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Abstract

Understanding Ebola Virus (EBOV) virulence evolution is not only timely but also raises specific

questions because it causes one pf the most virulent human infections and it is capable of trans-15

mission after the death of its host. Using a compartmental epidemiological model that captures

three transmission routes (by regular contact, via dead bodies and by sexual contact), we infer the

evolutionary dynamics of case fatality ratio (CFR) on the scale of an outbreak and on the long

term. Our major finding is that the virus’s specific life cycle imposes selection for high levels of

virulence and that this pattern is robust to parameter variations in biological ranges. In addition20

to shedding a new light on the ultimate causes of EBOV’s high virulence, these results generate

testable predictions and contribute to informing public health policies. In particular, burial man-

agement stands out as the most appropriate intervention since it decreases theR0 of the epidemics,

while imposing selection for less virulent strains.
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Impact Summary25

The severe haemorrhagic fever caused by Ebola Virus (EBOV) usually kills more than one infected

individual out of two in the absence of treatment, which makes this pathogen one of the most

virulent known to humans. The recent outbreak in West Africa (2013-2016) revealed that the

virus is able to spread and persist for months across countries. It is often thought that virulence

could be due to the fact that the virus is adapted to its reservoir host. Given that microbes evolve30

rapidly, it is important to determine whether EBOV virulence is likely to decrease as the virus

adapts to its human host. To address this problem, we developed a novel mathematical model

tailored to EBOV’s life cycle, notably by capturing its three main transmission routes (by regular

contact, sexual contact and via dead bodies). We investigated the evolutionary trends of EBOV’s

virulence on different time scales (outbreak initiation, short term and long term). Our results35

reveal that the virulence of EBOV might not be due to the maladaptation of the virus, but could

rather originate from its unique life cycle. These results are robust to the parameter values chosen.

From a public health perspective, burial management stands out as the main leverage to fight the

virulence of EBOV, both on the short and long terms.
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Introduction40

Ebola Virus (EBOV) has been a major source of fear since its discovery in 1976. Until 2013, all

outbreaks could be traced to spillover from reservoir hosts (Leroy et al., 2005) and were limited in

size. This was attributed to EBOV’s extremely high case fatality ratio (CFR), that is the ratio of

infected hosts who die from the infection, which we use here as a measure of infection virulence.

The dramatic 2013-2016 epidemic in West Africa, which caused more than 28,000 infections and45

claimed at least 12,000 lives, showed that the virus can persist in the human population for

months, therefore raising the question: ‘How will the virulence of Ebola Virus evolve in humans?’

(Kupferschmidt, 2014).

Being an RNA virus, Ebola is prone to rapid evolution (de La Vega et al., 2015) and in vitro

analyses suggest that the virus has evolved during the outbreak towards an increased tropism50

for human cells (Urbanowicz et al., 2016). It was first thought that host-parasite interactions

should always evolve towards benignity because mild strains seem to have a transmission advantage

over strains that kill their hosts rapidly (Méthot, 2012). Since the 1980s, evolutionary biologists

have shown that parasite virulence can be adaptive because it may correlate with transmissibility

or within-host competitiveness (for a review, see Alizon and Michalakis, 2015). The avirulence55

theory does remain prevalent in many fields. For instance, some envisage a decrease in EBOV

virulence due to host adaptation Kupferschmidt (2014), even though we know the virulence of

some human infectious diseases such as HIV or tuberculosis has followed an increasing trend since

their emergence (Gagneux, 2012; Herbeck et al., 2012).

Studying virulence as a potentially adaptive trait for the parasite requires encompassing the60

whole epidemiological life cycle of the infectious agent (Alizon and Michalakis, 2015). In the

case of Ebola Virus, most individuals acquire the infection after direct contact with blood, bodily
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secretions or tissues of other infected humans whether alive or dead (Bausch et al., 2007). This post-

mortem transmission route cannot be neglected in Ebola Virus epidemics (Chan, 2014), although

its magnitude is likely to be low compared to direct transmission (Weitz and Dushoff, 2015). From65

an evolutionary standpoint, this route might be crucial as well since the timing of life-history

events can dramatically affect virulence evolution (Day, 2003). Intuitively, if the virus is still

able to transmit after host death, virulence will have a smaller effect on the parasite’s transmission

potential. Moreover, there is an increasing evidence that EBOV might also be transmitted through

sexual contact even long after the clinical ‘clearance’ of the infection since the virus can persist in70

the semen for months (Eggo et al., 2015; Thorson et al., 2016; Uyeki et al., 2016).

