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Abstract

Background:. Motion correction is a challenging pre-processing problem that

arises early in the analysis pipeline of calcium imaging data sequences. The

motion artifacts in two-photon microscopy recordings can be non-rigid, arising

from the finite time of raster scanning and non-uniform deformations of the

brain medium.

New method:. We introduce an algorithm for fast Non-Rigid Motion Correction

(NoRMCorre) based on template matching. NoRMCorre operates by splitting

the field of view into overlapping spatial patches that are registered at a sub-

pixel resolution for rigid translation against a continuously updated template.

The estimated alignments are subsequently up-sampled to create a smooth mo-

tion field for each frame that can efficiently approximate non-rigid motion in a

piecewise-rigid manner.

Existing methods:. Existing approaches either do not scale well in terms of

computational performance or are targeted to motion artifacts arising from low

speed scanning, whereas modern datasets with large field of view are more prone

to non-rigid brain deformation issues.

Results:. NoRMCorre can be run in an online mode resulting in comparable to

or even faster than real time motion registration on streaming data. We evaluate
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the performance of the proposed method with simple yet intuitive metrics and

compare against other non-rigid registration methods on two-photon calcium

imaging datasets. Open source Matlab and Python code is also made available.

Conclusions:. The proposed method and code provide valuable support to the

community for solving large scale image registration problems in calcium imag-

ing, especially when non-rigid deformations are present in the acquired data.

Keywords: calcium imaging, motion correction, image registration

2010 MSC: 00-01, 99-00

1. Introduction1

Calcium imaging methods enable the monitoring of large neural populations2

over long periods of time with single neuron resolution. Before addressing spe-3

cific scientific questions, the analyst needs to pre-process the data and extract4

the neural signals of interest from the fluorescent microscopy time series im-5

ages/volumes. The typical calcium imaging pre-processing pipeline consists first6

of motion correction/image registration of the time series, followed by source7

extraction, where the different neurons and processes along with their neural ac-8

tivity time series are extracted. In this paper we focus on the motion correction9

pre-processing step: we introduce an algorithm for Non-Rigid Motion Correction10

(NoRMCorre), that is suitable for the registration of large scale planar or vol-11

umetric imaging data, and we evaluate its performance against state-of-the-art12

algorithms.13

The general field of image registration has a long history and is still very14

active with many different methods available. In the context of fluorescent mi-15

croscopy time series data, an algorithm needs to be i) fast since each experiment16

typically consists of tens of thousands of frames, ii) robust to noise arising from17

measurement noise and neural variability/activity, and iii) able to deal with18

non-rigid deformations that occur from natural brain movement and/or slow19

raster scanning. In several cases rigid translation accounts for most of the mo-20

tion and fast methods based on template alignment are often used [16, 7, 3]. For21
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dealing with non-rigid motion in the context of calcium imaging data, available22

approaches include the work of Greenberg & Kerr [6] which is based on the23

Lucas-Kanade method [9], Hidden Markov Models (HMM) [2, 8] approaches,24

and block rigid registration [11].25

NoRMCorre is based on template alignment and operates by estimating a26

smooth non-uniform motion field that is applied into different parts of each27

frame. Our goal is not to take a completely new approach to motion correction,28

but rather to present and make available a robust alignment method that also29

combines two important features:30

• Online processing: The algorithm operates by matching patches of each31

given frame against a template that is continuously updated based on pre-32

viously registered frames. As such, it requires access only to the current33

frame to be registered and the running template, plus possibly a small34

buffer to store past templates. Consequently it is suitable for online regis-35

tration of high volume streaming data, a useful feature that can facilitate36

fully closed loop optical interrogation experiments [12] or compensate for37

limited amounts of available memory.38

• Fast, non-rigid registration: The brain is a non-rigid, non-uniformly39

deformable medium. In modern experimental conditions, with animal40

preparations locomoting or otherwise moving under fixed or head-mountable41

microscopes, the brain is subject to elastic deformations. This phenomenon42

is even more evident as equipment allows for the monitoring of increasingly43

larger brain areas. Therefore, even when imaging at high speed correc-44

tion of motion by rigid alignment can be inadequate. NoRMCorre splits45

the field of view (FOV) into overlapping patches that are registered sep-46

arately and then merged by smooth interpolation. As such it overcomes47

the shortcomings of rigid motion alignment without a significant compu-48

tational cost, thus remaining applicable to large scale datasets. Compared49

to the other available non-rigid registration methods that split the FOV50

only along one axis to capture the non-rigid motion caused by the finite51
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speed of raster scanning, NoRMCorre treats all axes uniformly aiming to52

