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Abstract 

Microbial communities are critical to ecosystem function. A key objective of 
metagenomic studies is to analyse organism-specific metabolic pathways and 
reconstruct community interaction networks. This requires accurate assignment 
of assembled genome fragments to genomes. Existing binning methods often fail 
to reconstruct a reasonable number of genomes and report many bins of low 
quality and completeness. Furthermore, the performance of existing algorithms 
varies between samples and biotopes. Here, we present a dereplication, 
aggregation and scoring strategy, DAS Tool, that combines the strengths of a 
flexible set of established binning algorithms. DAS Tool applied to a constructed 
community generated more accurate bins than any automated method. Further, 
when applied to environmental and host-associated samples of different 
complexity, DAS Tool recovered substantially more near-complete genomes, 
including novel lineages, than any single binning method alone. The ability to 
reconstruct many near-complete genomes from metagenomics data will greatly 
advance genome-centric analyses of ecosystems. 
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Introduction 
 
Genome-resolved metagenomics targets the reconstruction of genomes from 
environmental shotgun DNA sequence data. Based on the genome sequence, 
metabolic pathways of individual organisms can be inferred and their lifestyle in 
the microbial community can be predicted.  The challenge of recovering 
genomes from complex mixtures of sequence fragments is comparable to that of 
assembling jigsaw puzzles from a mixture of many puzzles without knowing how 
many puzzles are present and what they look like. Not surprisingly, powerful 
bioinformatics methods are required to achieve the desired outcome. 
Existing binning methods use features derived from sequence composition, 
sequence abundance or taxonomy inferred from reference databases. Early 
methods primarily made use of shared GC content and coverage (sequence 
depth) to cluster together the fragments belonging to specific genomes1. As the 
complexity of ecosystems targeted for analysis increased, additional methods 
became essential. Teeling et al. proposed the use of sequence compositional 
information, primarily tetranucleotide frequencies, as a binning input2. This 
approach made use of genome characteristics established through study of the 
genomes of isolated organisms3. Sequence compositional analysis 
(tetranucleotide and other k-mer composition and codon usage data) was 
implemented within emergent self-organizing maps (ESOMs) to successfully 
extract genomes from metagenomes4. The ESOM-based approach has been 
widely used to recover draft genomes from many different environments5,6, but it 
rarely works well if the dataset contains fragments from a large number of 
different organisms (as is typical of soil and sediment). The ESOM method is 
also somewhat subjective, as the cluster boundaries are user-defined.   
A major advance in binning methods came with the realization that the pattern of 
organism abundances across a sample series was a binning signature7,8. This 
approach assumes that contigs of one organism have a similar abundance (as 
measured by mapped read counts) in one sample and that the representation of 
all contigs from a genome should change in the same way across a sample 
series.  
Phylogenetic profile information was of minimal use early in the metagenomics 
era because the number of reference microbial genomes was very small (a few 
dozen genomes). However, the phylogenetic signal of a contig that derives from 
sequence similarity is now a useful constraint for binning of data from some 
samples, and it continues to grow in utility as the number of reference genome 
sequences (from isolates, single cells and genomes from metagenomes) 
increases. 
Current state of the art automated binning tools combine sequence abundance 
and composition into one model9,10 and some of them additionally use marker 
genes from a reference database11. The quality and completeness estimation of 
the output of automated binning tools is essential. CheckM, for example, tests for 
a set of single copy marker genes to determine the completeness of bins and 
give an estimate of the amount of contamination of a bin12. 
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Existing binning tools are based on broadly accepted features and clustering 
algorithms. Additionally, the tools were all benchmarked using datasets analysed 
in their respective publications. In fact, most binning methods were demonstrated 
using relatively simple communities (e.g., premature infant gut datasets of 
Sharon et al.7). However, the value of bins generated when these methods are 
applied to other samples is uncertain, and bins generated when different tools 
are applied to a new dataset may differ significantly in completeness and 
contamination. Furthermore, some genomes may be exclusively predicted by just 
one tool. Here, we tested the performance of a set of well-established binning 
methods by applying them to data from a group of ecosystems that varies 
dramatically in complexity. We found that no single tool or approach performed 
well on all ecosystems. Furthermore, many incomplete bins and multi-genome 
mega-bins were predicted. The different performance of binning tools and the 
fact that different tools reconstruct different genomes with varying levels of 
completeness motivated the development of a strategy that integrates the results 
of predictions of multiple binning algorithms. Probst et al. combined the results of 
three binning methods in a comparative approach with additional manual curation 
and increased the total number of reconstructed near-complete genomes from a 
subsurface aquifer environment over that obtained using just one method13. 
However, because different binning predictions are based on the same assembly 
of contigs, predicted bin overlap was extensive and the determination of an 
optimal consensus draft genome set was not trivial. These findings motivated the 
development of the dereplication, aggregation and scoring tool (DAS Tool). DAS 
Tool is an automated method that integrates a flexible number of binning 
algorithms to calculate an optimized, non-redundant set of bins from a single 
assembly. We show that this approach generates a larger number of high quality 
genomes than achieved using any single tool. 

