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Abstract 

 

Linear analysis of kinetic models of metabolism can help in understanding the dynamic response 

of metabolic networks. Central to linear analysis of these models are two key matrices: the 

Jacobian matrix (J) and its modal matrix (M-1). The modal matrix contains dynamically 

independent motions of the kinetic model, and it is sparse in practice. Understanding the sparsity 

structure of the modal matrix provides insight into metabolic network dynamics. In this study, 

we analyze the relationship between J and M-1. First, we show that diagonal dominance occurs 

in a substantial fraction of the rows of J, resulting in simple modal structures within M-1. 

Dominant diagonal elements in J approximate the eigenvalues corresponding to these simple 

modes, in which a single metabolite is driven back to its reference state on a characteristic 

timescale. Second, we analyze more complicated mode structures in M-1, in which two or more 

variables move in a certain ratio relative to one another on defined time scales. We show that 

complicated modes originate from sub-matrices of topologically connected elements of similar 

magnitude in J. Third, we describe the origin of these mode structure features based on the 

network stoichiometric matrix S and the reaction kinetic gradient matrix G.  We demonstrate that 

the topologically-connected reaction sensitivities of similar magnitude in G play a central role in 

determining the mode structure. Ratios of these reaction sensitivities represent equilibrium 

balances of half reactions that are defined by linearization of the bilinear mass action rate laws 

followed by enzymatic reactions. These half-reaction equilibrium ratios are key determinants of 

modal structure for both simple and complicated modes. The work presented here helps to 

establish a foundation for understanding the dynamics of kinetic models of metabolism, which 

are rooted in the network structure and the kinetic properties of reactions. 

  

Introduction 

 

In recent years, kinetic models of metabolism have become increasingly detailed, 

comprehensive, and consistent with the underlying biochemistry and genetics (1)(2)(3)(4)(5)(6). 

The development of kinetic models is attractive because, among other reasons, these models can 

help us understand the relationship between metabolite concentrations and reaction fluxes, which 

currently is difficult to analyze directly with constraint-based or statistical models (7)(8)(9). 

Kinetic models have shown utility in numerous applications, including the study of: 1) regulatory 

mechanisms controlling the cellular metabolic network (10)(11), 2) complex dynamic behavior 
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such as bistability (12), 3) intracellular signal transduction (13), and 4) the effect of enzyme 

mutations on a network scale (14)(15). Furthermore, predictive kinetic models are desirable in 

metabolic engineering to improve production, substrate utilization, and product quality (16)(17).  

 

A grand challenge for the further development of kinetic models is to develop a fundamental 

understanding of their behavior, in order to enable a deeper understanding of the structure and 

function of the biological system. A number of studies have made theoretical and practical 

headway in this regard by analyzing the linear properties of the dynamic system around a steady 

state. These linear analysis methods have helped to provide insight into metabolic flux control 

(18)(19), elucidate the temporal hierarchy of dynamic events (20), and determine the 

fundamental dynamic structure of the network (21).  

 

At the core of these linear analysis methods is the modal matrix (M-1) resulting from the 

Jacobian matrix (J) of the mass balance equation. The modal matrix contains dynamically 

decoupled motions of the metabolic network, called modes. For real metabolic networks, the 

modal matrix has a sparse structure (20), the interpretation of which can yield biological insight 

into dynamics occurring on particular time scales. However, while M-1 is a numerically-

generated matrix, J can be represented symbolically in terms of derivatives of the reaction rate 

laws (dv/dx) in the network. Thus, obtaining an understanding of the structure of M-1 in terms of 

the structure of J would allow us to connect the dynamics of the network to the kinetic properties 

of single reactions, providing insight into the origin of the network dynamic structure. Any 

numerical investigation of these properties should be performed on a real metabolic network, 

where network topology as well as order of magnitude differences in reaction fluxes, metabolite 

concentrations, and reaction rate constants are essential features in determining the dynamics of 

the network (22). 

 

In this study, we present key results on the modal structure of kinetic models of metabolism, 

using the metabolic network in the human red blood cell (RBC) as an example (22). This model 

consists of ten enzyme mechanisms represented by mass action kinetics inserted in a background 

of 133 approximated rate law reactions (3)(23), parameterized with measured metabolite 

concentrations and enzyme kinetic constants. Using both numerical and theoretical arguments, 

we demonstrate how the dynamic structure of the modal matrix M-1 forms due to specific 

properties of the Jacobian (J) matrix. Using Gershgorin circle theorem, we first explain simple 

dynamic structures in cases where diagonal dominance occurs in J. Second, we use the matrix 

power iteration algorithm to show how modes with more complicated sparsity structures arise 

from topologically connected elements of J that have similar magnitude. Third, we describe how 

such complicated mode structures arise due to specific metabolite and reaction properties of the 

system, through examination of the corresponding elements in S and G. 

 

We focus on demonstrating general principles through a set of case studies on the concentration 

Jacobian matrix and the mode structures associated with metabolite groups. These principles also 

apply to the flux Jacobian matrix and the relate flux modal structures, which are characterized in 

terms of the flux variables and describe the dynamic properties of the reaction groups (24). 

 

Materials and Methods 
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Software 

 

All work was done in Mathematica 10. We used a package called the MASS Toolbox 

(https://github.com/opencobra/MASS-Toolbox) for model simulation and analysis.  

 

 

Model simulation and perturbation 

 

The model used in this study is a whole-cell kinetic model of red blood cell (RBC) metabolism 

with 10 enzyme modules incorporated (22). An enzyme module describes the detailed reaction 

steps of an enzyme catalyzed reaction, including substrate binding, catalytic conversion, product 

release and regulatory actions. The 10 enzyme modules are mainly located in glycolysis and the 

pentose phosphate pathway.  

 

We used measured steady state metabolite concentrations as the starting state of the system 

before the perturbation. The perturbation used in this study was to simulate ATP hydrolysis in 

RBC. At time 0, the ATP concentration was decreased by 0.1 mmol/L while ADP and Pi 

concentrations were increased by 0.1 mmol/L. We then simulated the subsequent concentration 

and flux changes through numerical integration of the ODE equations. We gave the system 

enough time (106 hours) to regain the steady state concentrations. The dynamic response of a 

specific metabolite or a combination of metabolites over time was visualized using the plotting 

functions in MASS Toolbox.  

