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ABSTRACT:  35 

 How the brain preserves information about multiple simultaneous items is poorly 36 

understood. Here, we provide evidence that the brain may accomplish this using time division 37 

multiplexing, or interleaving of different signals across time, to represent multiple items in a 38 

single neural channel. We evaluated single unit activity in an auditory coding "bottleneck", the 39 

inferior colliculus, while monkeys reported the location(s) of one or two simultaneous sounds. 40 

Using novel statistical methods to evaluate spiking activity on a variety of time scales, we found 41 

that on dual-sound trials, neurons sometimes alternated between firing rates similar to those 42 

observed for each single sound. These fluctuations could occur either across or within trials and 43 

appeared coordinated across pairs of simultaneously recorded neurons. Fluctuations could be 44 

predicted by the state of local field potentials prior to sound onset, and, in one monkey, predicted 45 

which sound the monkey would ultimately saccade to first. Alternation between activity patterns 46 

corresponding to each of multiple items may be a general strategy employed by the brain to 47 

enhance its processing capacity, suggesting a potential connection between such disparate 48 

phenomena as variable neural firing, neural oscillations, and limits in attentional or memory 49 

capacity.   50 

 51 

SIGNIFICANCE STATEMENT: 52 

 In natural scenes, many things happen at once. Given that the neural populations 53 

activated by each stimulus overlap considerably, how does the brain preserve information about 54 

each item? We investigated whether the brain solves this problem using time division 55 

multiplexing, a telecommunications strategy for combining signals in a single channel. When two 56 

sounds were presented, we observed fluctuations in activity in the inferior colliculus at a variety 57 

of time scales. These fluctuations were not random but suggested that neurons switch back and 58 

forth between encoding different items. Such switching behavior provides a novel account for 59 

variability in neural firing, and suggests an explanation for limits in perception, attention, and 60 

working memory. 61 

 62 

 63 

 64 
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MAIN TEXT:  65 

1.  Introduction 66 

 In the natural world many stimuli or events occur at the same time, evoking activity in an 67 

overlapping population of neurons. When neurons are exposed to more than one stimulus to 68 

which they can respond, how might they preserve information about each stimulus? In this study 69 

we investigated whether spike trains contain interleaved signals corresponding to each stimulus, 70 

akin to time-division multiplexing used in telecommunications (Figure 1), and postulated to 71 

occur in some form in the brain (1-9).   72 

 73 

  74 

 75 

 76 

Figure 1.  In telecommunications, multiple signals can be conveyed along a single transmission 77 

line by interleaving samples (A and B). This process greatly increases the amount of information 78 

that can be transmitted by a single physical resource.  In this study we investigated whether the 79 

brain might employ a similar strategy, i.e. do neurons encode multiple items using spike trains 80 

that alternate between the firing rates corresponding to each item, at some unknown time scale?   81 

 82 

 Multiplexing is most likely to occur when there is an information-processing bottleneck.  83 

The coding of sound locations involves such a bottleneck. Sound waves stemming from two 84 

sources sum in the world and are sampled at only two locations, i.e. at each ear. In barn owls, 85 

multiple locations appear to be de-multiplexed from these signals and encoded as distinct peaks 86 
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in auditory space maps (10-13). But in primates (including humans) and several other mammalian 87 

species, the neural representations themselves involve a bottleneck (14-21). The inferior colliculus 88 

(IC) and other auditory structures encode sound location not in a map but in a “meter”:  a firing 89 

rate code in which neural activity is roughly proportional to the horizontal angle of the sound, 90 

reaching an apex (or nadir) at 90 degrees contralateral (or ipsilateral) along the axis of the ears, 91 

where the binaural timing and level differences reach their maximal (or minimal) values (Figure 92 

2D,F) (14-21).       93 

 A strict meter/firing rate code would seem unable to represent more than one sound 94 

location except via multiplexing. The auditory pathway's maps for sound frequency can only 95 

partially ameliorate this situation. Such maps serve to separate the coding of sounds of different 96 

frequencies to somewhat different neural subpopulations. However, most natural sounds are 97 

spectrally rich and will activate overlapping “hills” of neural activity; even a single pure tone of 98 

a particular frequency can evoke activity in 40-80% of IC neurons (22). This raises the question 99 

of how a population consisting of such broadly-tuned neurons can preserve information about 100 

combinations of sounds, even when they differ in sound frequency. Alternating the coding of 101 

different sounds across time would potentially solve this problem. 102 

 103 

2. Results 104 

2.1. Monkeys can report the locations of both sounds, indicating that both are coded in brain 105 

 We first tested whether monkeys can perceptually preserve information about multiple 106 

sounds presented simultaneously. Monkeys performed a localization task in which they made 107 

eye movements to each of the sounds they heard: one saccade on single-sound trials and two 108 

saccades in sequence on dual-sound trials (Figure 2A). The sounds were separated horizontally 109 

by 30 degrees and consisted of band-limited noise with different center frequencies. They were 110 

thus physically distinguishable in principle, and humans can do so (23-25). The monkeys learned 111 

the task successfully (example session shown in Figure 2B), and, like humans, typically 112 

performed better when the frequency separation between the two sounds was larger (Figure 2C, 113 

~72 vs. ~77% correct for frequency differences of 3.4 vs. 6.8 semitones).   114 

 115 
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 116 

Figure 2.  Single- and dual-sound task, performance, and time-and-trial pooled neural activity.  117 

A. On dual-sound trials, monkeys made saccades to each of two simultaneous bandlimited noise 118 

sounds.  Single-sound trials were similar but only required one saccade.  B.  Trajectories of eye 119 

movements on two sets of dual-sound trials for an example session (dash lines:  individual 120 

correct trials; solid line: mean). Monkeys were permitted to look at the sounds in either order, 121 

but often showed stereotypical patterns based on their training history (see Behavioral task and 122 

training).  C.  Performance was better for larger frequency separations and was > 70% correct 123 

overall. D-G.  Results of conventional analyses pooling across time and trials are inconsistent 124 

with summation (D-E), but are consistent with averaging (F-G). D, F.  Schematic activity 125 

patterns of IC neurons in response to single sounds and predicted response for dual sounds if the 126 
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neuron sums (D) or averages (F) inputs corresponding to individual sounds   E, G.  Observed Z-127 

scores of activity on dual-sound trials differ from the sum (E), but correspond well to the 128 

average (G).  The shaded areas indicate Z score values of +/- 1.96, or 95% confidence intervals. 129 

This analysis was conducted on “triplets” of single- and dual-sound trials with a given set of 130 

locations and frequencies, pooling across intensities.  Triplets were included if the single-sound 131 

responses differed (light bars, two-tailed t-test, p<0.05, n=761); results were similar when 132 

single-sound responses were different and both excitatory (dark bars, one-tailed t-test, p<0.05, 133 

n=486).  See Supplementary Figure 1 for a breakdown of conditions matched for the same signal 134 

levels on single- and dual-sound trials vs. signal levels adjusted to equate loudness on single- 135 

and dual-sound trials.     136 

 137 

 If the monkeys can report the locations of two sounds presented simultaneously, it 138 

follows that their brains must preserve information about both sound items.  To evaluate the 139 

neural basis of this, we focused on the IC because it lies comparatively early along the auditory 140 

pathway (a few synapses in from the periphery, and about two synapses prior to signals reaching 141 

auditory cortex) (26, 27) and because it is a nearly obligatory station along this pathway (28).  142 

Thus, preservation of information about both sound locations in the IC would appear to be 143 

required for performance of this task.   144 

 145 

2.2. Time-and-trial pooled neural activity in the IC is consistent with an "average", but an 146 

average is inconsistent with behavior 147 

 Conventional analysis of spike data typically involves two simplifications: spikes are 148 

counted within a fairly long window of time, such as a few hundred milliseconds, and activity is 149 

pooled across trials for statistical analysis. If IC neurons multiplex signals related to each of the 150 

two sounds (arbitrarily dubbed “A” or “B” for the single-sound trials), then they might appear to 151 

show "averaging" responses on dual (or “AB”) trials when activity is pooled across time and 152 

across trials. But they should not appear to show "summation" responses, i.e. in which the 153 

responses on dual-sound trials resemble the sum of the responses exhibited on single-sound trials 154 

involving the component sounds. Such summation has been observed in some neural populations 155 

in areas such as primary visual cortex (29, 30), the hippocampus (31), or the superior colliculus (32) 156 

when multiple stimuli are presented.   157 
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 To investigate whether responses to two sounds are more similar to the sum or the 158 

average of the two single-sound responses, we considered matched combinations of a particular 159 

pair of stimuli A and B presented alone or in combination.  The set of stimulus A alone, stimulus 160 