Will EBOV become more virulent by adapting to humans? To address this question, we use

mathematical modelling to determine how case fatality ratio affects the risk of emergence, how

it evolves on the long and on the short term. To this end, we introduce an original epidemio-

logical model that captures all three transmission routes of the virus in human populations. We75

parametrize our model with data from the well-documented 2013-2016 epidemics. We also perform

sensitivity analyses on conservative biological ranges of parameter values to verify the robustness

of our conclusions.

We find that EBOV undergoes selection for higher case fatality ratios due to its life cycle

that includes transmission from hosts after death. This result is robust to most parameter values80

within biological ranges. We also show that short-term evolutionary dynamics of virulence are more

variable but consistently depend on the duration of the incubation period. Finally, we investigate

how public health interventions may affect EBOV virulence evolution. We find a direct, but limited,

effect of safe burials that may decrease the spread of the virus, while favouring less virulent strains

over more virulent ones.85
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Methods

For clarity, most of the technical details are shown in Supplementary materials and this section

contains verbal description of the model, Figures illustrating the life cycle and a list of parameter

values.

Epidemiological model90

Our original compartmental model is based on the classical Susceptible-Exposed-Infected-Recovered

(SEIR) model, which we enhanced by adding a convalescent class (C) that allows for sexual trans-

mission (Abbate et al., 2016) and an infected dead body class (D) that allows for post-mortem

transmission (Legrand et al., 2007; Weitz and Dushoff, 2015). The model is deterministic and does

not include additional host heterogeneity, spatial structure or public health interventions.95

We incorporated demography through a host inflow term λ and a baseline mortality rate µ.

Susceptible individuals (S) can become infected by regular contact with symptomatic infected

individuals (I) (World Health Organization Ebola Response Team, 2014), by sexual contact with

convalescent individuals (C) (Mate et al., 2015) and by contact with the dead body of EVD

victims, mostly during ritual practices (D) (Chan, 2014). The rates at which these events occur100

are proportional to βI , βC and βD respectively. As in most models (Keeling and Rohani, 2008), we

assumed sexual transmission to be frequency-dependent. For non-sexual transmission, we assumed

density-dependent transmission following an analysis of the 2013-2016 epidemic (Leander et al.,

2016), although performed at a smaller scale than ours. The total population size of live hosts is

denoted N .105

Upon infection, susceptibles move to the so-called ‘exposed’ class (E), meaning they are infected

but not yet infectious. For Ebola Virus infections, this latency period is also the incubation period,

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/108589doi: bioRxiv preprint 

https://doi.org/10.1101/108589


i.e. the time from the contamination to the onset of the symptoms. These symptoms arise at a

rate ω.

At the end of this latency/incubation period, individual move to the symptomatic infected110

compartment (I). They leave this compartment at a rate γ, which we calibrated using the average

time elapsed from the onset of the symptoms to death or recovery. We hereafter refer to this as the

‘symptomatic period’. The probability that an infected individual survives the infection is 1− α.

The case fatality ratio (CFR), α, is our measure of virulence.

We assumed that infected individuals who survive the infection clear the virus from their blood-115

stream but not from other fluids such as semen and may therefore still transmit EBOV through

sexual contacts (Deen et al., 2015). These convalescent individuals (C) completely eliminate EBOV

at a rate σ. Notice that given the severity of the symptoms (Feldmann and Geisbert, 2011) and

the fact that the convalescence period is one order of magnitude greater than the symptomatic

period, we neglected the sexual transmission from symptomatic infected individuals (I).120

Based on the current immunological data (Sobarzo et al., 2013), we assumed that full elimina-

tion of EBOV from convalescent hosts confers lifelong immunity to recovered individuals (R), who

do not contribute to the epidemiology.