account for natural brain movement as well.53

We present an application to resonant scanning two-photon microscopy data54

and compare it against other non-rigid image registration methods in terms55

of speed and performance. To quantify performance we propose three custom56

metrics. Our results indicate that NoRMCorre achieves state of the art results57

while operating at a speed not significantly slower compared to template based58

rigid alignment.59

2. Materials and Methods60

2.1. Algorithm Description61

2.1.1. Registering a frame against a given template62

NoRMCorre can operate in a rigid or piecewise-rigid (pw-rigid) fashion. For63

rigid registration, every frame is aligned against a calculated template at a sub-64

pixel resolution using the method proposed by Guizar-Sicairos et al. [7]; the dis-65

placement vector is computed by locating the maximum of the cross-correlation66

between the frame and the template. The cross-correlation is efficiently ob-67

tained via fast Fourier transform (FFT) methods, and subpixel registration is68

achieved at a very moderate computational and memory cost by upsampling69

the discrete Fourier transform only around the location of the maximum, and70

then refining the translation estimate.71

In the piecewise rigid approach, for any given frame we split the FOV into72

a set of overlapping patches (Fig. 1a) according to user determined dimensions73

and amount of overlap. Each patch is registered against the corresponding part74

of the template at a subpixel resolution. Next, each patch is further split into75

smaller overlapping subpatches with user-defined dimensions and amount of76

overlap. Similarly, the computed displacement vectors for the set of the initial77

patches are upsampled to create a smooth motion field. This associates to each78

of the subpatches a new translation vector that is subsequently rigidly applied79

to it (Fig. 1b). The registered sub-patches are then overlaid to each other and80
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in regions of overlap a weighted average is taken between all the participating81

patches. The registered frame is also used to update the template in the online82

scenario as discussed in the following section. A block diagram of the registration83

pipeline is depicted in Fig. 1c.84

2.1.2. Updating the template85

The template is updated every bw frames. Once bw frames get registered86

against a fixed template, their average (e.g., mean/median) is computed. These87

averages are stored in a buffer that keeps at most the last bp averages. The88

new template is generated by averaging (e.g., by taking the mean/median) the89

buffer content. Based on empirical observation, as a default choice, we use the90

median-of-means to update the template at the end of each minibatch. The91

template can initialized by computing the median of the first frames (or just92

the median of a random subset of frames).93

2.1.3. Online vs Offline94

NoRMCorre is in principle an online and one-pass algorithm since each frame95

is registered based on the current estimate of the template. However several op-96

timization expedients can be used to improve its performance when data and97

memory are available. For example to avoid the influence of slow motion trends,98

especially at the beginning of the motion correction process, we can randomly99

permute the frames order prior to any registration, or start from the middle100

time point of the dataset and continue outwards towards the beginning/end.101

Moreover, when operating in offline mode, the frames within each minibatch102

that is registered with a fixed template can be processed in parallel, leading to103

potentially significant computational gains, depending on the available infras-104

tructure.105

2.1.4. Application of the shifts106

Application of the computed displacement vector (shifts) is trivial when the107

shifts are integer, since it corresponds to simple image translation and no in-108

terpolation is required. However when fractional shifts are applied there are109
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multiple interpolation methods, based either on space interpolation (e.g., bilin-110

ear, bicubic) or on frequency domain interpolation (FFT-based). The choice111

of interpolation methods can lead to noticeably different results, a fact often112

overlooked. While frequency domain methods can be slower (since they re-113

quire the computation of an inverse FFT), they tend to preserve more structure114

because they retain more frequency content of the signal and thus do not in-115

troduce any smoothing effects. For example, a rigid translation corresponds to116

a simple phase modulation in the frequency domain, which leaves invariant the117

power spectrum density of the image. Therefore, frequency interpolation also118

preserves the original SNR, as opposed to spatial interpolation methods that119

smooth the signal and increase the SNR. We discuss this issue in more detail in120