B alone, and stimuli A and B in combination is referred to as a “triplet”, a term we will use 161 

throughout. Using an analysis similar to that of (32), dual-sound responses were converted to Z-162 

scores relative to either the sum or the average of the corresponding single-sound responses (see 163 

Methods).  Figure 2D-G shows that such trial-and-time-pooled responses more closely resemble 164 

averaging than summation:  93% of Z scores (N=761) were consistent with averaging (gray zone 165 

indicating +/-1.96 units of standard deviation) whereas far fewer, 55%, were consistent with 166 

summation.  This was true even when both sound A and sound B evoked excitatory responses 167 

(dark bars).  Findings were similar regardless of whether the signals delivered to the audio 168 

speakers were identical on dual and single-sound trials vs. when the signals were adjusted to 169 

equate loudness across single- vs. dual-sound trials (See Methods and Supplementary Figure 1).  170 

Consequently, in subsequent analyses we pooled across sound level.  171 

 However, such apparent averaging response patterns are inconsistent with the behavioral 172 

results:  if the neurons truly responded at an average firing rate, then presumably the monkeys 173 

should respond to dual sounds as if there were only a single sound at the midpoint of the two 174 

sources (Figure 2F).  Since monkeys can indicate the locations of both sounds (Figure 2B, C), 175 

multiplexing might provide a better explanation for so-called averaging response patterns.   176 

 177 

2.3. Fluctuations in responses to dual sounds appear consistent with multiplexing at various time 178 

scales  179 

2.3.1 Visualization. To determine whether neural activity fluctuates within and/or between trials, 180 

creating an overall averaging response but retaining information about each sound at distinct 181 

moments, we first sought to visualize the activity on individual trials. Figure 3 shows the activity 182 

of two example neurons on dual-sound trials compared to single-sound trials.  The colored 183 

backgrounds illustrate the median and 25-75% quantiles of the activity on single-sound trials, in 184 

50ms time bins. Superimposed on these backgrounds is the activity on individual trials.  185 

Individual single-sound (A alone, B alone) trials align well with their corresponding 25-75% 186 

quantiles, by definition (Figure 3A-B; E-F).   But on dual-sound (AB) trials, for any given trial or 187 

time bin, some individual traces correspond well to one of the component sound’s 25-75% 188 
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quantiles, and on other trials or time bins they correspond well to the 25-75% quantiles of the 189 

other component sound.  For the neuron in Figure 3CD, there are whole trials in which the 190 

activity appears to match that evoked by sound "A" alone and others in which it better 191 

corresponds to that evoked by sound "B" alone.  For the neuron in Figure 3G, the firing pattern 192 

on dual-sound trials appears to switch back and forth between the levels observed for sounds A 193 

and B as the trial unfolds.  In short, for these two examples, the activity on dual-sound AB trials 194 

does not appear to occur at a consistent value intermediate between those evoked on single-195 

sound A and B trials, but can fluctuate between those levels at a range of time scales. 196 

 197 

 198 

 199 

Figure 3. Inspection of the individual trials of two IC neurons suggests that the overall 200 

intermediate firing rates observed on dual-sound trials may be due to alternating between firing 201 

rates corresponding to each component sound, fluctuating either across (A-D) or within trials 202 

(E-G).  The red and blue shaded areas indicate the median and central 50% of the data on the 203 

single sound trials that make up the given triplet and are the same in panels A-D as well as E-G.  204 

The black traces superimposed on the shaded areas are the individual trials, for single sound 205 

and dual sound trials as indicated.  For the neuron in A-D, individual traces on dual sound trials 206 

were classified based on the A vs. B assignment score (see Methods) and are plotted in two 207 
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separate panels accordingly.  For the neuron in E-G, the fluctuations occurred faster, within 208 

trials, and are plotted in the same panel (G) accordingly. 209 

 210 

 We developed a series of statistical analyses to test for the presence of these various 211 

forms of alternation in firing rates. Several unknowns must be taken into consideration when 212 

testing for activity fluctuations. Specifically, the time scale, repeatability, and potential 213 

correlations across the neural population are uncertain. Accordingly, we sought to make minimal 214 

assumptions about the time scale at which neurons might alternate between encoding each 215 

stimulus, and we assumed that any such switching might vary from trial to trial and/or across 216 

time within a trial.   217 

 218 

2.3.2. Statistical analysis of whole trial spike counts provides evidence consistent with 219 

multiplexing.  If neurons alternate firing rates at the time scale of trials, as appears to be the case 220 

for the neuron in Figure 3A-D, then the spike counts from dual-sound responses should resemble 221 

a mixed bag of spike counts from each of the component single-sound responses. We statistically 222 

tested this hypothesis against other reasonable competing possibilities using the subset of triplets 223 

whose spike counts on single sound A and B trials could be well modeled by Poisson 224 

distributions with statistically different mean rates λ
A
 and λ

B
 (N=363, see methods for details).   225 

 226 

The competing scenarios to describe the corresponding dual sound trials were: 227 

(a) Mixture: The spike counts observed on individual trials are best described as having 228 

come from a weighted mixture of Poi(λ
A
)and Poi(λ

B
) (Figure 4A).  This possibility is 229 

consistent with multiplexing across trials. 230 

(b) Intermediate: A single Poisson distribution best describes the spike counts, and this 231 

Poisson has a rate λ
AB

 that is between λ
A
 and λ

B
 (Figure 4B). This possibility is consistent 232 

with either multiplexing at faster, sub-trial time scales or with true 233 

averaging/normalization. 234 

(c) Outside: Again, a single Poisson, but the rate λ
AB 

is outside the range of λ
A
 and λ

B 
(i.e is 235 

greater than both or less than both; Figure 4C).  Summation-type responses would be 236 

captured under this heading, as would inhibitory interactions. 237 
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(d) Single: A single Poisson describes the dual-sound trial spike counts, but the rate λ
AB 

is is 238 

equal to one of the single-sound rates λ
A
 or λ

B
 (Figure 4D).  A winner- (or loser-)-take-all 239 

pattern would fit this category.   240 

  241 

 In summary, these four models capture the spectrum of possibilities at the whole-trial 242 

time scale. A Bayesian model comparison with default priors and intrinsic Bayes factor 243 

calculation was used to compute the posterior probabilities of the four hypotheses on a selected 244 

triplet given its neural data(33). Under the Bayesian inference paradigm, the hypothesis with the 245 

highest posterior probability (the winning hypothesis) can be interpreted as providing the best fit 246 

to the observed data for a given triplet.  247 

      248 
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 249 

Figure 4.  Modeling the spiking patterns on individual dual-sound whole trials.  Spike counts on 250 

individual dual-sound trials (0-600 or 0-1000 ms after sound onset, see Methods) were modeled 251 

as being drawn from either a mixture of the Poisson distributions of spike counts for the 252 

component single-sound trials (panel A), an intermediate Poisson rate (panel B), or rates equal 253 

to (“single” panels D) or outside the range of the single-sound Poisson rates (“outside”, panels 254 

C). Shading in E indicates the confidence level of the assignment of an individual triplet to a 255 

winning model.  The neuron/triplet illustrated in Figure 3A-D was classified as having spike 256 
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counts drawn from a mixture of Poissons at the level of individual trials (winning probability 257 

>0.95) and the neuron/triplet illustrated in Figure 3E-G was classified as having spike counts 258 

drawn from an intermediate Poisson (winning probability >0.95).    259 

 260 

 For a sizeable portion of the triplets, the spike counts on dual-sound trials were better fit 261 

by a mixture of the single-sound Poisson distributions than by any single Poisson distribution 262 

(Figure 4E, bar labeled "mixture"). These response patterns are potentially consistent with time 263 

division multiplexing at the level of individual trials; the neuron illustrated in Figure 3A-D met 264 

these criteria. Of the 72 triplets in which one model had a winning probability >0.95, 50 or 69% 265 

were categorized as mixtures. 266 

 For the next largest category, the best fitting model involved a unique λ
AB

 between λ
A
 267 

and λ
B
 (Figure 4E, bar labeled “intermediate”). These triplets are ambiguous:  they could exhibit 268 

a true intermediate firing rate on the dual-sound trials, or they could simply show alternation at a 269 

time scale more rapid than individual trials (the neuron illustrated in Figure 3E-G was classified 270 

as “intermediate”). Of the 72 triplets in which one model had a winning probability >0.95, 18 or 271 