On the contrary, infected individuals who die from the disease may continue to transmit EBOV

if their burial is performed in unsafe conditions, which occurs at a probability θ. There is little data125

from which to estimate this parameter. However, the proportion of EBOV-positive dead bodies

has been estimated to decline from 35% to 5% by the end of 2014 in the most populous county

of Liberia (Nyenswah et al., 2016). We therefore set the default value θ = 0.25. In the analysis,

we strongly vary this parameter since it represents an important leverage public health policies

have on the epidemics. In the absence of burial team intervention, body fluids from dead bodies130

remain infectious for a period ε−1 which is known to be less than 7 days in macaques (Prescott et

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/108589doi: bioRxiv preprint 

https://doi.org/10.1101/108589


al., 2015).

Our model, pictured in Figure 1, consists in a set of Ordinary Differential Equations (ODEs)

shown in Supplementary Material A.

Table 1 lists the 11 model parameters. Their values were calibrated using data from the 2013-135

2016 epidemic in West Africa. We worked at a country level and preferentially chose estimates

from the Liberia outbreak, because with approximately 10,000 cumulative cases (World Health

Organization, 2016), its magnitude lies in between that of Sierra Leone and Guinea. Demogra-

phy data from Liberia were obtained from publicly available data from the Central Intelligence

Agency (Central Intelligence Agency, 2016). The newborn inflow was set such that the disease140

free equilibrium matches the country’s population size.

In Supplementary Material C, we calculate the basic reproduction number of EBOV (denoted

R0), which is the average number of secondary infections caused by a single infected individual

in a fully susceptible population (Diekmann et al., 1990). By studying the local stability of the

system (S1) at the disease free equilibrium, we found that145

R0 = βI
γ
S0 + αθβD

ε
S0 + (1− α) βC

σ
, (1)

where S0 = λ/µ is the total population size before the epidemic. The three terms in R0 cor-

respond to each transmission route: from symptomatic individuals (R0,I := βIS0/γ), infectious

bodies (R0,D := αθβDS0/ε), and convalescent individuals (R0,C := (1− α) βC/σ). Notice that the

incubation period does not affect R0.
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Transmission-virulence trade-off and estimated values150

Trade-offs are a central component of evolutionary model and, without them, predictions tend

to be trivial (e.g. viruses should evolve to maximise their transmission rates and minimise their

virulence). Although the EBOV life cycle generates constraints that may lead to non-trivial evolu-

tionary outcomes, we do also allow for an explicit trade-off between CFR and transmission rates.

Such a relationship has been shown in several host-parasite systems (Alizon and Michalakis, 2015).155

The case of HIV is particularly well documented (Fraser et al., 2014): viruses causing infections

with higher viral loads have increased probability to be transmitted per sexual contact, while caus-

ing more virulent (shorter) infections. As a result, there exists an optimal intermediate viral load

that balances the virus benefits of transmission with the costs of virulence, thus maximising the

number of secondary infections.160

In the case of EBOV, there is indirect evidence that viral load is positively correlated with case

fatality ratio (CFR) since survivor hosts tend to have lower viral loads than non-survivors (Towner

et al., 2004; Crowe et al., 2016). Viral load is thought to correlate with transmission (Osterholm

et al., 2015) but demonstrating a clear link is challenging (for HIV, it has required identifying

sero-discordant couples in cohorts).165

We assumed an increasing relationship between transmission rates and CFR (α) such that:

βH (α) := bHα
p, (2)

where bH is a constant factor, p ∈ R+ is a parameter capturing the concavity of the trade-off

curve and H stands for one of the compartment I, D or C. The exact value of p results from

within-host interactions (Alizon and van Baalen, 2005) but one can identify four kinds of trade-offs:

p > 1 corresponds to an amplifying transmission benefit from increasing CFR, p = 1 corresponds

9
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to a linear relationship between transmission and CFR, 0 < p < 1 corresponds to a saturating170

transmission benefit from increasing CFR and p = 0 is the degenerate case without trade-off. From

a biological standpoint, we could expect different transmission routes to have different trade-off

shapes (p) but, as we show here, our results are largely independent of p.

