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Abstract 
Lung cancer is the leading cause of cancer deaths in both men and women in the US. 
While most sporadic lung cancer cases are related to environmental factors such as 
smoking, genetic susceptibility may also play an important role and a number of lung 
cancer associated single nucleotide polymorphisms (SNPs) have been identified 
although many remain to be found. The collective effects of genome wide minor 
alleles of common SNPs, or the minor allele content (MAC) in an individual, have 
been linked with quantitative variations of complex traits and diseases. Here we 
studied MAC in lung cancer using previously published SNP datasets and found 
higher MAC in cases relative to matched controls. A set of 25883 SNPs with MA (MAF 
< 0.5) more common in cases (P < 0.1) was found to have the best predictive 
accuracy. A weighted risk score calculated by using this set can predict 2.6% of lung 
cancer cases (100% specificity). These results identify a novel genetic risk element or 
higher MAC in lung cancer susceptibility and provide a useful genetic method to 
identify a small fraction of lung cancer cases.   
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Introduction  
Lung cancer is the leading cause of cancer death in both men and women in the U.S 
and an estimated 158,040 Americans are expected to die from lung cancer in 2015, 
accounting for approximately 27 percent of all cancer deaths1, 2. The most common 
environmental risk factor for sporadic lung cancer is smoking and radon3. However, 
there are large variations in an individual’s susceptibility to lung cancer and the 
heritability of lung cancer is estimated to be 8-14%4, 5. Only a fraction of smokers 
(~15%) will develop lung cancer in their lifetime, and non-smokers also can develop 
lung cancers6. A number of cancer genes such as K-ras, p53, Rb, EGFR, HER2-neu 
have been identified whose mutations contribute to lung cancers7-12.  
 
Efforts to identify quantitative susceptibility loci in lung cancer have mostly involved 
genome wide association studies (GWAS) and identified a number of lung cancer risk 
SNPs (single nucleotide polymorphisms, SNPs)13-17. However, they account for very 
small fraction of lung cancer cases and their mechanisms of action remain largely 
unknown18. Rather than focusing on individual major risk alleles, we have in recent 
years developed a novel approach to study the collective effects of weak effect SNPs 
on complex diseases and traits. We have shown that the collective effects of genome 
wide collection of minor alleles (MAs) in an individual are linked with lower 
reproductive fitness in C.elegans and yeasts19 and risk for Parkinson’s disease20. 
These studies suggest that overall level of randomness or MA amounts may be 
expected to be higher in complex diseases relative to controls.  
 
Known predictive models of lung cancers mostly use smoking status, radon exposure, 
and family history21, 22. These models cannot predict pre-birth risk or risk long before 
incidence. Researchers have also used a set of susceptibility loci to create a genetic 
risk score to better predict lung cancer risk23-25. But these predictions were generally 
poor and not meaningful for clinical use. These prediction models have calculated the 
area under the receptor-operator curve (AUC). But they generally did not consider or 
could not generate meaningful true positive rate (TPR) with 100% specificity (no false 
positives), a more useful measure in clinical applications. Here we studied the overall 
level of genome wide randomness in lung cancer cases relative to controls as 
measured by total MA amounts in an individual. We also attempted to identify a set of 
MAs that can predict lung cancer risks.  
 
Materials and Methods 
SNPs datasets 
We downloaded from dbGaP two case control GWAS datasets, phs000093.p2.v2   
(Prostate, Lung, Colon and Ovary Study Cancer Screening Trial, PLCO)26 and 
phs000336.p1.v1 (Cancer Prevention Study II Nutrition Cohort, CPS-II)16. These 
studies used for SNP genotyping IlluminaHumanHap550v3.0, Human610_Quadv1_B, 
Human1M-Duov3_B. Cases were admitted based on chest X ray examination. 
Controls were matched healthy individuals with similar age, sex ratio, and location. 
These data were further cleaned by removing genetic outliers using Principle 
Component Analysis (PCA) with the GCTA tool27 (Supplementary Table S1 showing 
PCA values and plots). Also, SNPs were filtered by removing those with >5% 
non-informative calls in the population, and those not following the Hardy-Weinberg 
equilibrium in either the case group or the control group (P<0.0001 chi square test), 
and those with MAF<10E-6. Only autosome SNPs were used. The description of 
cleaned up datasets are shown in Table 1.   
 