Results 
Development of an integrative binning approach 
 
The DAS Tool approach to solve the binning problem is to integrate predictions 
from multiple established binning tools. The number and type of binning tools is 
flexible. Candidate bins are generated independently when all binning tools are 
applied to the same assembly. DAS Tool then uses a consensus approach to 
select a single set of non-redundant, high quality bins. The approach relies on 
two major components: (1) A scoring function that estimates the quality and 
completeness of the bins. The score is based on the presence, absence, and 
number of duplicated single copy genes in a bin, making it possible to compare 
predictions from different methods and to select an optimal bin-set. (2) An 
algorithm that extracts a non-redundant and optimized bin set from multiple 
binning predictions based on the scoring function (Figure 1). DAS Tool selects 
the highest scoring bin from the candidate set and assigns it to the final bin set. 
The scaffolds of that bin are then removed from all other bins in the candidate 
set. The scores of all of the candidate bins from which scaffolds were removed 
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are then updated. The selection procedure iterates until all remaining candidate 
bins have values that do not exceed a pre-defined minimum bin quality threshold 
(calculated based on the scoring function). Nevertheless, we advise that the user 
examine each of the final bins to identify potential contamination based on 
erroneous phylogenetic affiliation and to remove sequences from phage/virus 
(based on gene content). 
 
 

DAS Tool applied to a synthetic community comprised of a mixture of 
isolates 
 
To validate the DAS Tool algorithm, we applied it to data from a synthetic 
microbial community that was constructed by mixing together DNA of 22 bacteria 
(including different species from the same genus) and 3 archaea14. We predicted 
bins using five binning tools (ABAWACA 1.07 (https://github.com/CK7/abawaca), 
CONCOCT9, MaxBin 211, MetaBAT10 and tetranucleotide ESOMs4) and 
combined the result using DAS Tool.  In addition, we manually binned the 
genomes using ggKbase binning tools15 (ggkbase.berkeley.edu) that make use 
only of GC, coverage and taxonomic profile.  
To determine how well the reconstructed bins represent the reference genomes, 
we calculated F1 scores, which is the harmonic mean of precision and recall. In 
addition we estimated the completeness of bins based on marker genes using 
CheckM12. Bins were only considered to be of high (>90% complete) or draft 
(70% - 90% complete) quality if they had less than 5% contamination due to the 
presence of multiple genes expected to be in single copy. Many predicted bins 
with high F1 scores also were classified as high quality by CheckM, based on 
completeness and contamination (Figure 2 a,b). With a F1 score above 0.9 for all 
25 reconstructed bins, ggKbase performed best on the synthetic community. 
However, this result is only generalizable to a few other systems (see below for 
examples) because its success is based on the clear phylogenetic signal from 
reference genomes in public databases. Of the other predictions, the bins 
reported by DAS Tool show the highest accuracy in terms of F1 scores. DAS Tool 
reports 12 bins with an F1 score above 0.99, followed by tetranucleotide ESOMs 
and MaxBin 2 with 9 bins. Similarly, DAS Tool reports 20 bins with an F1 score 
above 0.95 followed by tetranucleotide ESOMs with 18 bins (Figure 2 a, 
Supplementary Table 1). 
DAS Tool not only has the highest accuracy in terms of the F1 score metric but 
also reports the highest number of near-complete genomes with low 
contamination. Only the manual binning approach using ggKbase was able to 
reconstruct all 25 genomes. 
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Application of DAS Tool to environmental metagenomic data 
 