Transmission rates being difficult to estimate (Leander et al., 2016), we indirectly infer the

order of magnitudes of bI , bC and bD by setting the R0 close to 2, that is its approximate value175

for the 2014 epidemic (World Health Organization Ebola Response Team, 2014). Since R0 is the

sum of the epidemiological contributions of each transmission route (see equation (1)), we added

the constrain that, according to previous studies, transmission from symptomatic individuals con-

tributes about ten times more than transmission from dead bodies (World Health Organization

Ebola Response Team, 2014; Weitz and Dushoff, 2015) and one hundred times more than transmis-180

sion from convalescent individuals (Abbate et al., 2016). Straightforward calculations (analogous

to those done for sensitivity analysis in Supplementary Material E) resulted in attributing the

orders of magnitude shown in Table 1.

In the following, the exponent p was left undetermined, but its value was set to 0 for the

estimation of bH in the null hypothesis. This leads to R0 ≈ 1.86, which is very close to the185

WHO mean estimation for the Liberia epidemic, namely 1.83 (World Health Organization Ebola

Response Team, 2014).

Long term evolution

We used the adaptive dynamics framework (Geritz et al., 1998), which assumes that evolution

proceeds by rare and small phenotypical mutations occurring in a monomorphic population that190

has reached ecological stationarity. Polymorphism is therefore limited to transient dimorphic

phases where the ancestor (hereafter called the ‘resident’) and its mutant compete. Depending on
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the outcome of the competition, the system either goes back to the previous endemic equilibrium

or reaches a new monormophic equilibrium. The corresponding dynamical system is shown in

Supplementary Material A (system (S2) applied to n = 2). Notice that the adaptive dynamics195

assumptions are particularly consistent with infectious disease dynamics (Dieckmann et al., 2002).

Given the focus of this study, we assumed that the resident and the mutant only differ in their

CFR (and in their transmission traits if there was a transmission-virulence trade-off). We denoted

the virulence of the mutant and the resident by α′ and α respectively. α′ was assumed to be close

to α. Since the mutant is rare by definition, its emergence can be assumed not to affect the resident200

system. We therefore investigated the local stability of the related endemic equilibrium. This only

depended on the local stability of the mutant sub-system (E2, I2, D2, C2) to which we applied the

next-generation theorem (Diekmann et al., 1990; Hurford et al., 2010). This eventually led (see

Supplementary Material C.3) to the mutant relative reproduction number

R (α′, α) =
βI(α′)
γ

+ xθβD(α′)
ε

+ (1−α′)βC(α′)
σÑ(α)

βI(α)
γ

+ αθβD(α)
ε

+ (1−α)βC(α)
σÑ(α)

, (3)

where there total host population size can be approximated (see Supplementary Material B) by205

Ñ (α) ≈ (1− α)S0 + α
βI(α)
γ

+ αθβD(α)
ε

. (4)

We then calculated the selection gradient by deriving the relative reproduction number (equa-

tion (3)) with respect to the mutant’s trait (Otto and Day, 2007). Equating the mutant and

resident trait value we eventually found

∆ (α) = p

α
+

θbD
ε
Ñ (α)− bC

σ

(1− α) bC
σ

+
(
bI
γ

+ θbD
ε
α
)
Ñ (α)

. (5)
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The sign of ∆ indicates the way natural selection acts on the trait depending on the resident’s

trait.210

Short term evolution

Viruses evolve so rapidly that evolutionary and epidemiological dynamics may overlap. The epi-

demiological Price equation framework is designed to predict short-term evolution based on stand-

ing genetic variation (Day and Proulx, 2004a; Day and Gandon, 2006).

Practically, we assumed that the parasite population is initially diverse and consists of n dif-215

ferent genotypes, each genotype i being defined by a specific value for several phenotypic traits of

interest: the case mortality (αi), the rate of end of latency (ωi), the rate of end of the infectious

period (γi), the rate at which dead bodies cease to be infectious (εi), the rate at which convalescent

hosts clear the infection (σi) and the transmission rates (βD,i, βI,i and βC,i).