 

 

Mode structure interpretation and dominant mode selection 

 

To simplify the mode structure for interpretation, we neglected metabolites whose absolute 

coefficient values are less than 5% of the maximum absolute coefficient. We found that 

generally metabolites with small coefficients do not substantially contribute to the dynamic 

response of the mode, and 5% serves as a useful cutoff value for purposes of analysis. 

 

When selecting modes that can be explained by diagonal dominance alone, we applied the 

following criteria to both concentration modes and flux modes. When examining a particular 

mode, we first neglected elements whose absolute coefficient values are less than 5% of the 

maximum absolute coefficient. If there is only one element left in the mode and it is diagonally 

dominant, the mode is explained by diagonal dominance. For modes with multiple elements, we 

selected the mode where its largest coefficient is at least twice as large as the next one and 

corresponds to the most diagonally dominant element in the mode. 

 

 

Power iteration and Hotelling’s deflation 

 

Since the modes are left eigenvectors of the Jacobian matrix, we left multiplied the Jacobian 

matrix by the vector during power iteration. We started with a random vector, obtained a new 
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vector after matrix multiplication and normalized against the Euclidean norm. We kept running 

this iteration until the length of the ending vector converges. The algorithm is demonstrated as 

follows, 

 
 

𝑢𝑖+1 =
𝑢𝑖 ∙ 𝐉

∥ 𝑢𝑖 ∙ 𝐉 ∥
 

 
(1) 

 

where i is the number of iterations, 𝑢𝑖 is the starting vector and 𝑢𝑖+1 is the ending vector in each 

iteration. 

 

Since power iteration only calculates the leading eigenvalue and eigenvector of the Jacobian 

matrix, we used Hotelling’s deflation to remove the impact of the leading eigenvector and 

calculated the next leading eigenvector (25). The algorithm thus results 

 
 𝐉𝑡+1 = 𝐉𝑡 − 𝑢𝑡𝑢𝑡

𝑇𝐉𝑡𝑢𝑡𝑢𝑡
𝑇 (2) 

   

where 𝐽𝑡+1 is the Jacobian matrix after the leading eigenvector 𝑢𝑡 of the previous Jacobian 

matrix 𝐽𝑡 is removed. 

 

In cases where the eigenvalues are clustered together, different starting vectors will result in 

different eigenvectors at the end of iteration. To compare the approximated eigenvectors from 

power iteration with the actual eigenvectors, we picked the eigenvalue cluster with time scale 

around 0.016 milliseconds and reduced J using Hotelling’s deflation method until this time scale 

was reached. We started with 100 random vectors and multiplied them by J through 100 

iterations, which we found to be large enough for the vector to converge in practical cases. To 

obtain the set of linearly independent vectors out of the 104 vectors, we started with one of the 

vectors, added another vector (from the 104 vectors), and calculated the rank of the matrix 

formed by the current vector space. We kept adding the vector one at a time for all the ones we 

calculated. If the matrix rank increases, the added vector is linearly independent with the earlier 

vectors and will be kept in the final vector set. Otherwise, it will not be included. We also 

calculated the norms of all vectors during iterations as eigenvalue approximations for 

comparison with the eigenvalue cluster. 

 

 

Results 

 

Linear analysis on dynamic structures of the metabolic network 

 

We first briefly introduce the basic theory for linear analysis of metabolic networks. In a 

biochemical reaction network, the dynamic mass balances for all m concentrations x are given in 

the form of a matrix equation:  

 

 𝑑𝐱

𝑑𝑡
= 𝐒 ∙ 𝐯(𝐱, 𝐤) (3) 
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where S is the m × n stoichiometric matrix, x is the m × 1 vector of metabolite concentrations, 

and v is the n × 1 vector of reaction fluxes. The formulation of v depends on the reaction rate law 

used and the mass action rate law is expressed as a function of the concentrations x and kinetic 

parameters k. 

 

Linearizing around a particular steady state x0 (i.e., 𝐒 ∙ 𝐯(𝐱𝟎, 𝐤) = 0) yields, 

 

 𝑑𝐱′

𝑑𝑡
= 𝐉 ∙ 𝐱′ (4) 

 

where 𝐱′ = 𝐱 − 𝐱𝟎 are the concentration deviation variables from the steady state and J = S · G 

is the concentration Jacobian matrix (20). G (=dv/dx) is the gradient matrix obtained from 

linearization of the reaction rates (24). It is the same matrix as the non-normalized elasticity 

matrix from metabolic control analysis (19).  

 

An eigen-decomposition of the Jacobian matrix yields a different representation of the same 

linearized system, with dynamically independent motions of metabolites grouped into modes 

within the modal matrix (20). 

 

 𝐉 = 𝐌 ∙ 𝚲 ∙ 𝐌−1 (5) 

   

where M-1 is the modal matrix and 𝚲 is the diagonal matrix of eigenvalues. During eigen-

decomposition, we can append the left null space vectors of the Jacobian matrix to the modal 

matrix and assign those vectors zero eigenvalues. This operation makes both modal matrices full 

rank since a rank deficient matrix is not invertible. The modes are defined as 𝑚 = 𝐌−1 ∙ 𝐱.  

Substituting Eq. 5 into Eq. 4, and based on the mode definitions, we have,  

 

 𝑑𝑚

𝑑𝑡
= 𝚲𝑚 (6) 

 

As defined in Eq. 6, the eigenvalues and modes give information on the dynamically independent 

motions of metabolite groups (20).  

 

The rows of the modal matrix, which correspond to modes, are left eigenvectors of J (uJ = 𝜆u). 

Each mode is associated with an eigenvalue and represents the dynamic motion in a 

characteristic time scale defined by the eigenvalue. These characteristic time scales describe the 

approximate time it takes for the mode to relax (return near its original reference state) when the 

system is perturbed from steady state (see Supporting Material). Our focus in this work is to 

examine the sparsity structure of the modes and determine how this structure is connected to 

properties of the Jacobian matrix. 