~25% were categorized this way.  272 

 The remaining triplets were categorized as “single”, or λ
AB

 = λ
A
 or λ

B
 (a narrowly defined 273 

category that consequently did not produce any winning model probabilities >0.95) or “outside”, 274 

λ
AB

 greater or less than both λ
A
 and λ

B
. “Single” can be thought of as a winner-take-all response 275 

pattern. “Outside” may be consistent with a modest degree of summation in the neural 276 

population, particularly as λ
AB

 was generally greater than both λ
A
 and λ

B
 in this subgroup.    277 

  278 
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Figure 5.  Dynamic Admixture Point Process (DAPP) model rationale, results, and relationship 280 

to local field potential.  A.  The DAPP model fit smoothly time-varying weights capturing the 281 

relative contribution of A- and B-like response distributions to each AB dual sound trial.  The 282 

dynamic tendencies of these curves were then used to generate projected alpha curves for 283 

hypothetical future draws from this distribution. The “waviness” and central tendencies were 284 

quantified by computing the max swing size and trial-wise mean for an individual trial draw 285 

from the distribution (panel A1).  Low max swing sizes indicate “flat” curves and higher values 286 

indicate “wavy” ones (panel A2).  Similarly, the distribution of trial-wise means could be 287 

bimodal (“extreme”) or unimodal (“central”)(panel A3).  B.   Fit alphas for three example 288 

neurons (Example 2  is the same as Figure 3E-G) and the distribution of trial-wise means and 289 

max swing sizes for future draws from the alpha curve generator. C.   Triplets showed different 290 

patterns of tags, correlated with their classification at the whole-trial analysis.  Specifically, 291 

triplets categorized as “Mixtures” (with a win probability > 0.95) tended to be tagged as 292 

“flat/extreme” (Example 1).  Triplets categorized as “Intermediates” fell in two different main 293 

groups, “wavy-central” (Example 2, same as Fig 3E-G) and “flat-central” (Example 3).  The 294 

“wavy-central” subgroup is consistent with multiplexing at the within-trial time scale.  Triplets 295 

with a “skewed” subclassification (see Methods) were excluded from this graph; a complete 296 

listing of all the tag combinations is presented in Supplementary Table 1.  See Supplementary 297 

Figures 2 and 3 for additional analyses.   D.  Average local field potentials also showed different 298 

patterns across the whole trial “mixture” vs “intermediate” classification, with the 299 

“intermediate” group tending to show greater power at a range of oscillatory frequencies. The 300 

third graph shows a thresholded (p<0.05) depiction of whether these differences were 301 

statistically significant according to a two-tailed t-test for each time point and frequency 302 

combination.   303 

 304 

2.3.3 Statistical analysis of within-trial temporal patterns suggests presence of both fast 305 

multiplexing and stable averaging. We next evaluated whether firing patterns fluctuated or 306 

remained stable across time within a trial. In particular, might triplets categorized as 307 

“intermediate” in the whole trial analysis show evidence of fluctuating activity on a faster time 308 

scale? 309 

 310 
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 This is a more challenging statistical question, and required development of a novel 311 

statistical approach. We focused on the same triplets selected above, and analyzed the temporal 312 

patterns of the spike trains on dual sound trials under a novel Dynamic Admixture of Poisson 313 

Process model (Methods). For each triplet, spike trains from individual single sound trials were 314 

assumed to be independent realizations of a nonhomogeneous Poisson process with unknown 315 

time-dependent firing rates (      for sound A and       for sound B).  To assess how 316 

individual time-varying dual sound responses related to single sound responses, each trial from 317 

the dual sound condition was assumed to be a realization of a Poisson process but with its own 318 

firing rate function     , modeled as an unknown weighted average of the two single sound 319 

firing rate functions                  (      )     . The weight function     , unique 320 

to each dual sound trial, quantified the potentially time varying relative contribution of sound A 321 

on that trial at time t, while        quantified the complementary contribution of sound B 322 

(Figure 5A).   323 

 The dynamics of the      function characterize the dynamics of each dual-sound trial. A 324 

constant      function indicates that the contributions of the two single sounds to the dual sound 325 

responses were constant across an individual trial. For example, a dual-sound response that 326 

matched (on a given trial) the response evoked by single sound A would be characterized by a 327 

constant      at a value close to 0 or 1. Conversely, a dual-sound response encoding each of the 328 

single sounds at different times during the course of a single trial would be characterized by a 329 

wavy      curve that fluctuated between 0 and 1. 330 

 For each selected triplet, a Bayesian inference technique was used to predict the      331 

curves it was likely to produce on future dual sound AB trials. Each predicted curve was 332 

summarized by two features: its time average over the response period of a given trial and its 333 

maximum swing size, that is, the difference between its highest peak and lowest trough on that 334 

trial (see Methods, Figure 5A-B). The triplet was then subjected to a two-way classification 335 

based on the distribution of these two features over the predicted curves (DAPP “tags”, Figure 336 

5A-B). The triplet was categorized as “wavy” vs. “flat” depending on whether the distribution of 337 

the maximum swing size peaked at high or low values, and as “central” vs “extreme” according 338 

to whether the distribution of the time average      had a peak close to 0.5 or had one to two 339 

peaks at the extreme values of 0 and 1. In addition to this main classification scheme, triplets 340 

were subcategorized as exhibiting “symmetric” or “skewed” response patterns, reflecting 341 
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whether the      curves reflected roughly equal contributions from the stimulus A and stimulus 342 

B response patterns or whether one or the other tended to dominate. 343 

 The DAPP tags for waviness/flatness and centrality/extremity confirmed and extended 344 

the results of the whole-trial analysis.  Triplets categorized as “intermediate” in the whole trial 345 

analysis showed a different distribution of tags as compared to those categorized as “mixtures”.  346 

“Mixture” triplets tended to be classified as showing “flat” single sound contributions, centering 347 

around “extreme” rather than “central” values of the time average of α(t) (Figure 5C), and the 348 

distribution of the these average α(t) values tended to be either symmetric, i.e.  or unlabeled with 349 

regard to symmetry (Supplementary Table 1).   In short, the dynamics of the “mixture” responses 350 

were consistent with fluctuations at the level of whole trials. In contrast, “intermediate” triplets 351 

showed a combination of two types of labelling patterns relevant to our hypothesis.  Some 352 

showed flat firing at a central (and symmetric) intermediate value, indicating stable firing at 353 

roughly the average of the responses evoked by each sound separately.  Such a firing pattern is 354 

consistent with some form of normalization occurring in this subpopulation.  However, there 355 

were also triplets that showed wavy, i.e. fluctuating response patterns symmetric around a central 356 

value.  This type of response pattern suggests that under some circumstances, neurons can 357 

“switch” relatively rapidly between a response pattern consistent with one stimulus vs the other 358 

on dual stimulus trials. 359 

 360 

2.3.4.  Local field potential shows greater oscillatory energy associated with “intermediate” 361 

classification.  Consistent with this statistical evidence for activity fluctuations at the sub-trial 362 

timescale in the “intermediate” category, we also found that the local field potential (LFP) at 363 

such sites showed greater oscillatory activity. Figure 5D shows the average LFP power spectrum 364 

for dual trials of triplets categorized as “mixtures” vs. those categorized as “intermediates” and 365 

their statistical comparison (lower panel, two-tailed t-test between the LFP power spectrum of 366 

dual trials classified as Intermediate and that of dual trials classified as mixtures, for each time 367 

point and frequency combination). The LFP for intermediate sites showed higher energy across a 368 

range of frequencies, including frequencies well above the 20 Hz (50 ms) frequency range that 369 

we were able to evaluate at the spike-count single unit level 370 

 371 

2.4 Activity fluctuations  appear coordinated across the neural population and predict behavior 372 
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 373 