Statistical analysis 
Minor allele frequency (MAF) refers to the frequency at which the second most 
common allele occurs in a given population. MAs were defined as those alleles with 
MAF < 0.5 in the control group. The minor allele content (MAC) of an individual is the 
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number of MAs divided by the total number of SNPs examined. We used a custom 
script28 to calculate the MAC values of case and control groups. Difference in the 
average MAC value was compared by two-sided Student’s t test. Each MA was given 
a weighted risk score calculated by logistic regression test, which was equal to the 
coefficient of the logistic regression test. For heterozygous MAs, the weighted risk 
score was 0.5 x the coefficient. The total MA numbers of each individual were then 
converted to a total weighted risk score by summing up the coefficient of each MA by 
using a custom script (Supplementary data 2).  
 
Haplotype construction 
Haplotype block estimation was phased using PLINK29 with pairwise LD calculated for 
SNPs within 200kb. Haplotype selection was performed as described previously30. A 
standard logistic regression was performed on all SNPs of each haplotype to obtain 
association significance with the disease. For each haplotype, a representative SNP 
with the best disease linkage was chosen for risk prediction analysis and all SNPs 
chosen must satisfy the minimal selection criterion of MAF <0.5. 
 
Risk prediction 
We performed two types of cross-validation experiments. For the external 
cross-validation analysis, the phs000093.v2.p2 cohort was used as a training set, and 
testing was performed on the phs000396.v1.p1 dataset. Each experiment’s 
discriminatory capability was evaluated using the receiver operating characteristic 
(ROC) curve. We then calculated the area under the curve (AUC) and the true 
positive rate (TPR) using Prism 6. TPR is the proportion of cases who had a risk score 
higher than that of any control individual. The AUC quantifies the overall ability of the 
test to discriminate between cases and controls. A truly useless test (one no better at 
identifying true positives than flipping a coin) has an area of 0.5. A perfect test (one 
that has zero false positives and zero false negatives) has an area of 1.00. In order to 
obtain a best MA set for risk prediction, six models were constructed using logistic 
regression. Five of these models were based on MAF, and the remaining one using 
haplotypes. We then obtained AUC and TPR of each set in the testing dataset 
phs000336.v1.p1.  
 
In the internal 5-fold cross-validation analysis, the phs00093.v2.p2 cohort was 
randomly partitioned into 5 subsamples. Of the 5 subsamples, a single subsample 
was retained as the validation data for testing the model, and the remaining 4 
subsamples were used as training data. The cross-validation process was then 
repeated 5 times, with each of the K subsamples used exactly once as the validation 
data. The 5 results were averaged to produce a single estimation. 10-fold 
cross-validation is commonly used and the advantage of this method over repeated 
random sub-sampling is that all observations are used for both training and validation, 
and each observation is used for validation exactly once. In account of the sample 
size in this study, 5-fold cross-validation was performed. Since the external cross 
validation analysis above identified the best MA set as having MAF < 0.5, we only 
analyzed this set of MAs in internal cross validation analysis. This set has 25,883 
SNPs. As negative controls, we also used the whole set of non-selected 535,313 
SNPs or 25,883 randomly selected SNPs for risk prediction.  
 