 

 

Half-reaction equilibria resulting from linearization of bilinear mass action rate laws are key 

dynamic features of G  
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Understanding the sparsity structure of the modal matrix M-1 derived from the Jacobian matrix J 

is greatly helped by the knowledge that J is sparse and contains elements spanning several orders 

of magnitude. The gradient matrix G (=dv/dx) is responsible for the order of magnitude scaling 

of the elements of J, since J = S · G, and the elements of S are mostly -1, 0 or 1. For mass action 

reactions, the dv/dx derivatives comprising the gradient matrix G have a specific mathematical 

form and biochemical interpretation (Figure 1). The form of the mass action rate law for an 

example bilinear reaction between metabolite A and enzyme form E where A + E ⇌ EA is 𝑣 =
𝑘+[A][E] − 𝑘−[EA], and the three resulting dv/dx terms in G for the reaction are 𝑘+[A], 𝑘+[E], 
−𝑘−. From these three terms, we can see that certain reactant/product terms are eliminated when 

calculating the reaction sensitivities (derivatives in the form of dv/dx) in G. This mathematical 

operation can be interpreted as splitting the original reaction into half reactions in a biochemical 

context. In the case of bilinear kinetics of enzymatic binding/release reactions, the half reaction 

describes the binding/release process for one reactant, which is held constant.  

 

In a biochemical network, the concentrations can span different orders of magnitude, resulting in 

their activities at different time scales in response to perturbations. Typically, the enzyme forms 

have much smaller concentrations than those of metabolites. For these reactions, the half 

reactions will have sensitivities on different orders of magnitude, separating the dynamics 

associated with the enzyme forms apart from those of metabolites. In case of the bilinear reaction 

mentioned above, we observe such half reaction is associated with the binding/release of A, 

which is relatively constant due to its larger concentration. On the other hand, E and EA form a 

quasi equilibrium due to their smaller concentrations. 

 

For a full reaction, the distance from equilibrium is defined as Γ/Keq, where Γ is the mass action 

ratio and Keq is the equilibrium constant. Thus, for the example bilinear reaction mentioned 

above, its distance from equilibrium can be expressed as 𝑘−[EA]/𝑘+[A][E]. Similarly, the 

distance from equilibrium for the half reaction associated with binding/release of A can be 

expressed as the ratio between the reaction sensitivities of E (𝑘+[A]) and EA (𝑘−). This ratio can 

be simplified into [A]/Kd,A, where Kd,A equals 𝑘−/𝑘+ and represents the dissociation constant 

for binding/release of A. In cases where there is only one reactant on both sides of the reaction, 

the half-reaction equilibrium is equivalent to the equilibrium of the reaction itself (since the 

resulting dynamic ratio is 𝑘+/𝑘−). 

 

As a specific example, we present a case study on the glucose 6-phosphate isomerase (PGI) 

enzyme module (Figure 1A) from a whole-cell kinetic model of RBC metabolism (22). An 

enzyme module describes the individual reaction steps of an enzyme-catalyzed biochemical 

reaction, and each step is represented by a mass action rate law. Using PGI1 reaction as an 

example, the half reaction of interest is the binding/release of glucose 6-phosphate (G6P) (Figure 

1B red). The comparison of the sensitivities of PGI (G6P𝑘𝑃𝐺𝐼1
+ ) with PGI&G6P (−𝑘𝑃𝐺𝐼1

− ) (& 

denotes PGI bound with metabolite G6P) in magnitude is equivalent to the comparison of G6P 

concentration with 1/Keq,𝑃𝐺𝐼1. This comparison effectively results in determining the distance 

from equilibrium for G6P binding/release half reaction. It is worth noting that the full 

equilibrium ratio would include the enzyme forms that have been removed by differentiation and 

therefore do not influence the above comparison; thus, the distinct definition of a half-reaction 

equilibrium ratio is helpful. 
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Understanding how mode structure forms requires an understanding of the relationships between 

terms in J, which in turn are set by particular reaction sensitivities from G. As we will show 

later, the complexity of a mode is dependent on the distance from equilibrium of half reactions 

defined by these sensitivities in G. Half reactions that are far from equilibrium result in simple 

mode structures while those near equilibrium together form complex modes.  

 

Diagonal dominance and the Gershgorin circle theorem applied to the Jacobian matrix 

 

Now that the biochemical origin of terms in the key matrices G and J are clarified, we move to a 

discussion of modal structure in kinetic models of metabolism. The modes are defined by 

 

 𝑚𝑖 = < 𝑢𝑖 , 𝐱 > (7) 

 

where 𝑢𝑖 is the left eigenvector and x is the steady state concentration vector. The relative 

magnitudes of the elements of 𝑢𝑖 determine the effective sparsity of a mode when low 

contributing elements are truncated. However, since the modes are calculated through a 

numerical algorithm, it is usually not straightforward to link a mode composition to particular 

elements of the Jacobian matrix, unless the Jacobian matrix has certain structural properties. One 

such property is diagonal dominance of the rows or columns of the Jacobian, which occurs when 

the magnitude of a diagonal element is greater than the sum of the magnitudes of off-diagonal 

elements in the same row (in the case of row dominance)  

 

 |𝐉𝑖𝑖| > ∑ |𝐉𝑖𝑘|

𝑘≠𝑖

 (8) 

 

or column (column dominance), see Figure 2A. We focus on row dominance in this work, as 

column dominance does not occur in the concentration Jacobian matrix due to the structure of 

the mass action rate law, as demonstrated in Figure 1D.  

 

The degree of diagonal dominance of a row number i can be quantitatively described by a metric 

we term the diagonal fraction, defined as the ratio between the sum of the absolute values of off-

diagonal elements and the absolute value of the diagonal element: 

 

 
𝑓𝑖 =

∑ |𝐉𝑖𝑘|𝑘≠𝑖

|𝐉𝑖𝑖|
 (9) 

 

Diagonal dominance of a row of the Jacobian matrix gives information about its corresponding 

eigenvalue. This relationship is made clear using Gershgorin’s circle theorem (26), which 

constrains an eigenvalue to be within a certain radius, based on the sum of the off-diagonal 

elements in a particular row/column, of the diagonal element. The theorem is particularly useful 

in confining eigenvalues within Gershgorin circles when strong diagonal dominance (a small 𝑓𝑖 

value) occurs, as the eigenvalue will be close to the diagonal element of the dominant row.  
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Diagonal dominance in the Jacobian matrix underlies simple mode structures 

 

To demonstrate the occurrence and impact of diagonal dominance in a real metabolic network, 

we use the RBC kinetic model to draw the Gershgorin circles and the eigenvalues from J (Figure 

2B along x-axis). As highlighted in Figure 2B, for the selected set of Gershgorin circles, there 

are two cases where the circle resulting from the strongly diagonally dominant row is very 

constrained and a unique eigenvalue falls inside the circle. In those cases, the eigenvalue is very 

closely approximated by the diagonal element.  