Section 3, where we show that frequency domain interpolation leads to crisper121

image statistics compared to spatial interpolation. Since spatial smoothing can122

also be achieved post-registration by default we use frequency domain interpo-123

lation. To preserve the dynamic range of the original data, the registered frame124

is restricted to take values between the minimum and maximum values of the125

original frame.126

2.2. Evaluation metrics127

Typically motion correction algorithms for calcium imaging data are evalu-128

ated on artificial datasets where known shifts are applied to registered data. On129

real data, evaluation typically occurs by visual inspection, where users observe130

the data (or a temporally downsampled version of it) before and after registra-131

tion to assess the outcome of the registration. This makes the comparison of132

different algorithms on real datasets very hard and biased. In this paper we133

propose a series of simple metrics that can be used to quantify the performance134

of different algorithms. In section 3 we show that such metrics can be important135

for identifying locations where pw-rigid motion correction improves significantly136

upon simple rigid registration, a task very strenuous to be performed manually.137
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2.2.1. Correlation with the mean metric138

To evaluate the results of the motion correction algorithm across the differ-139

ent frames, we use a metric that is based on the similarity (pixel-wise, Pearson’s140

correlation coefficient r) between a reference template and each frame. For in-141

stance, one can compute for both the raw and corrected movie the correlation142

coefficient between each frame and the mean image across time, and then com-143

pare them. Intuitively, an increase in the correlation coefficient for a given frame144

indicates a better alignment with the mean1. To account for boundary effects145

during registration, a number of pixels around each boundary (e.g., equal to146

the maximum shift in each direction over time) is removed when computing the147

correlation coefficients.148

This metric can be used to identify frames where the registration is successful149

or not, or to compare different motion correction algorithms at the level of150

individual frames. However, this metric critically depends on the smoothness151

properties of each frame which, as discussed in section3, can be affected by the152

method used to apply the computed displacements. In what follows, when using153

this metric we compare algorithms that register frames by applying shifts with154

the same method.155

2.2.2. Crispness and focus measures156

An alternative measure is to quantify how crisp is a summary image before

and after registration. This can be done by summing up the norm of the gradient

field of the image on each location. If I is the resulting summary image then

this measure of crispness can be defined as

c(I) = ‖|∇I|‖F , (1)

where ∇ denotes the gradient vector, | · | denotes the magnitude, and ‖ · ‖F157

denotes the Frobenius norm. Examples of summary images include the mean158

1If a static colored channel exists, these coefficients can in principle reach values very close

to one, but in practice are limited by measurement noise. For variable channels their value is

also limited by the time varying courses of the underlying neuronal processes.
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image, or the correlation image (CI)2. Intuitively, a dataset with non-registered159

motion will have a blurred mean image, resulting in a lower value for the total160

gradient field norm. In addition to crispness, other measures of focus of the161

summarizing image can also be used. In this case as well, we expect that spatial162

interpolation methods can affect this measure, since introducing smoothing in163

each frame gives rise to a smoothed, higher valued correlation image with lower164

crispness.165

2.2.3. Residual motion quantification166

To evaluate the performance of the algorithm, we can attempt quantifying167

motion before and after registration by using a different algorithm. In Section168

3 we use the dense optical flow algorithm of Farnebäck [4] to estimate the resid-169

ual motion and thus quantitatively evaluate the performance of the registration.170

In our setting, the algorithm estimates a motion field that attempts to match171

the current frame to the template. To do so, it relies on an efficient polyno-172

mial approximation of pixel neighborhoods to infer locally smooth displacement173

fields. In our hands, optical flow algorithms were particularly sensitive to the174

low/mid-SNR conditions of typical calcium imaging datasets. Therefore, in or-175

der to quantify the residual motion of other registration methods, the optical176

flow algorithm needed to operate on a downsampled version of the dataset to177

ensure robustness (and computational tractability). As such, we do not consider178

it as an appropriate method for registering calcium imaging data, but a useful179

and unbiased tool for assessing the performance of other methods.180

2.3. Technical details181

2.3.1. Restricting maximum shifts182

To avoid potential instabilities from corrupted or very sparsely labeled frames,183

the shifts allowed by the algorithm can be constrained within a user defined184

2The image where the value for each pixel is the average of the correlation coefficients

between the pixel and its neighbors.
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region. In practice, for each frame, NoRMCorre first computes the rigid dis-185

placement vector for the whole frame, with a user defined maximum allowed186

value, e.g., ‖d‖∞ ≤ M , where d is the rigid shift, M is the maximum allowed187

displacement in each direction, and ‖ · ‖∞ denotes the l∞ (max) norm. Then,188

the displacement vector for each patch is constrained within a given region cen-189

tered around the rigid displacement vector, i.e., ‖di − d‖∞ ≤ n, where di, is190

the displacement vector for patch i, and n is the maximum allowed deviation.191

2.3.2. Merging overlapping patches192

To apply the shifts on overlapping patches we construct a set of weight193

interpolating functions that are used to ensure a smooth transition between194

registered neighboring patches. Consider the i-th patch, centered around the195

point (xi, yi) with size (sx, sy) and overlap (ox, oy), resulting in a total size196