Pathway enrichment analysis 
We used ANNOVAR31 to annotate the genes associated with the set of risk SNPs 
identified by the above analysis. We used DAVID32 to check the pathways associated 
with these genes in the KEGG (Kyoto Encyclopedia of Genes and Genomes)33. The 
enriched pathways in the risk SNPs set were compared by chi square test with those 
in the original dataset and a group of SNPs chosen randomly.  
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Results 
Enrichment of minor alleles in lung cancer cases 
We used two previously published GWAS datasets of lung cancer case and control 
cohorts for our studies. The cleaned datasets after removing genetic outliers were 
described in Table 1 (see Supplementary Table S1 for PCA plots). We merged these 
two datasets and then randomly divided the merged control dataset into two sets with 
575 samples each. We used one of the control datasets for identifying minor allele 
status, and then calculated the MAC value of each individual in both case dataset and 
the two control datasets. We tested two sets of SNPs, one with MAF < 0.5 and the 
other with MAF < 0.5 but > 0.15. For SNPs set with MAF < 0.5, the average MAC 
value of control dataset 1 was lower than that of control dataset 2 but more 
significantly lower than that of cases (Table 2). For SNPs set with MAF > 0.15 and < 
0.5, the average MAC value of control dataset 1 was not significantly different from 
that of control dataset 2 but significantly lower than that of cases (Table 2). These 
results indicate minor allele enrichment in lung cancer cases. 
 
We also studied the two downloaded datasets independently. For the dataset 
phs000093.v2.p2, we identified minor allele status by using the control group and 
calculated the MAC value of each case and control as well as the average MAC 
values of cases and controls. The results showed higher MAC values in cases than 
controls (P = 2.56E-07, Figure 1A and Supplementary Table S2). To confirm this 
result, we studied a second independent dataset phs000336.v1.p1, and obtained 
similar results (P = 1.46E-18, Figure 1B and Supplementary Table S2). Since case 
male ratio is different from it in control in second dataset phs000336.v1.p1, We 
compared male and female controls or cases and did not find significant differences in 
average MAC values between the sexes (Supplementary Table S3). 
 
Using logistic regression analysis, we obtained a weighted genetic risk score for each 
SNP. The total MA number of each individual was then converted into a total weighted 
risk score by summing up the coefficient of each MA (major alleles were not counted). 
The results showed clear separation of cases and controls in both datasets (Fig. 1C, 
1D and Supplementary Table S2). 
 
We next examined whether there is any relationship between MAF and the weighted 
genetic risk scores. We selected those SNPs with positive weighted risk score 
according to logistic regression and divided them into five groups based on their MAF 
values. For each group of SNPs, we calculated the total weighted risk score of each 
individual and obtained the average risk score of each SNP by dividing the total score 
by the number of SNPs examined. The result showed progressively higher risk scores 
for lower MAF values (Fig. 2), indicating that low frequency SNPs may be under more 
natural selection as a result of carrying higher risk of diseases.  
 
Risk prediction 
We next aimed to obtain a specific set of MAs from a training dataset that could be 
used to predict lung cancer risk for an unrelated dataset (testing dataset). We chose 
the phs00093.p2.v2 dataset as the training dataset. In order to obtain a best MA set 
for risk prediction, six models were constructed using logistic regression. Five of these 
models were based on MAF, and the remaining one used haplotypes. We then used 
the receiver operator characteristic (ROC) curve and area under the curve (AUC) to 
examine the discriminatory capability of each set in the external cross validation 
analysis using the testing dataset phs000336.v1.p1. The SNP set showing the largest 
AUC as well as TPR was the one with MAF < 0.5 and each MAs’ linkage significance 
passing the threshold of P < 0.1 (Fig. 3, Supplementary Table S4). The AUC for this 
set is 0.5421 (95%CI, 0.5059-0.5782) and the TPR is 2.6% (95%CI, 1.555%-4.097%). 
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We further performed a 5 fold internal cross-validation analysis using the training 
dataset phs000093.v2.p2. Since the external cross validation analysis above 
identified the best set as having MAF < 0.5 with each MA passing the threshold of P < 
0.1, we only analyzed this set in the internal cross validation analysis (see 
Supplementary Table S5 for risk scores of each SNP in the set). Using this set of 
25883 SNPs a 5 fold internal cross-validation analysis, we obtained an average AUC 
of 0.5270 (95%CI, 0.5146-0.5394) and average TPR of 2.7% (95%CI, 
1.818%-3.504%), which was similar to the above results of external cross validation 
analysis.  
 