 

In addition to providing information about the eigenvalues, diagonal dominance in J also causes 

a simple sparsity structure within modes corresponding to these eigenvalues. When a row has 

strong diagonal dominance (f < 0.1), the diagonal metabolite usually is the only significant non-

zero element in the mode (Table S1). For example, the enzyme form GAPDH_T (glyceraldehyde 

3-phosphate dehydrogenase at tense state) has a very small diagonal fraction value, and is the 

only element in the mode at its corresponding time scale. The underlying reaction that causes its 

dominance is the transition step from enzyme form GAPDH at relaxed state to tense state 

𝐺𝐴𝑃𝐷𝐻 ⇌ 𝐺𝐴𝑃𝐷𝐻_𝑇, where the sensitivity of GAPDH_T (−𝑘GAPDH_transition_step
− ) contributes 

the most to its diagonal element in J. When a mode contains only the diagonally dominant 

metabolite, the dynamic motion of the mode drives that metabolite back to its reference state on 

a timescale determined by the eigenvalue. For example, under ATP hydrolysis perturbation, the 

dynamics of GAPDH_T match closely with the dynamics of the mode in which GAPDH_T is 

dominant (Figure 2C). When diagonal dominance becomes weaker (f > 0.1), the diagonally 

dominant metabolite shares modes with other metabolites, as demonstrated in the case of enzyme 

form glucose 6-phosphate dehydrogenase bound with 6-phospho-D-glucono-1,5-lactone 

(G6PDH&6PGL) in Table S1. In those cases, the ratio between those metabolites in the mode is 

similar to that in the diagonally dominant row of the Jacobian matrix. Overall, in the RBC 

metabolic model used in this work, the structure of 38 out of 244 (15.6%) concentration modes 

can be explained by diagonally dominant metabolites. Other statistics about diagonal dominance 

in rows of concentration Jacobian matrix can be found in Table S2 and Figure S1.  

 

As another effect of diagonal dominance, there exists an important relationship between diagonal 

dominance in J and system dynamic stability, which is characterized by the sign of eigenvalues 

of J in that any positive eigenvalues result in the steady state being unstable. Negative diagonal 

elements in J strongly support system stability, and this effect is further magnified by diagonal 

dominance (see Supporting Material and Figure S2).  

 

 

Dependence of diagonal dominance on the parameters of the metabolic network 

Having established the usefulness of diagonal dominance for understanding eigenvalue and 

mode structure, we now describe the origin of diagonal dominance in terms of the parameters of 

the system. To understand how diagonal dominance in J is manifested through reaction 

properties, we can examine the association of elements between J and G. We can see that for 

each diagonally dominant metabolite (diagonal fraction < 1), its diagonal element in J can be 

matched with a specific reaction sensitivity element for that metabolite similar in absolute value 
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in G. Such an element is the largest in absolute value for the flux-concentration derivatives 

(dv/dx) associated with that metabolite. Therefore, a single term in G dominates the resulting 

diagonal term in J (Figure S3). Furthermore, single reaction sensitivities in the form of dv/dx in 

G can determine the dynamic behavior of the system in terms of the resulting eigenvalues when 

diagonal dominance occurs. This correspondence can also be extended to metabolites with non-

diagonal dominance (Figure S3), indicating the interpretable connection between J and G. 

 

As a case study, we examine the cause of diagonal dominance in J of the PGI enzyme module. 

We see that, in the enzyme module, diagonal dominance in J is determined by a particular half-

reaction equilibrium ratio, as defined above. We demonstrate this by examining the enzyme form 

PGI&G6P in the 5th row of J (Figure 1D). The diagonal term of J for PGI&G6P shows that the 

enzyme form is associated with two reactions, PGI1 and PGI2. Specifically, reaction PGI1 can 

be split into two half reactions, related to G6P binding/release and PGI binding/release 

processes. The comparison of the diagonal term (−𝑘𝑃𝐺𝐼1
− ) with the off-diagonal terms (G6P𝑘𝑃𝐺𝐼1

+
 

and 𝑃𝐺𝐼𝑘𝑃𝐺𝐼1
+ ) related to PGI1 reaction is effectively examining the associated half-reaction 

equilibrium ratios, which are G6P/Kd,𝑃𝐺𝐼1 and 𝑃𝐺𝐼/Kd,𝑃𝐺𝐼1 (Kd,𝑃𝐺𝐼1 = 𝑘𝑃𝐺𝐼1
− /𝑘𝑃𝐺𝐼1

+ ). The term 

G6P𝑘𝑃𝐺𝐼1
+

 is smaller than −𝑘𝑃𝐺𝐼1
−  on the diagonal position in magnitude while 𝑃𝐺𝐼𝑘𝑃𝐺𝐼1

+
 term is 

negligible compared to −𝑘𝑃𝐺𝐼1
− , due to the small concentration of the PGI enzyme form. For 

reaction PGI2, the term 𝑘𝑃𝐺𝐼2
+  at the diagonal position is much greater than 𝑘𝑃𝐺𝐼2

− , with the 

consumption of PGI&G6P favored. As a result, the diagonal term of J for PGI&G6P is greater 

than the sum of off-diagonal terms in the same row, resulting in diagonal dominance.  

 

To summarize, diagonal dominance can be understood based on the distance from half-reaction 

equilibrium, by comparing metabolite concentrations to the reaction equilibrium constant. In the 

case of a single reactant on each side of the reaction, the equilibrium constant alone affects the 

degree of diagonal dominance. This type of analysis can also be applied to other enzyme forms 

in J. 

 

 

Power iteration connects mode structure to the structure of the Jacobian matrix 

 

Diagonal dominance explains the structure of most of the highly sparse modes, but cannot 

address mode structures that are complicated by more than one or two significant elements. We 

now show how more complicated mode structures form mathematically from specific elements 

of the Jacobian matrix. We demonstrate that examining the modes of the Jacobian matrix from 

the perspective of the matrix power iteration algorithm is illustrative in describing how 

complicated mode structures arise.  