(sx + 2ox, sy + 2oy). We define the trapezoid function197

biX(x) =


1, |x− xi| ≤ sx/2

sx + 2ox − 2|x− xi|
2ox

, sx/2 ≤ |x− xi| ≤ sx/2 + ox

0, |x− xi| > sx/2 + ox

, (2)

similarly the function biY (·) and the 2d function

Bi(x, y) = biX(x)biY (y). (3)

Then if I1, . . . , IK are the reconstructed patches, extended to take values in the

whole FOV, the interpolated registered frame is given by

I(x, y) =

∑K
i=1 I

i(x, y)Bi(x, y)∑K
i=1B

i(x, y)
. (4)

2.3.3. Avoiding smearing by upsampling198

When shifts among neighboring patches differ significantly, the interpolation199

explained above can introduce smearing effects. Take the case of two patches200

overlapping along the x-direction, whose x-shifts differ by exactly 1 pixel. When201
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interpolating, the registered overlapping region will be simply a weighed aver-202

age of two consecutive non-matching pixels along the x-direction, leading to a203

smeared result. Upsampling to a finer grid can alleviate this undesirable out-204

come. For example, if we up-sample the grid by a factor of 2, the difference in205

the displacements will be 0.5 pixels, thus inducing less smearing. We empiri-206

cally observed that smearing occurs when shifts in overlapping patches differ by207

more than 0.5 pixels in either direction, and we suggest further upsampling to208

prevent it.209

In theory, the grid could be upsampled to the point where each pixel has210

its own displacement vector. However, this approach can be computationally211

very slow, therefore introducing a trade-off between computational efficiency212

and smearing reduction. Hence, the upsampling factor can be chosen so that213

it fulfills the no-smearing condition with the following formula. If n denotes214

the maximum deviation from the rigid displacement for each patch, then two215

neighboring patches can have displacements that differ at most 2n pixels in216

each direction (an extreme case that in not expected to be encountered often217

in practice), and an upsampling factor of 22+dlog2 ne, where dxe denotes the218

minimum integer greater or equal to x, guarantees the no smearing condition.219

For computational reasons, in practice we often use a smaller factor, and the220

interpolation is avoided for the frames where the smearing condition is not221

satisfied.222

2.3.4. Choosing patch size and amount of overlap223

Our algorithm requires a template with strong reference points that facili-224

tates robust matching and alignment. When splitting into patches to perform225

pw-rigid motion correction, each patch (together with its overlap) needs to con-226

tain enough signal to produce a clear template. In dark areas, for instance, it227

is difficult to find bright reference points and the alignment consequently fails.228

Empirically, for a typical 512× 512 FOV with somatic imaging, an initial patch229

size of 128 × 128 (with additional 32 pixels of overlap in each direction) is a230

good choice. However, if the labelling is sparse then either a larger patch size231
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and/or overlap might be required to ensure there is enough information for232

robust template alignment.233

The amount of overlap between subpatches ensures a smooth interpolation234

between neighboring patches and alleviates boundary effects during the FFT235

registration. If l is the size of the initial patch along one dimension, u is the236

upsampling factor, and M+n is the allowed maximum displacement (maximum237

rigid displacement plus deviation), then we choose the overlap after upsampling238