Probst et al.13 generated a highly curated set of genome bins from metagenomic 
data from a high CO2 cold-water geyser that were ideal for evaluation of the DAS 
Tool algorithm. The data comprise two assemblies of sequences from samples 
collected sequentially on 3.0-µm and 0.2-µm filters and a set of 3.0-µm filtrates 
from subsurface fluids collected at a single time point. The published bins were 
generated by a comparative approach of three methods followed by manual 
curation of the results13. We used CheckM to generate quality estimates for the 
published bins that can be compared to quality estimates for all binning methods, 
including DAS Tool. 
We compared the results of the three independent binning predictions from 
Probst et al. (ABAWACA 1.0, tetranucleotide ESOMs, differential abundance 
ESOMs), as well as those from ABAWACA 1.07, CONCOCT, MetaBAT, and 
MaxBin 2 to results achieved using DAS Tool. DAS Tool was applied using either 
a combination of three or seven different binning algorithms (Figure 3, 
Supplementary Table 2).  
Although DAS Tool with three binning algorithms reported more near-complete 
and draft genomes than the three methods alone, it returned less genomes than 
in the curated set by Probst et al. (Figure 3, Supplementary Table 2). However, 
when we included seven binning tools in DAS Tool (adding ABAWACA 1.07, 
CONCOCT, MaxBin 2 and MetaBAT), the reported number of near-complete 
genomes was the same for the 0.2-µm sample (32 genomes) and even higher for 
the 3.0-µm sample (DAS Tool: 35, Probst: 31). For both samples a larger number 
of draft genomes was reconstructed than was achieved previously13 (Figure 3, 
Supplementary Table 2).  The number of draft genomes increased slightly when 
allowing more contamination per bin (Supplementary Figure 1). 
 

Combination of bins using DAS Tool improves genome count from 
metagenomic data with different levels of complexity 
 
In order to evaluate the performance of DAS Tool on samples of different 
complexity, we applied it to shotgun metagenomic data of lower, medium and 
high complexity from human microbiomes16, natural oil seeps17,18, and soil (see 
Data Availability). We binned all samples separately using ABAWACA 1.07, 
CONCOCT, MaxBin 2, MetaBAT and tetranucleotide ESOMs. All predictions 
were combined using DAS Tool and CheckM was used to estimate the quality of 
the resulting bins. In addition, we used ggKbase binning tools to analyse the 
human gut data. This was appropriate, given colonization of the human gut by 
genomically well-characterized bacteria. ggKbase tools were not used in the 
other analyses because they do not perform well in systems with high 
phylogenetic novelty (data not shown). 
Summing up the number of bins of each quality level that were generated for the 
three ecosystems, DAS Tool reported the highest number of near-complete and 
draft bins in all cases (Figure 4). 
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Interestingly, the performance of the single binning tools that were used as input 
for DAS Tool (which excludes ggKbase) differed between ecosystems and none 
of them was the clear “winner”. In the case of bins generated for the lower 
complexity human gut samples using single binning tools, ggKbase followed by 
MetaBAT generated the largest number of near-complete genomes. For the 
medium complexity oil seeps, ABAWACA 1.07 and MetaBAT produced the most 
draft-quality genomes while CONCOCT produced slightly more high quality bins. 
For high complexity soil data MaxBin 2 reported the most draft and near-
complete genomes. Compared to the best performing method, DAS Tool reports 
1.2, 1.4, and 1.4 times more near-complete genomes and 1.2, 1.9 and 1.8 times 
more draft quality genomes for human gut, oil seeps and soil samples, 
respectively (Figure 4). 
 