 

Matrix power iteration is an algorithm to calculate the leading eigenvalue and eigenvector of a 

matrix (or left eigenvectors in the case of the modes) (27). In the power iteration algorithm, the 

Jacobian matrix is left multiplied by a random vector (ui), the resulting vector is normalized, and 

this process is repeated until the vector converges. (Figure 3A). If the eigenvalue with the largest 

magnitude is well separated from the other eigenvalues, the final vector will converge to the 

corresponding leading eigenvector. The Euclidean norm of uJ in the last iteration will be the 

associated leading eigenvalue 𝜆, where uJ = 𝜆u. During the iteration process, the elements of the 
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Jacobian matrix that contribute to the modes will “stretch” the vector through multiplication in 

the direction of the leading eigenvector. Given the fact that the Jacobian matrix is sparse, the 

power iteration algorithm can help us understand eigenvector structure by inspecting how the 

Jacobian elements stretch the vector to ultimately result in the eigenvector. 

 

To illustrate the process of vectors converging to the leading eigenvector through power 

iteration, we perform power iteration algorithms on 1000 random starting vectors using the full 

Jacobian matrix (292 × 292). We then perform principal component analysis (PCA) on all the 

iteration vectors (Figure 3C). The random starting vectors quickly converge in the dimension of 

the first principal component (71.2% contribution), representing the eigenvector, and stabilize in 

the dimension of the rest of components (second principal component shown only, contributing a 

very minor percentage) after around 10 to 20 iterations.  

 

As a technical detail of the implementation, a limitation of the power iteration algorithm is that it 

only calculates the leading eigenvalue and eigenvector. To calculate the next largest eigenvalue 

and the associated eigenvector, we must modify J to eliminate the impact of the previous 

eigenvector and eigenvalue at each step. Such elimination can be accomplished with the 

Hotelling deflation method (25), which returns a modified J, with the leading eigenvector and 

eigenvalue removed, that can be used for a new round of eigenvector and eigenvalue calculations 

using power iteration (see Materials and Methods). 

 

 

A case study on using power iteration to understand complicated mode structure 

 

We use the power iteration method to demonstrate how the eigenvectors with more complicated 

structures form. In this section, we show that that the topological connection of elements of 

similar orders of magnitude in J is critical in determining the sparsity structure of the 

eigenvectors. This similar order of magnitude tends to lie around the eigenvalue (Figure 3B).  

 

As a case study, we extract a submatrix of J (4 × 4) corresponding to the positions of nonzero 

elements (see Materials and Methods for cutoff) of a particular eigenvector, which is associated 

with G6PDH enzyme forms of the RBC metabolic network. When J is pre-multiplied by a 

pseudo-random starting row vector, we see that the ending vector matches closely with the actual 

eigenvector (Figure 3B and S4A). It is clear upon inspection that the largest values in the 

submatrix are also the largest values in the mode. The four key J elements (also largest in the 

submatrix) determining eigenvector formation are located in the 2nd and 4th rows (Figure 3B 

black circles). These rows both have similar structures to the eigenvector, where the ratio 

between the 2nd and 4th elements in the row is the same as that in the eigenvector. This shows that 

the matrix structure is reflected in the eigenvector structure. 

 

To explore how the 2nd and 4th rows both contribute to eigenvector formation, we can perturb the 

starting vector such that it interacts with these rows specifically, such as (0, -1, 0, 0) and (0, 0, 0, 

1), to examine each row’s effect individually. As a result, starting from either vector leads to a 

structure similar to the original eigenvector (Figure S4B and S4C). Thus, it seems that both rows 

have similar contributions to the structure of the eigenvector in this case, although their 
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magnitude is different. Together, the four elements in those two rows (Figure 3B black circles) 

form a topologically connected structure and interact with each other symmetrically to determine 

the eigenvector structure. The other large element at position (4, 3) is not involved with this 

symmetric interaction and thus has a smaller contribution to eigenvector formation.  

 

Next, to demonstrate the interplay of the submatrix elements, we show how modifying the four 

key elements of the sub-matrix changes the eigenvector. First, to examine the impact of the 

largest diagonal element in the submatrix at position (2, 2), we modify the diagonal element at 

position (4, 4) to have the same value as the element at (2, 2) (Figure 4B). The resulting vector 

has a different ratio between its elements compared to the original J eigenvector, with a larger 

value in the 4th element, reflecting the larger value in the (4, 4) position of the submatrix. We 

then further change the off-diagonal element of J at (2, 4) to be the same as the element at (4, 2) 

to create a more symmetric structure (Figure 4C). The resulting vector now has the same value 

on both the 2nd and 4th positions, showing that the off-diagonal elements modify the weightings 

on the eigenvector, and a fully symmetric Jacobian structure will result in an equally weighted 

eigenvector structure. These perturbations show that how the relative values of the dominant 

elements in a submatrix are clearly reflected in the corresponding mode structure.  

 

The power iteration algorithm is a useful tool to analytically understand the structure of 

complicated eigenvectors of a real system. We have demonstrated that the modes form from a 

network of topologically connected values of similar magnitude in the Jacobian matrix, and the 

relative ratio between these values influences the structure of the eigenvector. These trends, 

where an eigenvector can be linked to particular topologically-connected elements of J of similar 

magnitude, are generally applicable beyond this case study (Figure S5). The Jacobian 

modifications demonstrate that the eigenvector of the matrix can be altered in a predictable 

manner by changing either diagonal or off-diagonal Jacobian elements along the same order of 

magnitude.  

 

 

Complicated mode structure arises from connected reactions with similar dynamic sensitivities 

in G 

 

Power iteration helps to show numerically how complicated modes arise due to particular 

structures in J. For metabolic networks constructed with mass action rate laws, these numerical 

values have clear biological interpretations. Next, we describe the origin of complicated mode 

structure in terms of specific metabolite and reaction properties of the system. Given the fact that 

J can be decomposed into S and G, which represent network topology and reaction sensitivities, 

respectively, we focus on the specific elements in S and G that give rise to the structure of J and 

the resulting mode structure.  

