functional consequences [2, 3]. Direct
clinical impact is, however, not the only goal of GWAS.
Another major goal is to identify and steer research to-
ward novel genes involved in complex diseases [4]. For
example, the first published GWAS unexpectedly identi-
fied Complement Factor H as associated with macular de-
generation [1], spurring the development of complement-
based therapeutics [5]. Similarly, most genes associated
with multiple sclerosis through GWAS had not previously
been considered candidates [6]. But what impact have
GWAS had beyond these paradigm examples? GWAS
are more highly cited than comparable candidate gene
studies [7], but how much follow-up research do GWAS
actually motivate? To answer this question, we quanti-
fied the effects of GWAS on biomedical research output.

We measured research output on genes using scientific
publications, as collected in the NCBI Gene database [8].
We prefer this manually curated database to automatic
text mining, because text mining may introduce false
positives when a gene is mentioned in passing. We classi-
fied genes into those associated with Mendelian disease,
complex disease, both, or no disease using the Online
Mendelian Inheritance in Man (OMIM) database [9] and
the EBI-NCBI GWAS catalog [10].

As expected [11, 12], we found that in the pre-GWAS
era research was skewed toward a minority of human
genes (Fig. 1A). The majority of highly-studied genes
were involved in Mendelian disease, and many genes that
would later be associated with complex disease received
little attention (Fig. 1B). In the post-GWAS era, research
output is even more skewed (Fig. 1C; coefficient of vari-
ation 3.4 vs 2.5). Most highly studied genes are still
ones involved in Mendelian disease, and many genes as-
sociated with complex disease still receive little attention
(Fig. 1D). By contrast, research output on yeast genes be-
came much less skewed following the publication of the
yeast genome (Fig. S1). The advent of GWAS has not re-
duced the bias of biomedical research toward Mendelian
disease genes. But how has GWAS affected research on
individual genes?

To quantify the immediate effect of GWAS on indi-
vidual “hit” genes, we focused on the year a gene was
associated with complex disease through GWAS and the
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FIG. 1. Biomedical research output is skewed toward genes in-
volved in Mendelian disease, even after the advent of GWAS.
A: In the pre-GWAS era (before 2005), the distribution of
publications among genes was highly skewed. B: Highly-
studied genes tended to be involved in Mendelian disease. C:
In the post-GWAS era (2005 and beyond), the distribution
of research output is even more highly skewed. D: Highly-
studied genes still tend to be those involved in Mendelian dis-
ease, with many genes involved in complex disease receiving
little study.

following two years. For each new GWAS hit, we com-
pared publications over this period with a control gene
chosen to have as similar a prior publication history as
possible. We found that association with complex dis-
ease through GWAS does indeed result in modestly more
research on a gene (Fig. 2A). The median GWAS hit ex-
perienced 2 additional publications in the following three
years, and the average number of additional publications
per GWAS hit was 2.8.

What factors determine how much additional research
effort is expended on a new GWAS hit? The strength of
an association is quantified by its statistical p-value and
its effect size, most commonly an odds ratio. We found
that the additional publications on a gene and the p-
value of its association are weakly negatively correlated
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FIG. 2. The effect of GWAS on the output of research into
associated genes is modest and declining. A: Genes newly
implicated in complex disease via GWAS experience a mod-
est increase in publications in the following three years. B:
A significantly elevated number of studies were published on
Complement factor H following its association with macular
degeneration via GWAS. Solid line is the predicted publica-
tion history from the null model, points indicate actual publi-
cation counts, and starred points indicate years with a statisti-
cally significant excess of publications (one-sided Bonferroni-
corrected p < 0.05). C: The proportion of genes exhibiting
an unusual excess in publications that were recently identi-
fied in GWAS peaked at roughly 16% in 2009 and has since
declined, even as the rate at which genes are newly associated
via GWAS has increased. D: The mean number of additional
publications (compared to control genes) for genes newly as-
sociated in GWAS has declined. Error bars denote 95% stan-
dard errors of the mean. Standard errors for 2005 and 2006
(not shown) are large due to the small number of genes in
those years.