 We next considered the question of whether and how activity fluctuations are coordinated 374 

across the neural population, in two ways: (1) by evaluating activity correlations across time 375 

within trials between pairs of simultaneously recorded neurons, and (2) by evaluating whether 376 

the state of the local field potential prior to sound onset predicts between-trial fluctuations in 377 

activity (e.g. 34, 35).      378 

 379 

2.4.1 Neural pairs show positive within trial correlations: To evaluate correlations in within-trial 380 

switching patterns, we evaluated the neuron-to-neuron correlation between how “A-like” vs. how 381 

“B-like” the responses were on a time bin by time bin basis on individual trials, in a total of 91 382 

pairs of triplet conditions from 34 pairs of neurons recorded simultaneously (from among the 363 383 

triplets used for the previous analyses).  For each 50 ms bin of a dual-sound trial in a given 384 

triplet, we assigned a probability score between 0 and 1 that the spike count in the bin was drawn 385 

from the Poisson distribution with rate equaling the bin’s sound A rate, and the complementary 386 

probability to the same being drawn from the Poisson distribution with rate equaling the bin’s 387 

sound B rate (Figure 6A; see Methods:  A vs. B assignment scores).  We normalized these 388 

probabilities by converting them to Z-scores within a given time bin but across trials, to 389 

minimize the contribution of shared correlations due to stimulus responsiveness or changes in 390 

motivational state across time (36).  We then calculated the neuron-to-neuron correlation 391 

coefficients between the normalized assignment scores across the set of time bins within each 392 

trial, i.e. one correlation coefficient value estimated per trial. This analysis is conceptually 393 

similar to conventional cross-correlation analysis of spike trains in neural pairs, but does not 394 

focus on precise timing of spikes or the relative latency between them (37, 38).    395 

 Generally, the observed correlations were positive, indicating that the activity was 396 

coordinated within the neural population.   Figure 6 illustrates analysis of the dual-sound trials 397 

for a particular triplet in an example pair of neurons (A), and the distribution of the mean neuron-398 

to-neuron correlations in the population for all the triplets’ dual-sound conditions (B).    The 399 

distribution of mean correlation coefficients was skewed positive (t-test, p = 6.8 X 10
-6

).  Similar 400 

results were obtained when the raw spike counts were analyzed rather than the assignment scores 401 

(Supplementary Figure 4).  This was the case even though we included triplets that were not 402 
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categorized as showing “wavy” behavior in the DAPP analysis.   It may be that coordinated 403 

activity fluctuations occur in more neurons than those that met our statistical criteria.   404 

 405 

 406 

 407 

Figure 6.  Within-trial fluctuations are correlated between pairs of neurons and whole-trail 408 

fluctuations can be predicted by the state of the local field potential at sound onset.  A.  Pairs of 409 

neurons recorded simultaneously tended to show positive correlations with each other. Raster 410 

plots of two neurons recorded simultaneously; trials shown are for a particular set of dual-sound 411 

conditions.  The spike count in a given 50 ms time bin, trial, and member of the neuron pair for a 412 

given set of dual-sound conditions was evaluated to determine if it was more similar to the spikes 413 

evoked during that bin on the corresponding sound “A” alone or “B” alone trials (blue box).  414 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2017. ; https://doi.org/10.1101/107185doi: bioRxiv preprint 

https://doi.org/10.1101/107185


 

19 

 

These A vs. B assignment probabilities were then converted to a Z-score based on the mean and 415 

standard deviation of the assignment probabilities in that time bin on the other trials that 416 

involved the same stimulus conditions (red box).  A correlation coefficient between the set of Z 417 

score values for a given trial between the pair of simultaneously recorded neurons was then 418 

calculated (green box).  B.  Across the population (N=91 conditions in the 34 pairs of neurons; 419 

triplets were included if their single sound response distributions were well-separated Poissons), 420 

the distribution of mean correlation coefficients tended to be positive (t-test comparing the mean 421 

correlation coefficients to zero; p = 6.8 X 10
-6

).    C.  The state of the local field potential prior 422 

to sound onset is predictive of whole-trial fluctuations in spiking activity.  (Average of the LFP 423 

during dual-sound trials from 274 triplets at 87 sites; triplets were included if the single sound 424 

distributions of spike counts were well-separated Poissons). For this analysis, the single 425 

contralateral sound was dubbed “A” and the single ipsilateral “B”.  The LFP on each dual-426 

sound trial was assigned to A-like or B-like categories based on the spike count of the 427 

corresponding single unit data during 0-600 ms after sound onset (see Methods:  A vs. B 428 

assignment. N=1902 contra-like trials and N=1618 ipsi-like trials).   429 

 430 

2.4.2 State of LFP prior to sound onset predicts between-trial fluctuations:  To determine 431 

whether the state of the local field potential prior to sound onset predicts between-trial 432 

fluctuations in activity, we analyzed the LFP data recorded simultaneously with single unit 433 

spiking data. We combined data across triplets, creating two “bags” of trials based on whether 434 

the whole-trial spike count on a given dual-sound trial more closely resembled the responses 435 

evoked by sound A alone (where A is the contralateral sound) or sound B alone (see Methods: A 436 

vs. B assignment scores). Figure 6C shows the average LFP for the two groups of dual-sound 437 

trials. We quantified differences between these two groups with a t-test in the 600ms windows 438 

before and after sound onset (each trial contributed one mean LFP value in each time window). 439 

As expected, the LFP signals statistically differed after sound onset in these two trial groupings 440 

(red vs. blue traces, time period 0-600 ms, p-val = 1.0474 X 10
-05

). But the LFP signals also 441 

differed prior to sound onset (p-val =  0.0064), suggesting that the state of activity in the local 442 

network surrounding an individual neuron at the time of sound onset is predictive of whether the 443 

neuron “encodes” the contra-lateral or the ipsi-lateral sound on that particular trial.  444 

 445 
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2.4.3 Neural fluctuations predict behavior.  If fluctuations in neural activity are coordinated 446 

across the population, and if one particular stimulus dominates the representation at any given 447 

instant, it follows that there should be a relationship between trial-by-trial variability in neural 448 

activity and behavior.  Accordingly, we investigated whether the activity on individual trials 449 

predicted whether the monkey would look first to sound “A” or sound “B” on that trial.  As 450 

noted in the Methods, we trained the monkeys on sequential sounds first and this training 451 

strategy tended to promote performing the task in a stereotyped sequence.  Partway through 452 

neural data collection, we provided monkey Y with additional training on the non-sequential 453 

task, after which that monkey began displaying less stereotypical behavior and sometimes 454 

saccaded first to A and sometimes first to B for a given AB dual sound combination (see Figure 455 

7A for example).  We then analyzed recording sessions after this training (N=73 triplets) and we 456 

found that at both the whole trial and sub-trial time scales, the activity of individual neurons was 457 

predictive of what saccade sequence the monkey would choose on that particular trial.  458 

Specifically, the average dual sound AB assignment score for a given triplet was computed 459 

separately for trials in which the first saccade was toward A vs. toward B.  The average scores 460 

statistically differed between the two groups of dual-sound trials (t-test, pval = 5 x 10^-9, Figure 461 

7B) and in the expected direction, with more A-like scores occurring on trials in which the 462 

monkey looked at A first.  This relationship was also present when looking at finer, 50 ms bin 463 

time scales (Figure 7C).   464 

  465 

 466 
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467 
Figure 7. The target of the first saccade on dual sound trials is predicted by the spike count 468 

before that saccade.  (A) Eye trajectories during dual-sound trials to the same pair of single 469 

sounds (one triplet). The traces are color-coded based on which of the two sounds the monkey 470 

looked at first in the response sequence.  For clarity, all traces are aligned on a common starting 471 

position despite some variation in fixation accuracy.  (B) The average assignment score of trials 472 

in which the monkey looked at sound A first is more A-like than that of trials in which the 473 

monkey looked at sound B first. SEM are indicated with bars. (C).  This relationship between 474 

assignment score and first saccade target was also evident at the scale of 50 ms bins (green = 475 

positive correlation; * indicate p<0.05 for t-test of assignment score on A-first vs. B-first trials).  476 

    477 

3. DISCUSSION 478 

Our results show that the activity patterns of IC neurons fluctuate, and that these 479 

fluctuations may be consistent with encoding of multiple items in the same processing channels 480 

(i.e. the set of neural spike trains occurring in the IC).   The time scale of these fluctuations 481 

ranges from the level of individual trials down to at least 50 ms bins within a trial.  The 482 

fluctuations are positively correlated across pairs of neurons (at least, those recorded within the 483 