We also examined the performance of the various binning approaches sample by 
sample. DAS Tool reported either the most or the same number of near-complete 
genomes with low contamination for 11 out of 13 samples (higher: 7/13, equal: 
4/13). It generated up to 1.5 times more bins than the best performing single 
binning method. For draft quality bins, DAS Tool generated the largest number of 
bins for 12 out of 13 samples, and up to twice as many draft quality bins than the 
best performing single binning method (Supplementary Figure2). The number of 
reconstructed genomes per sample increases when considering genomes with a 
higher amount of contamination. In 10 out of 13 samples (higher: 9/13, equal: 
1/13) DAS Tool reports more or the same number of genomes with more than 
70% completeness and less than 15% contamination (Supplementary Figure 3, 
Supplementary Table 3). 
 

Genome analysis reveals novel lineage with hydrocarbon 
degradation potential 
 
Binning of metagenomic data from Santa Barbara oil seep samples revealed 
three genomes, whose 16S rRNA sequences lacked closely related sequences 
in the SILVA database19 (78.8%, 79.4% and 87.4% identity). The estimated 
completeness of these newly reconstructed genomes ranges from 95.6% to 
89.6% (Supplementary Table 4).  
In a phylogenetic tree based on 16 concatenated ribosomal proteins, the three 
genomes cluster as a monophyletic group with one TA06 and two WOR-3 
genomes (Supplementary Figure 1 a). The JGI_Cruoil_03_Bacteria_38_101 
forms a cluster together with the TA06 lineage at a patristic distance of 1.2977 
but is more distant to the two WOR-3 (patristic distances: 1.5531 and 1.5258, 
respectively). In contrast, the two lineages JGI_Cruoil_03_Bacteria_44_89 and 
JGI_Cruoil_03_Bacteria_51_56 share greater similarity with the two WOR-3 at a 
minimal patristic distance of 1.3350 and 1.0582, respectively and have a greater 
distance to the TA06 (patristic distance: 1.4328 and 1.4673, respectively).  
For comparison, the patristic distance between representatives of closely related 
phyla in the same tree was between 1.0282 and 1.2110 (Firmicute Thermincola 
sp. JR versus the Chloroflexus C. aurantiacus J-10-fl and Melainabacteria 
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Obscuribacter phosphatis versus the Cyanobacteria Leptolyngbya sp. PCC 
7104).  
Given that both distances are smaller than the distances of TA06 and WOR-3 to 
our reconstructed genomes JGI_Cruoil_03_Bacteria_38_101 and 
JGI_Cruoil_03_Bacteria_44_89 as well as the distance of 
JGI_Cruoil_03_Bacteria_38_101 to JGI_Cruoil_03_Bacteria_44_89 (patristic 
distance: 1.5164) we conclude that these two new genomes may be 
representatives of two new phylum-level lineages. The third novel genome 
JGI_Cruoil_03_Bacteria_51_56 is closer to the WOR-3 at a patristic distance of 
1.0582 and is likely part of the WOR-3 candidate division. 
Interestingly, the 16S rRNA gene sequences of all three of our newly 
reconstructed novel genomes group with some sequences classified as TA06 
and one sequence classified as a WS3 (the other WS3 sequences form a lineage 
sibling to Zixibacteria) (Supplementary Figure 1 b).  Except for one TA06  
(Candidate_division_TA06_bacterium_32_111), the corresponding TA06 and 
WS3 genomes place distant from our genomes on the concatenated ribosomal 
protein tree. Thus, some of the 16S rRNA gene sequences of these publicly 
available genomes may be misclassified or misbinned (a common problem with 
16S rRNA gene binning, especially if the gene is in multi-copy and the scaffolds 
are short). Regardless, it is clear that our genomes are highly distinct from any 
other genomes in public databases. 
Pathway analysis reveals genes encoding for hydrocarbon degradation enzymes, 
including aldehyde dehydrogenase, which is present in all three genomes. 
Additionally, alcohol dehydrogenase, aldehyde ferredoxin oxidoreductase and 
methanol dehydrogenase are present in JGI_Cruoil_03_Bacteria_44_89, the 
genome with highest estimated completeness, suggesting pathways for 
degradation of alkanes and methanol (Supplementary Table 5).  