As negative controls, we performed external cross validation analysis by using the 
non-selected whole set of 535,313 SNPs, and found the TPR in this case to be only 
1.7%. We also randomly selected 25883 SNPs and performed similar tests as we did 
for the above specifically selected set and found the average TPR to be only 1.08% 
(95%CI, 0.82%-1.33%). 
 
Pathway enrichment 
Using ANNOVAR, we identified 354 genes in the set of 25883 risk SNPs as identified 
above. We then used DAVID to look for KEGG pathways associated with each of 
these genes. We identified two pathways that were enriched in the risk set relative to 
the original dataset, including extracellular matrix (ECM) with 10 genes, and 
endocytosis with 9 genes (Table 2).  
 
We also analyzed the previously identified 37564 SNPs specific for Parkinson’s 
disease (PD)20. These SNPs were linked to 659 genes. We found only one pathway to 
be enriched in these genes, the Hedgehog signaling pathway with 6 genes. This 
pathway is known to be associated with PD34-36. 
 
We next studied the lung cancer specificity of the 25,883 SNPs identified here by 
comparing it with the PD specific set of 37,564 SNPs as identified previously20. The 
non-selected whole set of SNPs (535,313 SNPs) in the lung cancer datasets here 
shared with the PD dataset (561,466 SNPs) 58.8% of SNPs. However, only 2.7% of 
SNPs were shared between the lung cancer specific set here and the PD specific set, 
indicating disease specificity (Supplementary Table S5). 
 
Discussion 
Our results here suggest that having too many minor alleles of common SNPs at the 
genome wide level may be a novel genetic factor for lung cancer. We identified a lung 
cancer specific set of 25,883 SNPs that showed few overlaps with the previously 
identified SNPs specific for PD. Therefore, different diseases may be linked with 
different sets of MAs. While the number of SNPs involved in a disease may be quite 
large as indicated by this work here, much larger than expected from previous studies, 
it may not mean a lack of disease specificity in the collective effects of SNPs.  
 
The result of higher MAC in lung cancer cases is a novel finding not expected by 
known works on human lung cancers. It confirms the previous result showing MAC 
association with lung cancer in a mouse lung cancer model19. Published lung cancer 
risk SNPs are relatively few in numbers. Therefore, even if these known risk alleles 
are mostly minor alleles, it may not predict that cases should have more genome wide 
MAs when a genome wide collection of ~500k SNPs are considered. If most MAs are 
not related to lung cancer except those few published lung cancer alleles, the average 
MAC of cases should not be significantly different from the controls. 
 
Our study here further strengthens our intuitive hypothesis that a complex and 
ordered system must have an optimum limit on the level of randomness or entropy in 
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its building parts or DNAs and the observation that human genetic diversities are 
presently at optimum level20, 37-40. While it may only take one or a few major effect 
errors to cause diseases, it would require the collective effects of a large number of 
minor effect errors in many different pathways to achieve a similar outcome. Cancer is 
known to be a disease of random mutations. Individuals with too many inherited 
random mutations or MAs may need fewer somatic mutations to pass the cancer 
threshold and hence have high susceptibility to cancer.    
 
Negative selection by way of common diseases such as lung cancer may be one of 
the ways to maintain an optimum limit on genomic entropy. Although cancers tend to 
be late onset and hence well past the age of reproduction, which may be expected to 
have little selective effects on genes, it is easy to find ways for late onset common 
diseases to prevent accumulation of disease risk alleles in a population. For example, 
individuals with too many MAs may be already at a fitness disadvantage in many 
different traits including reproduction prior to disease onset at older age19, 30, 41.  
 
Although AUC has been used in many studies for gauging performance of prediction 
model, some authors think that the AUC also has disadvantages20, 25, 42, 43. Our 
predictive model of lung cancer is comparable to previous results as indicated by AUC 
values24 and achieves a TPR of 2.6%. It has been shown that the prediction quality 
can be improved when there are a large number of SNPs44. Our prediction model for 
lung cancer also follows this trend with the prediction quality peaking at the 
case-association significance threshold of P<0.1. Models using small number of 
SNPs may be more susceptible to influence by random effects, while using too large 
number of SNPs may contain many irrelevant SNPs. A strong model may require a 
fine balance between high amounts of lung cancer linked SNPs and low amounts of 
irrelevant SNPs. Our best predictor model has a TPR value of 2.6% or could detect 
about 2.6% lung cancer patients as verified by both external and internal 
cross-validation experiment. It seems to be low but may still be meaningful. The value 
is higher than that of BRAF mutation with a mutation rate of 2.37% lung cancer 
cases45, 46.  
 