to be larger than M + n − l/u, to ensure that each patch is not shifted by an239

amount larger than its dimension.240

Software241

Matlab code (also applicable to 3D volumetric imaging data) is available242

as a standalone package https://github.com/simonsfoundation/NoRMCorre.243

This package complements and will be integrated with the CNMF Matlab244

package for demixing and deconvolution of registered movies [13] available at245

https://github.com/epnev/ca_source_extraction. NoRMCorre is also im-246

plemented in Python https://github.com/simonsfoundation/CaImAn as part247

of the CaImAn package [5].248

3. Results249

We tested the algorithm on data collected in vivo with a two-photon mi-250

croscope on a mouse expressing GCaMP6f in the parietal cortex, courtesy of251

S.A. Koay and D. Tank (Princeton University). The FOV had size 512 × 512252

pixels and the data was acquired at 30Hz. Fig. 2 provides a demonstration253

of the performance of the rigid and piecewise rigid versions of our algorithm254

with respect to the various proposed metrics on a 2000 frame segment of the255

dataset. According to all the considered metrics, pw-rigid motion correction256

led to improved registration compared to plain rigid motion correction, which257

in turn improved significantly over the non-registered data. Fig. 2A shows a258

100 × 100 pixel patch of the resulting mean for raw, rigid and pw-rigid cor-259

rected. By inspection, the pw-rigid correction preserves more fine structure,260
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something that is also captured by the crispness metric (see eq. (1)) producing261

values of 4.3 × 103, 6.69 × 103, and 7.35 × 103 for raw, rigid and piecewise-262

rigid respectively. The same trend is also observed for the correlation with the263

mean metric (Fig. 2b) and the average per frame optical flow metrics (Fig. 2c),264

where the scatter plots demonstrate that the pw-rigid correction improves over265

the plain rigid correction for nearly all 2000 frames. Consistently, the optical266

flow metric shows that the improvement is also global in space (every region of267

the FOV exhibits less movement), with most of the remaining movement esti-268

mated to be around the boundaries and due to poorer SNR or other possible269

border effects (Fig. 2e). Fig. 2d shows the displacements along the x-axis for270

a small segment of frames (black), plotted against the displacements for each271

of the different patches (before upsampling). Connecting with Fig. 2b,c left,272

we notice that pw-rigid motion correction brings the most additional benefits273

over rigid motion correction when the dispersion of the displacements over the274

different patches is high, i.e., NoRMCorre estimates and corrects for a higher275

amount of non-rigid motion. The results are better displayed in movie format.276

Supplemental Movie 1 demonstrates the large variety of motion field patterns277

the algorithm estimates during the registration process. Supplemental Movie 2278

shows a downsampled version of the results of rigid and pw-rigid registration,279

alongside the original data.280

Next we compared NoRMCorre in its Python implementation with i) a Hid-281

den Markov Model based algorithm [2], as implemented in the Python package282

SIMA [8], ii) the block-rigid approach of the Matlab package Suite2p [11], and283

iii) the Lucas-Kanade approach of Greenberg & Kerr [6]. These three methods284

are also suitable for non-rigid motion correction and have available implementa-285

tions in Python (SIMA) or Matlab (Suite2p, Lucas-Kanade). We compared the286

three methods with respect to the quality metrics and the speed. For reference287

we also include the metrics of the non-registered data as well as the performance288

of rigid motion correction from the Python implementation of NoRMCorre. The289

results (Table 1) indicate that NoRMCorre achieves the best performance for290

crispness metrics and residual motion at a speed comparable to rigid motion291
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2000 frames Crisp Crisp Optical Flow Time Interp.

(mean, a.u.) (CI) (RMS, pixels) (sec) Interp.

Original 4301 9.87 1.574 ± 1.502 − −

Rigid 6690 10.98 0.443 ± 0.328 40 FFT

SIMA 6678 9.25 0.244 ± 0.082 530 Integer

Suite2p 6694 9 0.246 ± 0.08 86 FFT

Lucas-Kanade 6394 10.36 0.197± 0.084 1856 Bilinear

NoRMCorre 7483 10.69 0.154± 0.09 89 Bicubic

NoRMCorre 7531 11.48 0.15± 0.09 117 FFT

Table 1: Comparison of NoRMCorre with other non-rigid motion correction algorithm on a

2000 frame, 512 × 512 pixel in vivo mouse cortex dataset.