 

Genomes from soil 
 
From six soil samples, we reconstructed 82 minimally contaminated (<5%) draft 
genomes (>70% completeness), 24 of which were high quality draft genomes 
(>90% completeness) (Supplementary Figure 2). Two of the high quality 
genomes were well-assembled (a Gemmatimonadetes genome consisting of 11 
scaffolds and a Bacteroidetes genome on 14 scaffolds), with estimated 
completeness above 97% and contamination below 3.3%.  

It has been shown recently that some Gemmatimonadetes are able to 
consume methanol using a pyrrolo-quinoline quinone (PQQ)-dependent 
methanol dehydrogenase (MDH) and to convert the resulting formaldehyde using 
the tetrahydromethanopterin (THMPT) and tetrahydrofolate (THF)-linked 
formaldehyde oxidation pathways20. Likewise, we were able to find a PQQ-MDH 
and two key enzymes of the THF pathway (methenyltetrahydrofolate 
cyclohydrolase, methylenetetrahydrofolate dehydrogenase) in the high quality 
Gemmatimonadetes genome bin but could not find any enzymes belonging to the 
THMPT pathway. Additionally, we found genes for carbon fixation, fermentation, 
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nitrogen assimilation, complex carbon degradation, and sulfur metabolism. 
Similarly, the Bacteroidetes genome encodes enzymes for carbon fixation, 
fermentation, and nitrogen assimilation but by contrast has no genes for methane 
metabolism, complex carbon degradation, or sulfur metabolism (Supplementary 
Table 5). 

Discussion 
 

We tested a group of currently available, published metagenomics binning 
algorithms to evaluate how well they performed when applied to samples of a 
wide range of complexity.  Consistent with previous work showing that use of 
data series signals can significantly improve binning outcomes7,8, the single 
binning algorithms that used these signals (CONCOCT, MaxBin, MetaBAT, 
ABAWACA) performed better than composition-based tools (tetra-ESOM) on 
most samples. However, it is notable that each of these was variably effective 
across the different system types, and even among different samples from the 
same ecosystem, and no single binning algorithm was consistently the most 
effective. Interestingly, for very simple communities that include organisms that 
are closely related to genomically-characterized species (e.g. the synthetic 
community), the manual combination of phylogeny, GC, coverage and single 
copy gene inventory produces good binning outcomes; however, this is not the 
case for more complex datasets.  

In contrast, DAS Tool, the new consensus binning strategy presented 
here, almost always extracted considerably more genomes from complex 
metagenomes than any of the single binning tools alone. While DAS Tool did not 
outperform manual bin combination and curation when using the same starting 
set of bins from three single binning approaches, adding four additional binning 
algorithms resulted in equal or more near-complete bins than the published 
manually curated results. This finding underlines the advantage of including more 
binning methods in DAS Tool. It is important to note, even tools that generate 
only a small number of high quality bins can significantly improve the result of 
DAS Tool because other tools sometimes miss these bins. 

It is not uncommon for the research community to question the quality of 
genomes reconstructed from metagenomes. Imperfect bins are a challenge for 
all studies that attempt to genomically resolve complex ecosystems. However, if 
they can be obtained, the value of high quality draft genomes is enormous. 
Different single algorithm methods not only generate different numbers of bins 
but the genome content can differ slightly. This variable performance can be 
evaluated by using strategies such as DAS Tool. In picking the best bins from 
each binning tool, DAS Tool is able to equalize performance variations of single 
binning tools and thus increase the total number of near-complete genomes 
recovered. Because it uses a single copy gene based scoring function it is able 
to distinguish between high and low quality bins and by using an appropriate 
score cutoff it can filter out low quality bins and control the number of megabins. 
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Despite improvements in assembling and binning methods, reconstructing 
genomes from soil metagenomics data is still seen as challenging. With the help 
of DAS Tool we were able to extract dozens of high quality genomes from soil, 
including some near complete genomes. Furthermore, in re-analysing public data 
from off shore oil seep sediments we identified and genomically characterized 
organisms of a novel lineage that is likely involved in hydrocarbon degradation. 