The 25883 SNPs in our lung cancer prediction model were enriched in ECM-receptor 
interaction pathway and Endocytosis pathway. In contrast, randomly chosen SNPs of 
the same number did not have the same pathway enrichment. ECM-receptor 
interaction pathway includes extracellular matrix such as collagen, fibronectin and 
laminin, and transmembrane receptor such as integrin and proteoglycans. Most of 
these molecules are known to play roles in cancer47-51. Our results provide additional 
evidence for the role of these genes in lung cancer and may help understand their 
mechanisms of action in lung cancer. 
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Tables: 
 
Table 1. Samples used in the study.   

Description  
phs000093.v2.p2  phs000336.v1.p1 

Cases Controls  Cases Controls 

Participants  753 766  689 384 

SNPs  535313 535313  535313 535313 

Male(%)  472(62.7%) 442(57.7%)  386(56.0%) 300(78.1%) 

Age － － 64.06±5.44 64.83±5.54 

 
 
 
 
Table 2. MAC value comparisons. 
 
  

Sample 
MAF < 0.5   MAF >0.15 but < 0.5 

  MAC stdev SNPs MAC stdev SNPs 

Control 1 575 0.2430 0.0010 
~52K 

  0.3166 0.0011 
~36K 

Control 2 575 0.2433 0.0013 0.3167 0.0015 
p 2.4E-06 0.1100 

Control 1 575 0.2430 0.001 ~52K 0.3166 0.0011 ~36K 
Case 1442 0.2434 0.001 0.3168 0.0011 
p   1.0E-16       0.0007     
 

 
 
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2017. ; https://doi.org/10.1101/106864doi: bioRxiv preprint 

https://doi.org/10.1101/106864
http://creativecommons.org/licenses/by-nc/4.0/


 13

Table 3. Genes enriched in the lung cancer specific set of SNPs 
 

  Pathways 

  ECM-receptor interaction Endocytosis 

Genes in prediction model COL1A2  ARFGAP2  

COL2A1  CSF1R 
COL11A2  DAB2  

HMMR FGFR2  

ITGA11  LDLR  

LAMA1  PLD2  

LAMB1  PSD  

LAMB4  PSD3  

TNC  RABEP1  

TNR    
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Figure Legends:  

 
 
 
 
Fig. 1. Distribution of MAC and genetic risk allele scores of MAs by 
case–control status. MAC: Minor allele content of SNPs with MAF < 0.5. Genetic 
risk score, the total risk score of all the MAs in an individual by adding the coefficient 
of logistic regression test of each MA. 
 
 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2017. ; https://doi.org/10.1101/106864doi: bioRxiv preprint 

https://doi.org/10.1101/106864
http://creativecommons.org/licenses/by-nc/4.0/


 
 
 
 
 
Fig. 2. Relationships between MAF and lung cancer risk scores. Shown are the 
average weighted risk score for each category of MAs as classified by MAF. 
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Fig. 3. Discriminatory ability of different prediction models. SNPs were divided 
into 6 models based on MAF or haplotype. AUC (A) and TPR (B) were calculated 
using a training dataset and a test dataset. Each model was examined using MAs with 
different asymptotic P-value from the logistic regression test. 
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Supplementary Data 
1. Supplementary Table S1. Principal component analysis (PCA).  
2. Supplementary Table S2. The MAC and genetic risk scores of the individuals in the 
two case control datasets.  
3. Supplementary Table S3. MAC values in male versus females. 
4. Supplementary Table S4. Summary of AUC and TPR values.  
5. Supplementary Table S5. MAs set for prediction in lung cancer and compared to 
PD 
6. Supplementary materials. The script for calculating the risk score of each 
individual.  
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