IC on a given side of the brain), are reflective of the state of local field potentials at the time of 484 

sound onset, and are predictive of the behavioral response to follow.   485 
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There are several limitations to the present statistical approach.  First, the analyses could 486 

only be conducted on a subset of the data, requiring a good fit of a Poisson distribution to the 487 

single-sound trials and adequate separation of the responses on those trials.  For the moment, it is 488 

unknown whether any of the excluded data exhibit meaningful response fluctuations.  In 489 

principle, the modeling approach can be extended to other types of response distributions which 490 

should reduce the amount of data that is excluded.  Second, the range of time scales at which 491 

fluctuations occur is unknown.  Fluctuations that occur faster than the 50 ms bin time scale used 492 

for the DAPP model would likely have been (erroneously) categorized as flat-central.   Third, 493 

our statistical approach based on the DAPP model involves a categorization step that summarizes 494 

the dominant features of a triplet. If a neuron sometimes behaves as a “flat-extreme” type and 495 

sometimes as an “wavy-central” type for a given triplet of conditions, it would likely be 496 

categorized as ambiguous. In other words, even though the DAPP model can pick up composite 497 

response patterns, the results we present ignore the existence of any such patterns. 498 

The observed fluctuations have broad implications because they provide a novel account 499 

linking a number of other well-known aspects of brain function under a common explanation.  500 

First, it is widely recognized that neural firing patterns are highly variable.  This variability is 501 

often thought to reflect some fundamental inability of neurons to code information accurately.  502 

Here, we suggest that some of this variability may actually reflect interleaved periods of 503 

potentially quite accurate coding of different items.  What else individual neurons may 504 

commonly be coding for in experiments involving presentation of only one stimulus at a time is 505 

not known, but possibilities include stimuli not deliberately presented by the experimenter, 506 

memories of previous stimuli, or mental imagery as suggested by the theory of embodied 507 

cognition (39).  In the present study, we were able to demonstrate signal in these fluctuations by 508 

virtue of statistical tests comparing each of the trial types in A-B-AB triplets, but it may be the 509 

case that fluctuations were occurring in the single stimulus trials as well.  We could not test this 510 

because our analysis required having as benchmarks the response distributions corresponding to 511 

the potentially encoded items.   512 

Second, as a concept, multiplexing provides insight into why limitations in certain types 513 

of cognition exist.  Working memory capacity is limited; attention filters stimuli to allow in 514 

depth processing of a selected set of items.  These limitations may stem from using the same 515 

population of neurons for each attended or remembered item.  If this is the case, then the puzzle 516 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2017. ; https://doi.org/10.1101/107185doi: bioRxiv preprint 

https://doi.org/10.1101/107185


 

23 

 

becomes why these limits are often greater than one.  Multiplexing suggests that cycling between 517 

different items across time allows evading what might otherwise be a one-item limit (2).  Here, 518 

we investigated only two time scales, 50 ms and whole trials.  Future work will be needed to 519 

more fully explore the time scales on which this occurs and to tie the resulting information on 520 

duty cycle to perceptual capacity.  521 

Third, brain oscillations are ubiquitous, have been linked specifically to attentional and 522 

memory processes (35, e.g. 40, see also 41), and have been suggested as indicating multiplexing (2-523 

8). Oscillations indicate that neural activity fluctuates, although they capture only the portion of 524 

such fluctuation that is coordinated across the underlying neural population and is regular in 525 

time.   It remains to be determined to what degree oscillations in field potentials reflect the 526 

activity of neural circuits that control such temporal coordination in other neural populations vs. 527 

the activity of the neural circuits subject to the effects of such coordination.  In a highly 528 

interconnected system such as the brain, both are likely to occur.  529 

In the case of our particular experimental paradigm, several additional questions arise.  530 

How do signals related to different items come to be multiplexed?  Are they later de-531 

multiplexed? If so, how?   532 

To some degree, sounds are multiplexed in the world.  That is, the sound waves from 533 

multiple sources sum in the world and are never purely distinct from one another.  The air 534 

pressure waves arriving at each ear reflect the combined contribution of all sound sources.  535 

However, if the IC’s neural fluctuations were driven by the sound signals arriving at the ears, 536 

then individual neurons should always respond the same way on every trial, and they do not.     537 

Instead, it seems likely that the externally-multiplexed sound waves interact with neural circuit 538 

states at the time that the incoming signal arrives to govern how individual neurons respond on a 539 

moment by moment basis. 540 

Where and how signals may be de-multiplexed critically depends on the nature of the 541 

representation to which a de-multiplexed output could be written.  In barn owls, which have 542 

maps of auditory space, the coding bottleneck intrinsic to meter/rate coding does not occur, and 543 

two sounds produce two separate active populations  (10-13).  Such distinct peaks suggest that the 544 

multiplexed-in-the-air signals have been de-multiplexed and segregated into two hills of activity.    545 

In primates and several other mammals, neural representations of space employ meters 546 

(rate codes) rather than maps throughout the pathway from sound input to eye movement output, 547 
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as far as is currently known (14-21, 42).  This is the case even at the level of the superior colliculus 548 

(43), which has a well-deserved reputation for mapping when activity is evoked by non-auditory 549 

stimuli (44, 45).   550 

Given that different types of codes exist in different species, and given that coding format 551 

is not known in all the circumstances in which multiplexing might apply (e.g. attention, working 552 

memory), we developed two different models to illustrate a range of different de-multiplexing 553 

possibilities (Figure 8) based on the nature of the recipient representation.  In the first (Figure 554 

8A), a multiplexed signal in a meter is converted into two hills of activity in a map, using a basic 555 

architecture involving graded thresholds and inhibitory interneurons suggested previously (46).  556 

Adding an integration mechanism such as local positive feedback loops would then serve to latch 557 

activity “on” at the appropriate locations in the map, producing a more sustained firing pattern.  558 

No clock signal is necessary for this model.   559 

In the second model (Figure 8B), there are multiple output channels, each capable of 560 

encoding one item.  An oscillating circuit that knows about the timing of the input gates signals 561 

to each output channel at the appropriate moments.  As in the first model, a local positive 562 

feedback mechanism acts to sustain the activity during the gaps in the input.  This model thus 563 

retains the efficient coding format of a meter but requires a controlling signal with knowledge of 564 

when to latch input flow through to each output channel.  In our data, it is possible that within-565 

trial fluctuating units lie at the input stage of such a circuit, and that between-trial fluctuating 566 

units actually lie at the output stage.  A given unit might be allocated to either the “A” or the “B” 567 

pools based on state of the network (as detected by the LFP measurements) on different trials.    568 
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 569 

 570 

Figure 8.  Two possible mechanisms for de-multiplexing a fluctuating signal.  A clock signal that 571 

knows about coding transitions is not necessarily needed if signals are read out into a map, but 572 

is required if signals are retained in a meter or rate-coded format.   573 

  574 

 An important unresolved question posed by our study is whether multiplexing may be a 575 

general mechanism that is commonly at play to enhance the total processing power of the brain.  576 

The statistical tools developed here can be applied to any “triplet” data. Additional studies with 577 

both single stimulus conditions, to define the distributions of signals, and dual stimulus 578 

conditions, to evaluate fluctuations between membership in those distributions, will be important 579 

for delineating the extent of this phenomenon. Digging under the hood of the time-and-trial 580 

pooled activity to look at activity patterns on a moment by moment basis will be essential to 581 

advancing our understanding of how the brain operates dynamically to maximize its processing 582 

power.  583 
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SUPPLEMENTARY MATERIALS: 698 

 699 

MATERIALS AND METHODS 700 

General procedures 701 

All procedures conformed to the guidelines of the National Institutes of Health (NIH Pub. 702 

No. 86-23, Revised 1985) and were approved by the Institutional Animal Care and Use 703 

Committee of the university. Two adult rhesus monkeys (Macaca mulatta) participated (monkey 704 

P, and monkey Y, both female). Under general anesthesia and in sterile surgery we first 705 

implanted a head post holder to restrain the head and a scleral search coil to track eye 706 

movements (Robinson 1963; Judge et al. 1980). After recovery with suitable analgesics and 707 

veterinary care, we trained the monkeys in the experimental task. In a second surgery, we 708 

implanted a recording cylinder (2 cm diameter) over the right (monkey Y) or left (monkey Y, P) 709 