In conclusion, DAS Tool can integrate manual binning methods such as 
emergent self-organizing maps (ESOMs) and can incorporate the results of any 
contig-based binning algorithm. Thus, it is highly scalable and can make use of 
binning tools developed in the future. 

Methods 
 

Implementation 
 
DAS Tool is implemented in R21. Besides R-base functions, we used the R-
packages doMC23 to implement multicore functionality, data.table24 for efficient 
data access and storage and ggplot225 to visualize results. DAS Tool is available 
under https://github.com. 

Scoring function 
 
To estimate the quality and completeness of predicted bins we set up a scoring 
function (Equation 1). The function calculates a bin score based on the frequency 
of 51 bacterial or 38 archaeal reference single copy genes (rSCG). The first term 
of the function represents the fraction of single copy genes (SCGs) present and 
accounts for the completeness of the genome. It is the number of unique single 
copy genes per bin (uSCG) divided by the number of reference SCGs (rSCG). 
The second term accounts for contamination and decreases the score in case of 
duplicated SCGs (dSCG). It is calculated by the ratio of the unique number of 
duplicated SCGs (dSCG) divided by the total number of unique SCG (uSCG) in a 
bin. The third term is a penalty for megabins and is the total number of extra 
single copy genes divided by the number of reference genes. It is calculated by 
the difference of the total number of predicted SCGs (ΣSCG) and the number of 
unique SCGs per bin divided by the number of reference SCGs. Both penalty 
terms are accompanied by weighting factors. For this study we set b=1.5 and c=1 
to favour low contaminated bins. 
For each bin scores using the bacterial and archaeal reference gene set are 
calculated and the greater of the two scores is reported as bin score. 
 
Equation 1 Scoring function 

 
Sbin =

uSCG

rSCG
 b

dSCG

uSCG
 c

⌃SCG uSCG

rSCG
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Marker gene prediction 
 
Genes in the assembly are predicted using prodigal26 with the meta option and 
the ‘-m’ flag for preventing gene models to be built over ambiguous nucleotides. 
Single copy marker genes (SCGs) are determined in using databases of 
bacterial27 and archaeal SCGs13 as a seed to select candidates of single copy 
genes from the metagenomes using USEARCH28 (e-value 1e-2). The candidates 
were then searched28 against the entire database (e-value 1e-5) and called 
present if the query spanned at least 50% of the alignment with the best hit in the 
database. 
Although all results shown in this manuscript are based on USEARCH28, DAS 
Tool can also make use of the open source tools DIAMOND29 and BLAST30 to 
predict single copy genes. Scripts for SCG prediction are available under 
https://github.com/AJProbst/sngl_cp_gn. 

 

Selection algorithm 
 
In the first step, a redundant candidate bin set is created, which consists of all 
predicted bins of the input binning methods. The quality of all bins in the 
candidate set is estimated using the SCG-based scoring function (Equation 1). 
After that in an iterative procedure a non-redundant bin set is selected (Figure 1). 
First the highest scoring bin is extracted out of the candidate set. If two or more 
bins have the same score, the bin with a higher scaffold N50 value is chosen. If 
the N50 value is also equal, the larger bin in terms of nucleotide sequence is 
selected. After removing the bin out of the set, also all contigs that belong to this 
bin are removed out of other bins. Because this step influences the composition 
of other bins, the scoring function is applied again on all altered bins. The 
iteration continues as long as selected bins are above a pre-defined score 
threshold (default: 0.1) or until all bins in the candidate set are selected.  
 