 

We use the same case study presented in the previous section, regarding the mode and submatrix 

of J for G6PDH enzyme forms. The mode contains four G6PDH enzyme forms (red circles in 

Figure 5A), with G6PDH&6PGL and G6PDH&NADPH&6PGL being the most dominant 

elements. The mode structure is largely determined by the sensitivities of reaction 6 in G 

(𝑘6
+, NADPH 𝑘6

−) (Figure 5C). This reaction releases NAPDH and its elements in G dominate the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 9, 2017. ; https://doi.org/10.1101/107425doi: bioRxiv preprint 

https://doi.org/10.1101/107425
http://creativecommons.org/licenses/by/4.0/


12 

topologically connected J elements at positions (2,2), (2,4), (4,2) and (4,4) (Figure 5D). The two 

most dominant mode elements mentioned above are associated with reaction 6. Their 

corresponding J elements contain 𝑘6
+ and NADPH 𝑘6

−, which are close numerically, meaning that 

NADPH concentration is similar to the equilibrium constant of the half reaction for NAPDH 

binding/release, where the term ‘half reaction’ is used as defined above. The ratio between 

NADPH 𝑘6
− and 𝑘6

+ (NADPH/Kd,6, where Kd,6 = Keq,6) defines a half-reaction equilibrium ratio 

that is the key in determining the eigenvector structure. If NADPH concentration is higher, 

reaction 6 will become more sensitive to the concentration of the released form G6PDH&6PGL, 

compared to that of bound form G6PDH&NADPH&6PGL. This change will cause enzyme form 

G6PDH&6PGL to become more dominant in the mode, due to its greater diagonal dominance in 

J. Additionally, reaction 7 has the same order of magnitude sensitivity in the forward direction 

(𝑘7
+) as reaction 6, but has a much smaller sensitivity when interacting with 

G6PDH&NADP&G6P in the reverse direction, thus resulting in a much smaller contribution to 

this enzyme form in the mode. Finally, the unbound G6PDH enzyme form, although 

topologically connected to other enzyme forms through reaction 4, is not prominently featured in 

the mode, since its sensitivities in G are at a smaller order of magnitude.  

 

Overall, only a few reaction sensitivities in G contribute to the mode structure in this case study, 

thus allowing us to determine the specific reactions that control the dynamics of the mode. For 

significant elements in the complicated mode structure, the associated half-reaction equilibrium 

constant is close to the metabolite concentration, thus creating dynamic interplay between 

multiple elements in the reactions. On the other hand, in the case of simple mode structure 

governed by diagonal dominance, the half-reaction equilibrium ratio associated with the diagonal 

metabolite is usually far from equilibrium. The analysis approach presented exploits the fact that 

dynamic features in J are an integration of the features in S and G, thus allowing us to 

understand modal structure in terms of both reaction sensitivities in G and network topology in 

S.  

 

 

Power iteration converges to eigenvector subspaces when eigenvalues are similar in magnitude 

 

As an important technical aside, we note that the power iteration procedure works well when the 

eigenvalue is much larger in magnitude than the others; however, special behaviors arise when 

eigenvalues do not separate well. Specifically, when we reach modes where eigenvalues are 

close in magnitude, the power iteration algorithm converges to different ending vectors 

depending on the starting vectors. In this case, the starting vector is influenced by multiple 

eigenvectors comprising a subspace of dynamics active around this time scale, making the 

ending vector difficult to predict. The ending vectors overlap significantly with an “eigenvector 

subspace” (Figure 6A), as these vectors are influenced by multiple eigenvectors simultaneously. 

Also, the approximated eigenvalues overlap significantly with the actual eigenvalue cluster 

(Figure 6B), showing that the approximated eigenvalues settle in the range of the set of similarly 

leading eigenvalues. Overall, this analysis demonstrates how multiple eigenvectors influence 

dynamic response for time scales that are associated with multiple eigenvalues at similar 

magnitude. 
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Discussion 

 

In this study, we developed an understanding of how the dynamic properties of kinetic models of 

metabolism are reflected in their mode structures and how these structures are linked to specific 

properties of mass action reaction rate laws. 1) We showed that the diagonal dominance in rows 

of the Jacobian matrix is a frequent occurrence, and this feature results in simple mode structures 

where single metabolites relax back to their references states driven by particular eigenvalues. 2) 

For more complicated mode structures, we used the power iteration algorithm to show that these 

mode structures form from topologically connected values of similar orders of magnitude in the 

Jacobian matrix. 3) We showed that a key feature underlying mode structure is the reaction 

sensitivities in the gradient matrix G, which can be interpreted as the distance from equilibrium 

of half reactions defined by linearization of bilinear mass action equations. 

 

Diagonal dominance of the Jacobian matrix as described by Gershgorin circle theorem gives 

information about certain eigenvalues. This property results in simple mode structures, which 

can occur on time scales that span different orders of magnitude. A simple structure dominated 

by a single element indicates that the concentration variable relaxes to its reference state after its 

characteristic timescale and does not interact with others on this timescale. Gershgorin circle 

theorem also has previously been applied to the Jacobian matrix of metabolic networks with a 

focus on examining system stability (28)(29).  

 

We have shown that topologically connected elements of the Jacobian matrix at similar 

magnitude underlie complex mode structures. Here we used the power iteration algorithm to 

demonstrate how eigenvectors arise from certain elements of the Jacobian matrix. Examining 

key Jacobian elements that determine eigenvector structure shows that they originate from a few 

reaction sensitivities of topologically connected reactions. These reaction sensitivities are at 

different orders of magnitude, resulting in well-separated dynamics for the metabolites/enzyme 

forms involved. In a physiologically relevant perturbation, these fast dynamics are not likely to 

be excited, leaving the slow ones to be main interest of study.  

 

When examining the origin of mode structure, we have introduced a concept we term a half 

reaction, whose distance from equilibrium is a determinant of the complexity of the mode 

structure. The half reaction definition arises from linearization of the mass balance equation, 

where certain reactant/product term has been removed due to differentiation. In a bilinear 

enzymatic reaction, the reaction sensitivities associated with the substrates/products are often at 

different orders of magnitude, resulting in half of the reaction responds at a particular time scale 

while the other half relaxes. This phenomenon is a key feature for the bilinear kinetics occurring 

in metabolic networks. 