IC respectively. We determined the location of the cylinder with stereotactic coordinates and 710 

verified it with MRI scans (e.g. 22).   711 

 712 

Behavioral task and training 713 

Events of task and performance criteria 714 

The monkeys performed a single- or dual-sound localization task (Figure 2A) by making 715 

saccades toward one or two simultaneously-presented auditory targets with one or two saccades 716 

as appropriate. All sound targets were located in front of the monkey at eye level; the horizontal 717 

location, frequency and intensity were varied pseudorandomly as described below (Recording 718 

Procedures). Each trial began with 600-700ms of fixation of a visual stimulus (light emitting-719 

diode, LED, located straight ahead and 10-14° below the speakers). During fixation we presented 720 

one sound (single-sound trials) or two simultaneous sounds (dual-sound trials). After a fixation 721 

time of either 600-800 (Data Set I, some of Data Set II) or 1000-1100 (remainder of Data Set II), 722 

the fixation light was extinguished and the monkey was required to make a single saccade on 723 

single-sound trials or a sequence of two saccades (in either order) on dual-sound trials. Trials 724 

were considered correct if each saccade was directed within 10-17.5 degrees horizontally and 20-725 

40 degrees vertically of a target (due to vertical inaccuracies in localizing non-visual targets in primates, 47) 726 

and if the gaze was maintained on the final target for 100 – 200 ms. On correct trials monkeys 727 

were rewarded with juice drops. 728 
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 729 

Training 730 

Training was accomplished in three stages. We initially trained the monkeys to report the 731 

location of single visual targets by saccading to them. We then introduced single auditory targets. 732 

As these were novel and unexpected in the silent experimental booth monkeys readily saccaded 733 

to them (48). To help the monkeys calibrate their auditory saccades, a visual feedback was added 734 

on trials where the auditory saccade was not initiated correctly within 700 ms. The feedback was 735 

presented only at the most peripheral target locations (+/- 24 degree) and only for a few initial 736 

days of training. Finally, we trained monkey to localize dual-sound targets. Initially we presented 737 

the two sounds sequentially in a specific order, then we gradually reduced the temporal gap 738 

between them until the sounds were simultaneous. 739 

 In the final version of the task, monkeys were allowed to look at the targets in either 740 

order, as noted above.  However, due to the initial training with sequential sounds, they retained 741 

stereotyped patterns of saccades in which they tended to look first to whichever sound location 742 

had been presented first during the sequential and partial overlap stages of training.  Monkey P 743 

was trained with more central target locations (e.g. -6 or 6 degree targets) initially occurring first 744 

and more peripheral targets (e.g. -24 or 24 degree targets) occurring second, and monkey Y was 745 

trained with sounds initially occurring in the opposite sequence.  Midway through neural data 746 

collection, we provided additional training to monkey Y to encourage free choice of which sound 747 

to look at first.  This allowed us to investigate the relationship between each behavioral response 748 

and the neural representation at that moment. 749 

 750 

Recording procedure and strategy  751 

General procedure 752 

Recordings were made with one or two tungsten electrodes (FHC, impedance between 1 753 

and 3 MΩ at 1 kHz). Each electrode was lodged in a stainless-steel guide tube (manually 754 

advanced through the dura) and controlled independently with an oil hydraulic pulse 755 

micropositioner (Narishige International USA, Inc. and NAN INSTRUMENTS LTD, Israel). 756 

First, we localized the IC (and isolated single neurons) while the monkey listened passively to 757 

sounds of different frequencies. We then collected single unit spiking activity and local field 758 

potential while the monkey performed the single- and dual-sound localization tasks. We used a 759 
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Multichannel Acquisition Processor (MAP system, Plexon Inc., Dallas, TX) and Sort Client 760 

software. The single unit spiking activity was filtered between 150 Hz and 8 kHz and sampled at 761 

20 kHz, while the LFP signal was filtered between 0.7 and 300 Hz and sampled at either 20kHz 762 

or 1kHz (see Local Field Potential). Data were collected as long as the neurons were well 763 

isolated and the monkey performed the tasks  764 

Neural signals were recorded primarily from two functionally-defined subregions of the 765 

IC, the low frequency area and the tonotopic area (22).  Neurons in the low frequency tuned area 766 

generally respond best to low frequencies and there is little heterogeneity in tuning, whereas 767 

neurons recorded in the tonotopic area had best frequencies that could be either low or high 768 

depending on the position of the recording electrode. 769 

 770 

Data Sets and Auditory Stimuli:  Locations, Frequencies, and Levels  771 

The spiking activity of 166 single neurons was recorded, in two datasets involving the 772 

same task but differing in which sound levels and frequencies were included.  A total of 68 of 773 

these neurons were recorded as pairs from separate electrodes positioned in the IC on the same 774 

side of the brain at a minimum spatial separation of 2 mm.  Local field potentials (LFP) were 775 

also recorded from 87 of these recording sites.   776 

In both datasets, the sounds consisted of bandpass noise with a bandwidth of +/- 200 Hz.  777 

On dual-sound trials, the sounds were delivered from pairs of locations (24 degrees and -6 778 

degrees), and (-24 and +6 degrees) i.e. 30 degrees apart.    The two sounds differed in frequency, 779 

with one of the two sounds having a 742 Hz center frequency and the other differing by at least 780 

0.285 octaves or multiples of this distance. Single-sound trials involved the same set of locations 781 

and frequencies as on dual-sound trials, but with only a single sound presented at a time.    All 782 

sounds were “frozen” within an individual session; that is, all trials with a given set of auditory 783 

parameters involved the same time series signal delivered to the relevant speaker. 784 

In data set I (N=98 neurons), the sounds presented on dual-sound trials were 742 Hz and 785 

a sound from the set (500, 609, 903, 1100 Hz); these frequencies were ±0.285 octave or ± 0.57 786 

octaves above or below 742 Hz, or ±3.4 and 6.8 semitones.  Combining two sounds will produce 787 

a combination that is louder than either component.  Sound levels were therefore calibrated to 788 

provide two sets of conditions:  dual sounds for which the component sounds involve the same 789 

signals to the audio speakers as on single-sound trials, producing a louder dual sound, and dual 790 
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sounds for which the level of the component sounds was reduced so that the overall loudness 791 

was the same on dual as on single trials.   The levels used for the components were 51 and 55 792 

dB, producing sound levels of minimum 55 or maximum 60 dB on dual-sound trials.  The same-793 

signal comparison involved using the 55 dB component levels, singly and on dual-sound trials.  794 

The same-loudness comparison involved using the 55 dB levels on single-sound trials and the 51 795 

dB levels for the components of dual-sound trials.  Calibrations were performed using a 796 

microphone (Bruel and Kjaer 2237 sound level meter) placed at the position normally occupied 797 

by the animal’s head.   798 

  Because results did not differ substantively when comparisons were made between 799 

same-signal and same-loudness conditions (Figure 2 vs. Supplementary Figure 1), we pooled 800 

across sound levels for subsequent analyses, and we dispensed with the multiple sound levels for 801 

data set II (monkey Y only, N=68 neurons), using either 50 or 55 dB levels for all components.  802 

We also incorporated additional sound frequencies, [1340 1632 1988 Hz], to improve the odds 803 

that responses to each of the component sounds differed significantly.  Again, one of the two 804 

sounds on dual-sound trials was 742 Hz; the other sound frequency was either from the original 805 

list of [500 609 903 1100] or from the new frequencies.  Most of the neurons in this data set were 806 

tested with [500 742 1632].      807 

    808 

Cell Inclusion/Exclusion criteria and trial counts 809 

 The N=166 neurons (N=98 from Data Set I and N=68 from Data Set II) included for 810 

analysis were drawn from a larger set of 325 neurons.  Neurons were excluded from analysis if 811 

the neuron proved unresponsive to sound (Student’s t-test, spike counts during the 600 ms after 812 

sound onset compared to the same period immediately prior to sound onset, one-tailed, p>0.05), 813 

or if there were too few correct trials (mininum of five correct trials for each of the components 814 

[A, B, and AB trials] that formed a given “triplet” of conditions or if there were technical 815 

problems during data collection (e.g. problems with random interleaving of conditions or with 816 

computer crashes).  The average number of correct trials for a given set of stimulus conditions in 817 

the included dataset (N=166) was 10.5 trials.  The total number of included triplets was 1484.   818 

 819 

Data Analysis 820 

 821 
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 All analyses concerned correctly performed trials.   822 