correction, which is unsurprisingly the fastest method but produces the worst292

results in terms of residual motion. The residual motion was calculated with293

the dense optical flow (OF) algorithm of Farnebäck [4] in its OpenCV (v3.2,294

http://opencv.org) implementation, after temporal downsampling of the data295

to increase the SNR (see Section 2.2.3). We note that for all of the other three296

different methods, the best and reported results were obtained by taking blocks297

along the x-direction which is parallel to the raster scanning direction, demon-298

strating the fact that the largest part of the motion may not be due to raster299

scanning effect. Details of the various implementations are given in the supple-300

ment.301

Table 1 also illustrates the effect of the interpolation method. When apply-302

ing NoRMCorre with bicubic interpolation it achieves similar residual motion303

compared to NoRMCorre with Fourier interpolation albeit at a faster speed.304

However, the crispness of the mean and correlation images decreases due to the305

smoothness introduced by the bicubic interpolation. This point is highlighted306

even further in Fig. 3, where the correlation and mean images are shown for307

NoRMCorre and the Lucas-Kanade method, emphasizing the effect of differ-308
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ent interpolation methods. Bilinear and bicubic interpolation smooths the data309

(Fig. 3A, left and middle), and biases upwards the correlation between neigh-310

boring pixels, as opposed to Fourier interpolation that retains the structure311

displayed by the weak correlations between neighboring pixels (Fig. 3A, right).312

On the other hand, the effect on the correlation with the mean metric is opposite313

leading to higher values for bilinear interpolation with Lucas-Kanade registra-314

tion (0.499 ± 0.033), and bicubic interpolation with NoRMCorre registration315

(0.443 ± 0.017), as opposed to Fourier based interpolation with NoRMCorre316

which achieves a significantly lower value (0.399 ± 0.014). This highlights the317

sensitivity of this metric on the interpolation method, and why it should be318

used carefully in comparisons.319

4. Discussion320

Non-rigid motion within a frame can occur not only due to slow raster scan-321

ning but also because of relative brain elastic deformation within the field of322

view. While faster raster scanning can result in higher imaging rates for a given323

FOV and thus reduce the amount of intra frame motion, modern methods enable324

imaging of even larger areas and/or volumes (e.g., Sofroniew et al. [14], Stirman325

et al. [15]) within which significant intra-frame motion is still possible. We be-326

lieve that fast non-rigid motion correction will remain an important challenge327

in the future. NoRMCorre provides a simple and online method based on piece-328

wise rigid template alignment that achieves state of the art results at a speed329

comparable to real time.330

To better quantify the benefits of piecewise registration over rigid registra-331

tion as well as to compare NoRMCorre with other non-rigid motion registration332

algorithms we developed some intuitive metrics that measure the crispness of333

the registered images and also used independent algorithms to estimate the334

amount of residual motion after registration. These metrics also highlighted335

the importance of the interpolation method that is chosen to apply the com-336

puted displacement vectors. While the effect of the smoothing introduced by the337
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spatial interpolation methods might be minimal, and actually create the per-338

ception of a higher SNR, we took the stand that the statistics of the registered339

data should reflect the original input as much as possible, spatial smoothing can340

occur downstream in the analysis when necessary. We argued that by using the341

computationally more expensive Fourier based interpolation and avoiding any342

smoothing, one can better preserve the statistics of originally acquired data.343

The ultimate goal of motion registration is to stabilize the FOV. This is344

important for segmentation reasons because several current source extraction345

methods identify sources by searching for groups of pixels that behave similarly346

with each other across time [13]. An alternative to such approaches would347

be to track individual neurons over time, an approach that has been taken348

when imaging freely moving C. elegans [10], where the deformations can be very349

dramatic. However, these methods tend to be computationally very expensive350

and have not yet found applications in registering other types of data.351

The dataset used as an example in this paper pertains to two-photon, two-352

dimensional, raster scanning imaging of mostly cell bodies. However, our ap-353

proach can also be applied to other types of imaging datasets. For the case354

of one-photon, microendoscopic data, high pass spatial filtering can be used to355

remove the bulk of the smooth background signal created by the large integra-356

tion volume, and create stark reference points, prior to applying registration.357

NoRMCorre can also be readily applied to dense volumetric data (e.g., SCAPE358

microscopy [1]), where non-rigid motion can exist in all 3 directions. More359

details about such applications will be presented in the future.360
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Figure 1: Schematic representation of the proposed algorithm. a: Illustration of

the scheme used to overlap patches. b: Top. Illustration of the process of upsampling the

shifts. Bottom. Visual representation of the motion estimated field on the original (left) and

upsampled (right) patches. The yellow arrow’s length represent the direction and magnitude

of the motion field. c: Pipeline for piece-wise rigid registration of a frame against a given

template, and template updating.
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Figure 2: Illustration of performance on in vivo mouse parietal cortex data. a: Mean

image of raw data (focused on a 100 × 100 pixels part of the FOV for clarity). Raw data