 

Data availability 
 
The reads of human gut samples (SRA accession: SRR3496379)16, Crystal 
geyser samples (BioProjects PRJNA229517 and PRJNA297582) and the 
synthetic community (SRA accession: SRX1836716)14 were obtained from NCBI. 
Reads of the oil seep data (Gold Analysis Project IDs: Ga0004151, Ga0004152, 
Ga0004153, Ga0005105, Ga0005106)17,18 and soil samples (Gold Analysis 
Project IDs: Ga0007435, Ga0007436, Ga0007437, Ga0007438, Ga0007439, 
Ga0007440) were downloaded from JGI portal pages (https://img.jgi.doe.gov/cgi-
bin/m/main.cgi). Assemblies were downloaded from ggKbase for the human gut 
samples (http://ggkbase.berkeley.edu/LEY3/organisms) and from IMG  for the oil 
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seep samples (Gold Study ID: Gs0090292). Genomes from oil seep and soil 
samples, which were analysed in this study, are available on ggKbase 
(http://ggkbase.berkeley.edu/dastool) and NCBI ([TBD]). 

 

 

Assembly and mapping 
 
The reads of the synthetic community and soil samples were quality filtered by 
SICKLE (Version 1.21, https://github.com/najoshi/sickle, default parameters) and 
assembled using IBDA_UD31. All samples were assembled separately. Read 
mapping for all samples was done using Bowtie 232. 

 

Binning 
 
For generating input bin sets for DAS Tool, we applied the automated binning 
tools ABAWACA 1.07 (https://github.com/CK7/abawaca), CONCOCT9, MaxBin 
211 and MetaBAT10. We also calculated tetranucleotide ESOMs4 and selected 
clusters manually using Databionic ESOM Tools33. Additionally, we manually 
binned the low complexity synthetic community and the human gut microbiome 
data based on GC, coverage and taxonomic profile using ggKbase tools15 
(http://ggkbase.berkeley.edu). Bins predicted by ggKbase were only used for 
comparison purpose and not used as input for DAS Tool. ABAWACA 1.07 
returned no results on the human gut data due to the lack of differential coverage 
information. The bins of ABAWACA 1.0, tetranucleotide ESOMs and differential-
abundance ESOMs for the Crystal Geyser data was obtained from Probst et al.13.  
 

Binning evaluation 
 
We used a synthetic community of 26 genomes14 for evaluating the accuracy of 
binning predictions. The genome of Nocardiopsis was not considered for this 
analysis as low sequence coverage (0.54% based on mapping14) did not allow its 
reconstruction by the assembler. The assembly was mapped on the remaining 
25 reference genomes using NUCmer34 and used to calculate F1 scores, which is 
the harmonic mean of precision and recall. Besides that, we estimated marker 
gene based completeness of bins using the lineage workflow of CheckM12. 
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Genome curation and annotation 
 
Assemblies of submitted genomes were error corrected using 
re_assemble_errors.py 
(https://github.com/christophertbrown/fix_assembly_errors). Gene prediction was 
performed with the same settings used for marker gene prediction in DAS Tool 
(prodigal26 in meta mode and ‘-p’ flag).  Functional predictions were made using 
the ggKbase annotation pipeline, which uses USEARCH28 to search predicted 
ORFs against Kegg35, UniRef10036 and UniProt37. 
 

Phylogenetic tree 
 
The ribosomal protein tree is based on concatenated alignments of the amino 
acid sequences of 16 ribosomal proteins (ribosomal protein L2, S3, L3, L4, L5, 
L6P-L9E, L15, L16-L10E, S8, L14, L18, L22, L24, S10, S19 and S17). 
Alignments were created for each protein using MUSCLE38 and trimmed 
manually. After concatenation columns with more than 95% gaps were removed. 
We calculated the phylogenetic tree using the maximum likelihood algorithm 
RAxML39 on the CIPRES web server40 in choosing the LG (PROTCATLG) 
evolutionary model and autoMRE to automatically determine the number of 
bootstraps. 16S rRNA gene sequences were aligned using SSU-align41, trimmed 
and submitted to the CIPRES web server40. We used RAxML39 and the 
GTRGAMMA model and determined the number of bootstraps using autoMRE. 
Patristic distances, which are the sum of branch lengths between two taxa in a 
phylogenetic tree, were calculated using the cophenetic.phylo function of the ape 
R-package42. 
 