The dynamics of the populations of interest are described by 4n + 1 ODEs that are shown in220

Supplementary Material A.

After thorough calculations (in Supplementary Material F) we find that, if we neglect muta-

tional bias, mean traits in each compartment vary according to a system of ODEs that involves

statistical covariances and variances of traits in the different compartments. The equations involv-

ing average CFR are shown in the Results section.225

An important assumption of this Price equation approach is that covariance terms are assumed

to be constant, which implies that predictions are only valid on the short term. Given that the

main limitation of the adaptive dynamics framework relies in its assumption that epidemiological

dynamics are fast compared to evolutionary dynamics, combining the two frameworks allows us

to get a broader picture.230
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Results

Virulence and emergence

We first consider the risk for an epidemic to occur as a function of EBOV virulence, trade-off shape

and burial management. A disease spreads in a fully susceptible population if its reproduction

number (R0) is greater than unity (Anderson and May, 1981). Using our default parameters values235

(Table 1), we show in Figure 2 that the most virulent EBOV strains are almost always the most

likely to emerge, independently of the trade-off exponent p and of proportion of unsafe burials θ.

To have R0 decrease with α, one needs to have neither trade-off nor unsafe burials (θ = p ≈ 0).

However, with our default parameter values this decrease is limited.

If we focus on the lowest virulence that may lead to an epidemic (denoted αmin), we find that240

with our default parameter values burial management can prevent emergence (that is bring R0

below unity by moving vertically in Figure 2) only if the transmission-virulence trade-off is strong

enough (the green, blue and cyan curves).

In the following, we will generally assume that EBOV is adapted enough to persist in the

human population (R0 > 1). Since outbreak originates via spillover from reservoir hosts (Leroy245

et al., 2000), it is likely that the virus is maladapted in the first human infections. However, to

capture these dynamics, an evolutionary rescue formalism would be more appropriate given the

importance of stochastic events and this is outside the scope of this study (for a review, see Gandon

et al., 2013).

Long-term virulence evolution250

If the selection gradient in equation (5) is negative for any CFR (∆(α) < 0), then the virus

population evolves towards its lowest virulence that allows persistence (that is αmin). If the gradient

13
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is always positive (∆(α) > 0), the CFR evolves towards 1. Intermediate levels of virulence can

only be reached if there exists α? such that ∆(α) ≥ 0 for α ≤ α?, ∆(α) ≤ 0 for α ≥ α? and

R (α, α?) < 1 for any α 6= α?. We show in Supplementary Material D.4 that this occurs only if255

the proportion of unsafe burials (θ) and the trade-off parameter (p) are lower than the following

boundaries

θ <
bIbCε

γσbD
and p < bC

σ
, (6)

Unless these two conditions are met, the selection gradient is always positive and EBOV is expected

to always evolve towards higher case fatality ratios (α? = 1). Rewriting the first inequality as

θbDS0
ε

< bIS0
γ
× bC

σ
highlights that virulence is favoured by natural selection as soon as the post260

mortem transmission component is greater than the product of the symptomatic and convalescent

transmission components.

Figure 3 shows how α? is numerically affected by a change in burial management (θ) and

trade-off strength (p). Unless the proportion of safe burials is brought below 4%, and unless

there is a weak trade-off (p < 0.01), CFR will remain high. Intuitively, this double condition265

can be understood in the following way. If the trade-off is negligible, the CFR is weakly linked

to transmission by regular contact and therefore selection on α only weakly depends on this

component of the life cycle. As a consequence, the value of θ governs the relative importance

of the two transmission routes that matter. Post mortem transmission always favours higher

CFR, whereas the sexual transmission route can be maximised for intermediate levels of virulence270

(see Supplementary Material H.)