(left), rigid corrected (middle) and piecewise-rigid corrected (right). NoRMCorre with pw-

rigid correction results in a more structured mean image as quantified by the crispness of the

image (1) (c(raw) = 4.3 × 103, c(rigid) = 6.69 × 103, c(piecewise) = 7.53 × 103, measurements

in absolute units). b: Quantification of performance based on the correlation with mean

metric. For nearly every frame rigid correction improves over the raw data, and pw-rigid

improves over rigid. Left. Mean correlation metric for a subset of frames. Scatter plot of

frame-by-frame mean correlation metric of raw vs rigid (center) and rigid vs pw-rigid (right).

c, e: Quantification of performance using the optical flow measure averaged over space (c,

mean over space RMS value in pixels) and over time (e, mean over time RMS value of residual

motion in pixels). Consistently, pw-rigid correction improves over plain rigid correction (left,

frame by frame; center, scatter raw vs rigid; right, scatter rigid vs pw-rigid) and most of the

remaining motion, as estimated with optical flow, remains on the boundaries of the FOV (e,

left). d : Comparison of the rigid displacement (black) along the x-axis with the displacement

of each patch for a subset of frames. The main benefits from the piecewise rigid correction,

as can be seen from b and c (left) come at frames where the displacements exhibit maximum

dispersion.418
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Figure 3: Effect of interpolation method on registered data. a: Correlation images

for registered methods with 3 different methods restricted on a 170 × 170 pixels part of the

FOV. Lucas-Kanade method with bilinear interpolation (left), and NoRMCorre with bicubic

interpolation (middle) and Fourier interpolation (right). Fourier interpolation retains the weak

correlation structure between neighboring pixels, whereas spatial interpolation “washes” away

this structure by introducing smoothing during the shift application resulting in higher values

for the correlation image. b: Mean images for the three approaches. The differences are less

visible by eye, but quantitatively NoRMCorre with Fourier interpolation produced the crispest

mean image (see Table 1).
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Supplemental Material422

Dataset description423

Data was obtained from the parietal cortex of a transgenic GCaMP6f-expressing424

mouse during a behavioral task. Field of view was approximately 500x500 µm2
425

(512 by 512 pixels) in size and at depth 125µm below the dura surface. Horizon-426

tal scans of the laser were performed using a resonant galvanometer, resulting427

in a frame acquisition rate of 30Hz.428

Implementation details429

All analaysis and simulations were performed on a Dell Precision Tower 7910,430

24 cores Intel(R) Xeon(R) E5-2643 v3 @3.40 GhZ, 128 GB RAM). For the pw-431

rigid algorithm, the FOV was initially split in patches of size 128 × 128 pixels432

with an additional 32 pixels of overlap on each side. Each patch was further433

upsampled by a factor of 4. The algorithm was run in its offline mode with434

template obtained from the rigid registration of the first 500 frames. For the435

other three methods (SIMA, Suite2p, Lucas-Kanade), best results were obtained436

by taking blocks of size 512×16 pixels (excluding overlap), tiled horizontally (in437

parallel and not vertical to the raster scanning direction). For computation of438

the various metrics 12 pixels were removed from each side along both directions439

to avoid the boundary effects due to the registration. The optical flow algorithm440

was applied to a 5× downsampled version of the registered data to increase SNR441

and robustness.442

Description of Supplemental Movies443

Supplemental Movie 1. Depiction of the online pw-rigid motion correction proce-444

dure:. Each frame of the original data (top left) is registered against a template445

(bottom right) in a piecewise rigid manner by shifting small patches according446

to the computed and upsampled motion field (bottom left). The resulting reg-447

istered frame is shown on top right. Observance of the motion field shows the448

diverse non-rigid motion patterns that the algorithm estimates along both di-449

rection. The template is updated online during the registration process every450
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50 time steps. The movie is reproduced at the original data acquisition rate of451

30 Hz.452

Supplemental Movie 2. NoRMCorre corrects for non rigid motion along both453

directions.. Comparison between the original data (left), corrected with rigid454

registration (middle) and piecewise rigid registration with NoRMCorre (right).455

Original and registered datasets are first downsampled 5× in time and then456

reproduced at 3× the original rate to aid the visual perception of the registration457

results. NoRMCorre with pw-rigid registration performs significantly better458

compared to rigid registration.459
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