 823 

Analysis of activity pooled across time and/or trials:  Summation and Averaging  824 

To evaluate IC activity using conventional analysis methods that pool across time and/or 825 

across trials, we counted action potentials during two standard time periods. The baseline period 826 

(Base) was the 600ms period before target onset, and the sensory-related target period (Resp) 827 

was the 600ms period after target onset (i.e. ending before, or at the time of, the offset of the 828 

fixation light.  Figure 2A).   829 

 830 

Summation/Averaging Indices:  We quantified the activity on dual-sound trials in 831 

comparison to the sum and the average of the activity on single-sound trials, expressed in units 832 

of standard deviation (Z-scores), similar to a method used by (32).  Specifically, we calculated,  833 

 834 

PredictedSumA,B, = mean(RespA) + mean(RespB) - mean(BaseA,B)    (1) 835 

 836 

and 837 

 838 

PredictedAvgA,B, = (mean(RespA) + mean(RespB))/2      (2) 839 

 840 

where RespA and RespB were the number of spikes of a given neuron for a given set of single-841 

sound conditions A and B (location, frequency, and intensity) that matched the component 842 

sounds of the dual-sound trials being evaluated. As the “response” may actually include a 843 

contribution from spontaneous baseline activity, we subtracted the mean of the baseline activity 844 

for the single sounds (BaseA,B).  Without this subtraction, the predicted sum would be artificially 845 

high because two “copies” of baseline activity are included under the guise of the response 846 

activity.   847 

 The Z scores for the dual-sound trials were computed by subtracting these predicted 848 

values from the mean of the dual-sound trials (mean(RespAB)) and dividing by the mean of the 849 

standard deviations of the responses on single-sound trials:   850 

        
    (      )                

        (     )    (     ) 
       (3) 851 

 852 
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and 853 

 854 

        
    (      )                

        (     )    (     ) 
       (4) 855 

 856 

If the dual response was within +/- 1.96 of the predicted sum or predicted average, we could say 857 

the actual dual response was within the 95% confidence intervals for addition or averaging of 858 

two single responses, respectively.  859 

 860 

Analyses of fluctuations in neural firing across and within-trials, and inclusion criteria 861 

 Our statistical tests for fluctuations in neural firing were conducted on triplets, or related 862 

sets of single and dual-sound trials (A, B, AB trials).  To evaluate whether neural activity 863 

fluctuates across trials in a fashion consistent with switching between firing patterns representing 864 

the component sounds, we evaluated the Poisson characteristics of the spike trains on matching 865 

dual and single-sound trials (triplets: AB, A and B). Spike train data from each trial was 866 

summarized by the total spike count between 0-600ms or 0-1000 ms from sound onset (i.e. 867 

whatever the minimum duration of the overlap between fixation and sound presentation was for 868 

that recorded neuron, see section Events of Task). We modeled the distribution of spike counts in 869 

response to single sounds A and B as Poisson distributions with unknown rates    , denoted 870 

       , and      , denoted        . Four hypotheses were considered for the distribution of 871 

sound AB spike counts:  872 

1. a mixture distribution                          with an unknown 873 

mixing weight   (“mixture”)  874 

2. a single          with some    in between    and    (“intermediate”)  875 

3. a single          where     is either larger or smaller than both    and    876 

(“outside”)  877 

4. a single          where     exactly equals one of    and    (“single”) 878 

 879 

 Relative plausibility of these competing hypotheses was assessed by computing 880 

their posterior probabilities with equal prior weights (1/4) assigned to the models, and 881 

with default Jeffreys’ prior (49) on model specific Poisson rate parameters, and a uniform 882 
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prior on the mixing weight parameter  . Posterior model probabilities were calculated by 883 

computation of relevant intrinsic Bayes factors (50).  884 

Triplets were excluded if either of the following applied: 1) the Poisson assumption on A 885 

and B trial counts was not supported by data; or 2)    and   were not well separated.  To 886 

test the Poisson assumption on single-sound trials A and B of a given triplet, we used an 887 

approximate chi-square goodness of fit test with Monte Carlo p-value calculation. For 888 

each sound type, we estimated the Poisson rate by averaging counts across trials.  Equal 889 

probability bins were constructed from the quantiles of this estimated Poisson 890 

distribution, with number of bins determined by expected count of 5 trials in each bin or 891 

at least 3 bins -- whichever resulted in more bins. A lack-of-fit statistic was calculated by 892 

summing across all bins the ratio of the square of the difference between observed and 893 

expected bin counts to the expected bin count. Ten thousand Monte Carlo samples of 894 

Poisson counts, with sample size given by the observed number of trials, were generated 895 

from the estimated Poisson distribution and the lack-of-fit statistic was calculated from 896 

each one of these samples. P-value was calculated as the proportion of these Monte Carlo 897 

samples with lack-of-fit statistic larger than the statistic value from the observed data. 898 

Poisson assumption was considered invalid if the resulting Monte Carlo p-value < 0.1. 899 

 For triplets with valid Poisson assumption on sound A and B spike counts, we 900 

tested for substantial separation between    and   , by calculating the intrinsic Bayes 901 

factor of the model       against       with the non-informative Jeffreys’ prior on 902 

the   parameters:   ,    or their common value. The triplet was considered well 903 

separated in its single sounds if the logarithm of the intrinsic Bayes factor equaled 3 or 904 

more, which is the same as saying the posterior probability of       exceeded 95% 905 

when a-priori the two models were given 50-50 chance. 906 

 907 

Dynamic Admixture Point Process Model 908 

 To evaluate whether neural activity fluctuates within trials, we developed a novel analysis 909 

method we call a Dynamic Admixture Point Process model (DAPP) which characterized the 910 

dynamics of spike trains on dual sound trials as an admixture of those occurring on single sound 911 

trials. The analysis was carried out by binning time into moderately small time intervals. Given a 912 

predetermined bin-width w = T/C for some integer C, we divided the response period into 913 
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contiguous time intervals I1 = [0;w); I2 = [w; 2w)… IC = [(C-1)w,Cw) and reduced each trial to 914 

a C-dimensional vector of bin counts (X
e
j1,…,X

e
jC) for e ∈ {A;B;AB} and j = 1,…, ne. 915 

Mathematically, X
e
jC = N

e
j(Ic). The results reported in Section 2 were based on w = 50 (with time 916 

measured in ms and T = 600 or 1000), but we also repeated the analyses with w = 25 and noticed 917 

little difference. 918 

 Our model for the bin counts was the following. Below we denote by   
  the mid-point (c 919 

– 1/2)w of sub-interval Ic. 920 

 921 

1.     
     (       

  ),  ∈ {   }  ∈ {     } ,  ∈ {      }.  We assume both       and 922 

     are smooth functions over t ∈ [0, T]. 923 

 924 

2.    
              

   ,  where   (t) =             
     {       } 

     with 925 

   [   ]        being unknown smooth functions. 926 

  927 

 We modeled               , where               , and, each        was taken to 928 

be a (smooth) Gaussian process with  {     }    ,    {     }    , and, 929 

   {          
  }      {              

 }. The three parameters            respectively 930 

encoded the long-term average value, the total swing magnitude and the waviness of the       931 

curve. While the temporal imprint carried by each    was allowed to be distinct, we enforced the 932 

dual trials to share dynamic patterns by assuming (        )          , were drawn from a 933 

common, unknown probability distribution P, which we called a dynamic pattern generator and 934 

viewed as a characteristic of the triplet to be estimated from the data. 935 

 To facilitate estimation of P, we assumed it decomposed as         , where     936 

was an unknown distribution on              generating        , and,    was an unknown 937 

distribution on       generating   . To simplify computation, we restricted    to take only a 938 

finitely many positive values, representative of the waviness range we are interested in (in our 939 

analyses, we took these representative values to be {75, 125, 200, 300, 500}, all in ms). This 940 

restricted    to be a finite dimensional probability vector.  941 

 We performed an approximate Bayesian estimation of model parameters. Note 942 

that             and        were informed by the single sound trial data. All other model 943 
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parameters were informed only by the dual sound trial data conditionally on the knowledge of 944 

      and      . To take advantage of this partial factorization of information sources, we first 945 

smoothed each set of single sound trial data to construct a conditional gamma prior for the 946 

corresponding      
    ∈ {   }        , where the gamma distribution’s mean and 947 

standard deviation were matched with the estimate and standard error of      
  . A formal 948 