(Spearman rank correlation p = -0.069, N = 2,084, p
= 0.0018). Additional publications and odds ratios are
weakly positively correlated (Spearman rank correlation
p = 0.062, N = 1,143, p = 0.035). Researchers are thus
more likely to follow up on associations with higher sta-
tistical confidence and larger effect size, although both
effects are weak.

The typical GWAS hit receives a modest increase in re-
search effort, but some genes may receive large increases.
To identify such genes, we used the model of Pfeiffer and
Hoffmann [13] to predict the number of publications for
each gene in each year, based on that gene’s prior publi-
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cation history. We trained the model on all genes never
implicated in complex disease through GWAS. By com-
paring model predictions and publication data, we then
identified particular years in which particular genes had
unexpectedly large numbers of publications (Table S1).
For example, Complement Factor H had a significant ex-
cess of publications in the three years after its association
with macular degeneration (Fig 2B).

How has the impact of GWAS changed over time?
Soon after the advent of GWAS, recent GWAS hits made
up a substantial fraction of genes with excess publica-
tions in each year, but that fraction has declined dra-
matically, even as the number of new GWAS hits has
increased (Fig. 2C). Moreover, the mean number of ad-
ditional publications on a new GWAS hit is smaller for re-
cent hits than early hits (Fig. 2D). The impact of GWAS
on biomedical research into individual genes is thus de-
clining.

By quantitatively analyzing the publication histories
of genes associated with complex disease through GWAS,
we have shown that the effect of GWAS on biomedical
research into individual genes has been modest and is de-
clining. Research output remains highly skewed toward
Mendelian disease genes, with many complex disease
genes receiving little attention (Fig. 1D). Early GWAS
hits were subject to substantial additional study, but
later GWAS hits have received little additional attention
(Fig. 2D).

Many factors may be contributing to the declining im-
pact of GWAS. For example, follow-up studies may be
slower than in the early years of GWAS, due to increas-
ing recognition of the potential complexity of the links
between associated variants, functional variants, and tar-
get genes [14]. Availability of funding may also con-
strain follow-up studies, particularly because biomedical
research spending has declined in both North America
and Europe [15]. In any case, our results suggest that
reforms may be needed for GWAS to reach the goal of
understanding the mechanisms linking GWAS-identified
genes to disease.
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METHODS

a. Publication data. We obtained Entrez GenelDs
for all human protein-coding genes from NCBI Gene [§]
on September 16, 2016. For all those genes, we col-
lected PubMed identifiers of associated publications from
NCBI Gene’s gene2pubmed file, downloaded September
16, 2016. This file contains both associations created
manually during the curation of Gene References Into
Function (GeneRIFs) and associations collected from
organism-specific databases, Gene Ontology, and other
curated data sources. We then obtained date information
for each publication from PubMed using BioPython [16].
We followed a similar procedure for yeast genes.

b. Disease data. To identify genes associated with
Mendelian disease, we downloaded the OMIM Gene Map
of connections from genes to traits [9] on December 8,
2016. We filtered to keep only entries with a confidence
code of “confirmed” and to ignore entries indicating a
potentially spurious mapping or association with a non-
disease trait. We further considered only entries with
Entrez GenelDs, to avoid ambiguity among gene names
and aliases. This procedure yielded 1,853 genes associ-
ated with disease traits. Of these, 1,517 genes were as-
sociated with Mendelian but not complex multifactorial
disease, 163 were associated with complex multifactorial
but not Mendelian disease, and 173 were associated with
both Mendelian and complex multifactorial disease.