Code availability 
DAS Tool is available under https://github.com/cmks/DAS_Tool (v1.0 used in this 
analysis). 
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Figures 

 
Figure 1 Overview of the DAS Tool algorithm. Step 1: Input of DAS Tool is scaffolds of one 
assembly (grey lines) and a variable number of bin-sets from different binning predictions 
(rounded rectangles of same color). Step 2: Single copy genes (blue shapes) on scaffolds are 
predicted and scores (blue and green boxes) are assigned to bins. Step 3: Aggregation of 
redundant candidate bin-set from all binning predictions. Step 4: Iterative selection of high scoring 
bins and updating of scores of remaining partial candidate bins. Output comprises non-redundant 
set of high scoring bins from different input predictions. 
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Figure 2 Reconstructed genomes from a synthetic mock community consisting of 25 
isolate genomes. (a) Accuracy of reconstructed genomes per method based on F1 score. (b) 
Number of reconstructed high quality genomes with low contamination (< 5%) according to 
marker gene based completeness estimation12. 
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Figure 3 Reconstructed genomes from Crystal Geyser, a high CO2 cold water geyser. 
Number of high quality genomes with low contamination (< 5%) from metagenomic assemblies of 
two samples. Probst.2016 represents the combination by Probst et al., 201613 of ABAWACA.1, 
tetraESOM and seriesESOM and a final manual curation step. DAS_Tool.3binners uses the 
same three predictions as input. DAS_Tool.7binners additionally uses ABAWACA.2, CONCOCT, 
MaxBin.2 and MetaBat. 
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Figure 4 Number of high quality genomes with low contamination (< 5%) from 
metagenomic assemblies of samples from three ecosystems representing a range of 
complexity. Samples were collected from adult human gut (1 fecal sample), oil seeps (5 
samples), and hillslope soil and underlying weathered shale (6 samples). Samples were 
assembled and binned separately. Reconstructed genomes were summed up per ecosystem. For 
sample-by-sample results, see Supplementary Figure 2. 
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Supplementary Material 
 
1. Supplementary figures 
 

 
Supplementary Figure 1 Number of draft genomes with at least 70% completeness and less 
than 15% contamination for two real metagenomic assemblies from Crystal Geyser, a high CO2 
cold water geyser. 
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Supplementary Figure 2 Number of high quality genomes with low contamination (<5%) for 
twelve real metagenomic assemblies representing a range of complexity. Samples were collected 
from adult human gut, oil seeps and hillslope soil. 
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Supplementary Figure 3 Number of draft genomes with at least 70% completeness and less 
than 15% contamination for twelve real metagenomic assemblies representing a range of 
complexity. Samples were collected from adult human gut, oil seeps and hillslope soil. 
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Supplementary Figure 4 Phylogenetic trees based on 16 concatenated ribosomal protein 
sequences (a) and based on 16S rRNA sequence showing reconstructed genomes from oil 
seeps (red) and soil metagenomes (orange). Reference genomes include TA06 (blue), 
Edwardsbacteria (emerald), WOR-3 (olive), WS-3 (purple), EM-3 (magenta) and Zixibacteria 
(green). 

 
 
 
2. Supplementary tables 
 
Supplementary Table 1 Accuracy of reconstructed genomes from a synthetic mock community 
consisting of 25 isolate genomes based on F1 score. 
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uses the same three predictions as input. DAS_Tool.7binners additionally uses ABAWACA.2, 
CONCOCT, MaxBin.2 and MetaBat. 

 
Supplementary Table 3 Number of high quality genomes with low contamination (< 5%) from 
metagenomic assemblies of samples from three ecosystems representing a range of complexity. 
Samples were collected from adult human gut (1 fecal sample), oil seeps (5 samples), and 
hillslope soil and underlying weathered shale (6 samples). Samples were assembled and binned 
separately. Reconstructed genomes were summed up per ecosystem. 

Supplementary Table 4 Genome quality estimates (CheckM) and 16S sequence similarities  
(SILVA) of reconstructed genomes from oil seeps. 

 
Supplementary Table 5 Predicted key enzymes of metabolic pathways of five reconstructed 
genomes from oil seep and soil metagenomes. 
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