Bayesian estimation was then carried out on all model parameters jointly by (a) using only the 949 

dual sound trial data, (b) utilizing the conditional gamma priors on       and      , and,  (c) 950 

assuming a Dirichlet process prior (51) on     and an ordinary Dirichlet prior on   . This final 951 

step involved a Markov chain Monte Carlo computation whose details will be reported in a 952 

separate paper. 953 

 Next, the estimate of the generator P was utilized to repeatedly simulate      functions 954 

for hypothetical, new dual trials for the triplet. For each simulated      curve, we computed its 955 

maximum swing size | |                     and, time aggregated average value 956 

 ̅  ∫       
 

 
  . The waviness index of the triplet was computed as the odds of seeing an      957 

function exhibiting a swing of at least 50% between its peak and trough: 958 

      
  | |     

  | |     
  959 

where P denotes the sampling proportion of the simulated   draws. The triplet’s extremeness 960 

index was computed as the odds of seeing an      function with its long-term average  ̅ being 961 

closer to the mid-way mark of 50% than the extremes: 962 

     
    ̅∈            

   ̅              
. 963 

The two indices were then thresholded to generate a 2-way classification of all triplets. On 964 

waviness, a triplet was categorized as “wavy”, “flat” or “ambiguous” according to whether 965 

      ,        , or,            , respectively On extremeness, the categories were 966 

“central”, “extreme”, or, “ambiguous” according to whether        ,        , or,      967 

       , respectively.  968 

 In addition to the flat/wavy and extreme/central classification, a third parameter was 969 

evaluated for each triplet:  the degree of skewness in the distribution of   ̅̅ ̅  970 

rs=max({
    ̅̅̅̅      

    ̅̅̅̅      
 
    ̅̅̅̅      

    ̅̅̅̅      
} 971 
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which ranges in (1, ). Each triplet’s flat/wavy/central/extreme tag could then be subcategorized 972 

as either “skewed" or “symmetric" depending on whether rS > 4 or rS  < 2 (with no label in the 973 

middle).  This subcategorization step was useful for distinguishing the dynamic admixtures 974 

associated with the whole-trial categorizations of “single” and “outside” from “intermediate” and 975 

“mixture”, with “single” and “outside” tending to be classified as “skewed”.  Supplementary 976 

Table 1 and Supplementary Figures 2 and 3 give the full results of the main 2-way classification 977 

together with the symmetry/skewness subclassification, cross tabulated with the classification 978 

done under the whole trial spike count analysis.  979 

 980 

A vs. B assignment scores:  individual neurons, pairs of neurons, local field potential, and 981 

behavioral prediction 982 

A vs. B assignment scores were computed for several analyses (the example shown in 983 

Figure 3A-D; pairs of recorded neurons; the relationship between spiking activity and local field 984 

potential; and the relationship between saccade sequences and spiking activity).  For each triplet,  985 

every dual-sound trial received an “A-like” score and a “B-like” score, either for the entire 986 

response window (600-1000 ms after sound onset) or for 50 ms time bins. The scores were 987 

computed as the posterior probability that the spike count in each dual-sound trial was drawn 988 

from the Poisson distribution of single-sound spike counts,  989 

For the pairs analysis, the A vs. B assignment scores were computed within each 50 ms 990 

time bin independently for each pair of neurons recorded simultaneously.   The scores were 991 

normalized across trials by subtracting the mean score and dividing by the standard deviation of 992 

scores for that bin (a Z-score in units of standard deviation).  Only conditions for which both 993 

recorded neurons exhibited reasonably different responses to the “A” vs. the “B” sound and for 994 

which there were at least 5 correct trials for A, B, and AB trials were included (t-test, p < 0.05).  995 

A total of 206 conditions were included in this analysis.     996 

 997 

Local field potential analysis  998 

We analyzed the local field potential from 87 sites in both monkeys (30 sites from 999 

monkey P’s left IC, 31 sites from monkey Y’s right IC and 26 sites from monkey Y’s left IC). 1000 

The LFP acquisition was either recorded in discrete temporal epochs encompassing behavioral 1001 

trials (roughly 1.2 to 2 seconds long) and at a sampling rate of 20 kHz (Dataset I, part of Dataset 1002 
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II), or as a continuous LFP signal during each session, at a sampling rate of 20 kHz or 1kHz (rest 1003 

of Dataset II). We standardized the LFP signals by trimming the continuous LFP into single trial 1004 

intervals and down-sampling all signals to 1 kHz. The MAP system filters LFP signals  between 1005 

0.7 and 300 Hz; no additional filtering was applied.  For each site we subtracted the overall mean 1006 

LFP value calculated over the entire session, to remove any DC shifts, and we excluded trials 1007 

that exceeded 500mV. For each triplet, we assigned individual dual-sound trials to two groups 1008 

based on the total spike count in a 600 ms response window (see Methods:  A vs. B assignment 1009 

scores). The average LFP was then compared across the two groups in two 600 ms windows 1010 

before and after sound onset (baseline and response periods). The results reported here refer to 1011 

these mean-normalized LFP signals. We obtained similar results when the amplitude of each 1012 

trial’s LFP was scaled as a proportion of the maximum response within the session.   1013 

  1014 

SUPPLEMENTARY FIGURES AND TABLES 1015 

 1016 

 1017 

 1018 
 1019 
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Supplementary Figure 1.  Same analysis as figure 2, but comparing dual-sound trials to single-1020 

sound trials that used the same signal sent to the speakers (left column), or for which the signal 1021 

was amplified on single-sound trials to match the dual sounds in loudness (middle and right 1022 

columns).  The results are essentially identical to each other.  Accordingly, the remainder of the 1023 

analyses in the paper ignored sound intensity as a factor.   1024 

 1025 

 1026 

 Intermediate Mixture Outside Single Total 

Wavy-central+symmetric 13 (5) 2   15 (5) 

Wavy-central 1    1 

Wavy+symmetric 4 2   6 

Flat-central+symmetric 7 (3)    7 (3) 

Flat-central 2 (1) 1   3 (1) 

Flat-extreme+skewed 8 (1) 12 (3) 19 (4) 46 85 (8) 

Flat-extreme+symmetric 2 22 (19)  4 28 (19) 

Flat-extreme 3 31 (13) 1 16 51 (13) 

Flat+skewed 4 (2)    4 (2) 

Flat+symmetric 6 11 (4)  4 21 (4) 

Flat 13 (2) 1  2 16 (2) 

Extreme+symmetric 1 4 (4)  1 6 (4) 

Extreme  3 (2)  1 4 (2) 

Central+symmetric 9 (2) 1  2 12 (2) 

Symmetric 36 (1) 42 (5)  14 92 (6) 

Skewed 1 (1)    1 (1) 

Ambiguous 5 2  3 10 

Total 115 (18) 134 (50)  20 (4) 93 362 (72) 

 1027 

Supplementary Table 1.  Complete listing of “tags” applied in the DAPP analysis.  Categories 1028 

not shown (e.g. wavy-central+skewed) did not receive any members.  The numbers in 1029 

parentheses are for triplets that produced a winning model in the whole trial analysis with a 1030 
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probablility > 95%. The total is 362, since for one “single” triplet, the DAPP analysis failed to 1031 

compute the necessary metrics.   1032 

 1033 

 1034 

 1035 

Supplementary Figure 2.  Hierarchical depiction of the DAPP tags, considering first flat vs. 1036 

wavy, then central vs. extreme, then symmetric vs. skewed, as a function of whole trial model 1037 

classification.  As in Supplementary Table 1, numbers in parentheses are for triplets that 1038 

produced a winning model in the whole trial analysis with a probability > 95% and the total 1039 

included here is 362.  For clarity, labels “0(0)” are not shown. 1040 

  1041 
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 1042 

 1043 

Supplementary Figure 3.  Relationship between the three relevant DAPP tag combinations (flat-1044 

extreme, wavy-central, and flat-central) and whole-trial Poisson classification, for different 1045 

levels of winning probability for the whole-trial analysis.  Panel C is identical to Figure 5C in 1046 

the main text, and triplets that received a “skewed” subclassification are excluded.  1047 

 1048 
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 1049 

Supplementary Figure 4.  Same analysis as in Figure 6B, but using spike counts in each bin 1050 

instead of A vs. B assignment scores.   1051 

 1052 
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