 

Conclusion 

 

The work here demonstrates an analytical approach to understand kinetic models of metabolism 

through linear analysis. We showed that diagonal dominance in the Jacobian matrix is an 

important property in determining simple mode structures and corresponding eigenvalues. We 
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showed the origin of diagonal dominance in terms of specific kinetic parameters of the model. 

We also described how more complicated mode structures are determined by topologically 

connected Jacobian elements of similar magnitude. We demonstrated that complicated mode 

structure arises from the fact that half reaction is close to equilibrium and the presence of 

connected reaction sensitivities of similar magnitude in G. With the recognition that the Jacobian 

matrix can be factored into S and G, explicitly representing the chemical, thermodynamic and 

kinetic properties of a network respectively (30), we can now seek a fundamental understanding 

of the formation of time scale hierarchies. Such hierarchies can be translated into subspaces of 

these matrices that in turn give the underpinnings for time-scale decomposition of network 

functions. Here we demonstrate the existence of such relationships, but a more rigorous 

mathematical treatment needs to be developed. 
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Figure 1. PGI enzyme module and its associated matrices. (A) A schematic diagram of 

individual reaction steps associated with PGI enzyme module and its stoichiometric matrix. The 

PGI enzyme module consists of three reaction steps: binding of G6P (PGI1), conversion of G6P 

to F6P (PGI2) and release of F6P (PGI3). The enzyme form PGI is in italic. We use an “&” 

notation to denote that the enzyme form is bound with metabolite(s). (B) Graphical 

representation of the concept of half reaction. Here we demonstrate the half reaction associated 

with the binding/release process of G6P, which is held constant. To determine the equilibrium 

state of this half reaction, we are comparing the sensitivities associated with PGI (G6P𝑘𝑃𝐺𝐼1
+ ) and 

PGI&G6P (−𝑘𝑃𝐺𝐼1
− ). This comparison is equivalent to comparing G6P concentration and 

1/Keq,𝑃𝐺𝐼1. (C) The gradient matrix of the PGI enzyme module. The gradient matrix (=dv/dx) is 
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obtained from linearization of the reaction rates and represents reaction sensitivities to metabolite 

concentrations. (D) The cause of diagonal dominance demonstrated through the symbolic 

concentration Jacobian matrix of the PGI enzyme module. Using row 5 as a case study, we 

observe that, in the case of mass action rate law, diagonal dominance is determined by the 

distance from half-reaction equilibrium for individual half-reactions. When comparing the terms 

associated with PGI1 reaction between diagonal and off-diagonal positions, we are comparing 

the sensitivity of G6P (𝑃𝐺𝐼𝑘𝑃𝐺𝐼1
+ ) and sensitivity of PGI (G6P𝑘𝑃𝐺𝐼1

+ ) with that of PGI&G6P 

−𝑘𝑃𝐺𝐼1
− ). This comparison is equivalent to comparing the concentrations of PGI and G6P with 

Kd,𝑃𝐺𝐼1(Kd,𝑃𝐺𝐼1 = 𝑘𝑃𝐺𝐼1
− /𝑘𝑃𝐺𝐼1

+ ), thus determining the distance from equilibrium for PGI and 

G6P binding/release half-reactions. The numerical values for each entry in row 5 is below the 

symbolic forms. Additionally, we can see clearly that column dominance cannot happen in the 

concentration Jacobian matrix due to the structure of mass action rate law. In the current case, we 

can see that the absolute sum of off-diagonal elements in a column is always at least as large as 

the absolute diagonal element, meaning that diagonal dominance does not occur across columns. 
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Figure 2. Diagonal dominance in the Jacobian matrix explains simple mode structures and 

corresponding eigenvalues with the help of Gershgorin circle theorem. (A) Example Jacobian 

matrix of the RBC metabolic network (22) with different degrees of diagonal dominance. The 

Jacobian matrix of the metabolic network has a sparse structure, and the diagonal elements of the 

matrix are always negative due to the structure of the rate laws used. The matrix was extracted 

from the full concentration Jacobian matrix for illustrative purposes. (B) The entire set of 

eigenvalues of the Jacobian matrix is shown in the larger plot, with x-axis denoting the inverse of 

absolute eigenvalues at the log10 scale. In the inset, selected Gershgorin circles of the Jacobian 

matrix with circle centers ranging from -27 to -5 are shown for illustrative purposes. Eigenvalues 

greater than -27 are drawn together with the selected circles. The Gershgorin circles from rows 

with strong diagonal dominance have centers at -26.2 and -5.26 as shown, and the eigenvalues 

inside are -26.3 and -5.33. All eigenvalues are negative as the system is dynamically stable. The 

imaginary components of the eigenvalues are small and therefore are neglected. (C) The dynamic 

response of GAPDH_T, XMP, 5MDRU1P, compared to the respective modes dominated by 

these metabolites/enzymes, under an ATP hydrolysis perturbation. The dynamics of the mode 

dominated by a single metabolite coincide with the dynamics of that metabolite. These modes 

occur at fast, intermediate and slow timescales, showing that diagonal dominance can occur at 

any time as long as the structural properties of the Jacobian matrix allow. 
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Figure 3. The power iteration algorithm demonstrates how complicated dynamic structures arise 

from topologically connected elements of similar magnitude within the Jacobian matrix. (A) 

Power iteration can be used to calculate the dominant left eigenvector of the Jacobian matrix. 

The left eigenvectors are the modes of the metabolic network. The algorithm left multiplies the 

Jacobian matrix by a random vector (ui), normalizes the resulting vector and repeats the process 

until the vector converges to the eigenvector. (B) Topologically connected Jacobian elements of 

similar magnitude determine complicated eigenvector structure. In this case study, we extracted a 

submatrix of J that corresponds to the nonzero elements of a certain eigenvector, which contains 

G6PDH enzyme forms. The four Jacobian elements (also the largest) that are key in determining 

this eigenvector structure are located in the 2nd and 4th rows, circled in black. Specifically, the 

structure of 2nd or 4th rows matches closely with that of the eigenvector, with similar ratios at the 

2nd and 4th positions. Multiplying the Jacobian matrix by any non-orthogonal starting vector (u1), 

for example the one shown, results in a vector (u2) that has a structure more similar to the 
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eigenvector. The contribution of those rows individually to eigenvector formation are further 

shown in Figure 4 and S4. For clear demonstration purposes, the comparison of relative colors 

only works for individual box (surrounded by black stroke) itself, but not across different boxes. 