To further identify genes associated with complex dis-
ease and to gather GWAS data, we used the November
28th, 2016 release of NHGRI-EBI's GWAS Catalog [10].
We filtered the catalog to remove nondisease traits, by
keeping only entries that were children of the term “dis-
ease” (EF0_0000408) in the Experimental Factor Ontol-
ogy [17]. We considered a gene to be associated with
a disease if an associated SNP was within that gene or
within 500 basepairs of that gene, considering only genes
with a reported Entrez GenelD. This procedure yielded
2,983 genes associated with complex disease.

Our analysis of OMIM and the GWAS catalog yielded
4,382 total disease-associated genes. Considering genes
associated with only Mendelian disease in OMIM and
not associated with disease through GWAS yielded 1,202
Mendelian disease genes. Considering genes associated
with only complex multifactorial disease in OMIM or as-
sociated with disease through GWAS yielded 2,691 com-
plex disease genes. The remaining 489 genes we associ-
ated with both Mendelian and complex disease.

Of the disease genes in the GWAS catalog, 2,084 were
first associated prior to 2014, so we could analyze three
full years of publication data. For those genes, we identi-
fied odds ratios as effect sizes without units for SNPs that
had a reported frequency of the risk allele. For our odds
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ratio analysis, we analyzed the 1,143 genes for which an
odds ratio was reported in the first year of GWAS asso-
ciation.

c. Control genes. For each of our 2,084 GWAS
genes, we identified its control gene as the non-GWAS
gene with the closest number of total publications prior
to the year the gene was first associated with complex
disease. If multiple genes were tied for closest, we com-
pared the previous year as well, continuing either until
there was no ambiguity or until we reached 1950. For
the 224 GWAS genes with ambiguous control genes, we
compared publications between the GWAS gene and the
average of the control genes.

d. Publication rate model. We used the model of
Pfeiffer and Hoffman to predict expected per-gene publi-
cation rates [13]:

k1P + ko P ¢ + k3
1+ (Py/Ps)”

A—Pi,t+1 - (1)

Here, AP;;y; is the predicted number of publications
for gene ¢ in year t + 1, and P;; and P} are the cumu-
lative number of publications in previous years for the
gene and the average cumulative number of publications
for all genes in the organism, respectively. The term in
the denominator models saturation of publication rates.
The three rate parameters, k1, ko, and k3, and the satu-
ration parameters, Ps and «, were assumed to be iden-
tical for all genes. To fit the parameters to our data, we
constructed a likelihood function by assuming that the
number of publications each year for each gene was inde-
pendently Poisson distributed with mean AP; 11 given
by Eq. 1. We then maximized that likelihood with re-
spect to the five model parameters, using publication
data from 1950 to 2015 for all non-GWAS genes. The
maximum-likelihood parameter values were ky = 0.0230,
ko = 0.235, k3 = 0.00248, Ps = 23.3, o = 1.37. Five
genes each had 1 publication prior to 1950 that was not
included in the data fit.

To identify years in which genes had significantly ele-
vated publication rates, our null model was that publica-
tions were Poisson distributed with mean given by Eq. 1.
Significant gene-years were defined as those in which the
probability of generating at least the observed number of
publications was less than the Bonferroni-corrected sig-
nificance cutoft 0.05/(N,N,). Here N, = 20,681 was the
total number of genes considered and N, = 66 was the
total number of years.
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SUPPLEMENTARY MATERIAL

Table S1: Gene-years with a statistically significant ex-
cess of publications relative to the prediction of the Pfeif-
fer and Hoffman model. For GWAS disease genes, the
date of the first GWAS to identify that gene is also
recorded.
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Figure S1: Biomedical research effort into yeast genes
is less skewed than human genes. A: Before the release
of the yeast genome sequence, a large number of yeast
genes were unstudied. The overall distribution was,
however, narrower for yeast genes than human genes
(coefficient of variation 2.1 vs. 2.5). B: After the
release of the genome, research effort was substantially
more evenly distributed among yeast genes. C: The
distribution of research effort among yeast genes has
steadily become more uniform, as quantified by the
coefficient of variation of publication counts in each year.
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