(C) Principal component analysis on all power iteration vectors starting with 1000 different 

random vectors. We randomly picked 1000 starting vectors and multiplied them with the full 

Jacobian matrix (292 × 292). The starting vector is multiplied through several iterations (10 ~ 

20) until it converges to the eigenvector (the dot product of the ending vector and the eigenvector 

is no greater than 1.0001 and no less than 0.9999). We then performed principal component 

analysis on all iteration vectors (including the starting vectors) and plotted each vector in terms 

of the contribution from the first two principal components. The first principal component 

corresponds to the leading eigenvector of the Jacobian matrix while the rest of components (less 

than 1% contribution each, only component 2 shown here) together explain the variation of the 

vector from the eigenvector. Ideally, the contribution of the rest of components will be 0 when 

the ending vector becomes the eigenvector. However, due to large order of magnitude 

differences between elements in J and the cutoff we set when comparing the ending vector with 

the eigenvector, we ended up with variations from the eigenvector (nonzero contribution of 

component 2 in the inset plot).  
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Figure 4. Analysis of complicated mode structure through power iteration with modified 

Jacobian matrix. We divide the vector multiplication with the Jacobian matrix into multiple 

steps. First of all, each row of the Jacobian matrix is multiplied by every element of the starting 

vector (Panel A solid black circles). We then sum up each column of the second matrix to obtain 

the resulting vector (Panel A dash black circles), which is normalized to give the ending vector. 

(A) The original Jacobian matrix and its leading left eigenvector. The matrix and the eigenvector 

are the same as in Figure 3 and will be used for comparison with later panels. (B) Starting vector 

multiplied with the modified Jacobian matrix. We modified the Jacobian element at position (4, 

4) to be the same value as the element at position (2, 2). The ending vector has a smaller ratio 

between the 2nd and 4th elements than that of the original eigenvector, as would be expected with 

a larger absolute value at position (4, 4). The eigenvector of this modified matrix is shown in the 

upper right of the panel. (C) Starting vector multiplied with a different modified Jacobian matrix. 

We further changed the modified Jacobian matrix in panel A to create a more symmetric 

structure, where the element at position (2, 4) is same as the element at position (4, 2). The 

ending vector has the same absolute values at the 2nd and 4th positions, showing that a fully 

symmetric Jacobian structure will create an equally weighted structure in eigenvector. The 

eigenvector of this modified matrix is shown in upper right. Overall, we demonstrate that 

changing the Jacobian element at either diagonal or off-diagonal position can alter the 

eigenvector of the matrix in a predictable manner, based on the topological pattern of the key 

elements determining the eigenvector structure. For clear demonstration purposes, the 

comparison of relative colors only works for individual box (surrounded by black stroke) itself, 

but not across different boxes. 
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Figure 5. The origin of complicated mode structure associated with G6PDH enzyme forms 

demonstrated through the associated matrices. The mode structure contains four enzyme forms 

(denoted as E1, E2, E3 and E4, full annotation at the bottom), with G6PDH&NADPH&6PGL 

and G6PDH&6PGL being the most dominant elements. We extracted the submatrices associated 

with those four enzyme forms and their related reactions. We show that three key reactions and 

their associated reaction sensitivities in G determine the mode structure. (A) The reaction steps 

for the biochemical reaction catalyzed by G6PDH enzyme. The four dominant enzyme forms in 

the mode are labeled with red circles. The reactions with their notations (R1 to R7) are labeled 

with blue rectangular boxes. The three key reactions determining the mode structure are circle 

with black rectangular boxes. (B) The stoichiometric matrix S for the four enzyme forms in the 

mode and their associated reactions. The S matrix describes the network topology of the enzyme 
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forms and determines how they interact in the Jacobian matrix. (C) The symbolic and numerical 

gradient matrix G for the four enzyme forms in the mode and their associated reactions. The key 

reaction sensitivities determining the two largest elements in the mode are associated with 

reaction 6 and its corresponding enzyme forms. The key terms are 𝑘6
+ and NADPH 𝑘6

−, which are 

similar in magnitude, due to the fact that NADPH concentration is similar to the equilibrium 

constant of the half reaction for NAPDH binding/release. (D) The symbolic and numerical 

Jacobian matrix J for the four enzyme forms in the mode. We found that the elements of reaction 

6 in G dominate the topologically connected Jacobian elements that determine the mode 

structure. These elements are located at positions (2,2), (2,4), (4,2) and (4,4). Reaction 6 is 

connected to reaction 4 and 7, whose reaction sensitivities are much smaller in magnitude 

compared to that of reaction 6, resulting in very small coefficient for their associated elements in 

the mode (G6PDH and G6PDH&NADP&G6P). 
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Figure 6. Eigenvalue and eigenvector approximations calculated from power iteration in cases 

where eigenvalues do not separate well. We selected a cluster of close eigenvalues (with a time 

scale around 0.016 milliseconds), reduced J using Hotelling’s deflation method until this time 

scale was reached (see Materials and Methods), and calculated approximated eigenvalues and 

eigenvectors using power iteration with different starting vectors. (A) Eigenvector 

approximations calculated during power iteration from different starting vectors, compared to the 

actual eigenvectors with eigenvalues in the selected range. We calculated the approximated 100 

eigenvectors from 100 different random vectors with 100 iterations each and obtained vectors 

that are linearly independent with each other (see Materials and Methods). The left part of the 

matrix shown is the eigenvector approximations while the right part of the matrix shown is the 

actual eigenvectors, separately by the black bold vertical line. We found that the subspace 

formed by eigenvector approximations overlaps significantly with the actual eigenvector 

subspace. (B) The selected eigenvalue cluster is compared to the eigenvalue approximations 

calculated from power iteration. The selected eigenvalues and eigenvalue approximations are 

shown in the inset plot. We obtained the eigenvalue approximations from the same set of power 

iterations performed in panel A. The cluster of eigenvalue approximations overlaps significantly 

with the cluster of actual eigenvalues, showing that the eigenvalue approximations settle in the 

range of the set of similarly dominant eigenvalues. 
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