It was not possible to find an explicit expression for the long-term equilibrium virulence (α?),

14
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but we found it lies in the following interval (Supplementary Material D.5):

α? ∈

 p

bC
σ
− θ

bD
ε

bI
γ

+θ bD
ε

,

((
bI
γ

+ θ bD
ε

)
S0 + bC

σ

)
p

(1 + p) bC
σ
− θ bD

ε
S0

 . (7)

The lower bound of this interval increases with trade-off strength (p) and intensity of the post

mortem transmission route (θbD/ε). If post mortem transmission is strongly reduced, owing to a275

safer burial management (θ → 0), the lower bound simplifies to pσ/bC . The long-term virulence

then appears to be a balance between trade-off strength and sexual transmission intensity, which

is consistent with our intuitive explanation of the condition for an intermediate virulence to be

selected. In particular, any decrease in the time for convalescent hosts to clear the virus (i.e.

increase in σ) will increase the lower bound for CFR.280

To further assess the robustness of these results, we performed a sensitivity analysis by vary-

ing the relative importance of each transmission route (regular contact, sexual transmission and

transmission from dead bodies), while keeping the total value of R0 constant. As shown in Figure

4, unless the values of p are extremely low, variations in the relative transmission routes is unlikely

to be sufficient to move our default value (dotted lines) to the region where low virulences (e.g.285

α < 50%) are favored (green area). To give a quantitative estimate, the relative importance of

transmission via sexual contact (on the vertical axis) would need to be about 40 times greater

than the current estimates to bring the current estimate above the blue separatrix, which already

assumes a low trade-off and a perfect burial management.

Short term evolutionary dynamics290

Reaching an evolutionary equilibrium may take time (especially if strains have similar trait values)

and the transient dynamics can be non-trivial because the system is non-linear. The Price equation

15
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framework provides a way to qualitatively address the initial trends of average trait values, by

considering the initial diversity in the virus population.

If we denote by xH the average value of trait x in compartment H and by covH (x, y) the

statistical covariance between traits x and y in compartment H (which becomes the statistical

variance varH (x) if x ≡ y), the dynamics of average virulence in the four infected compartments

satisfy the following ODEs (see Supplementary Material F for further details):

dαI
dt = −covI (α, γ) +

(
covE (α, ω) +

(
αE − αI

)
ωE
) E•
I•
, (8a)

dαE
dt = −covE (α, ω) + S

E•

∑
H∈{I,D,C}

(
covH (βH , α) +

(
αH − αE

)
βH

H
)
H•, (8b)

dαD
dt = −covD (α, ε) +

(
varI (α) + αI

(
αI − αD

))
θγ

I•
D•

, (8c)

dαC
dt = −covC (α, σ) +

(
covI (α, γ)− γvarI (α) +

(
1− αI

) (
αI − αC

)
γI
) I•
C•
. (8d)

Focusing on the compartment on which virulence acts, namely the symptomatic individuals,295

indicates that the short-term evolution of the average virulence αI is mainly governed by the corre-

lations between this trait and the symptomatic and latency periods. More explicitly, equation (8a)

states that if the most virulent strains induce the longest symptomatic period and/or the shortest

latency periods, the average virulence in I can be expected to increase at the beginning of the

epidemic. Intuitively, newly symptomatic individuals are more likely to have been infected with a300

highly virulent strain.

Equation (8a) contains a third term proportional to αE − αI , which is more difficult to appre-

hend. Indeed, αE varies as well and follows a complicated ODE that involves not only the corre-

lation with the latency period but also correlations with the transmission rates (equation (8b)).

This diversity of components make both αE and αI difficult to predict early in the epidemics.305
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We therefore simulated epidemics numerically according to system (S2). We considered nine

scenarios of increasing complexity, three of which are shown in Figure 5 (see Supplementary Ma-

terial G for more details). During the first six months of an (unmanaged) epidemic, average

virulence exhibits wide variations. In most scenarios (panels A and B), it tends to evolve towards

the maximum of the range provided by its initial polymorphism. This effect is amplified if virulence310

correlates with the transmission rates, which is consistent with earlier models (Day and Proulx,

2004b, e.g.) and studies (Berngruber et al., 2013) (Figure 5B). The decrease occurs approximately

300 days after the onset of the epidemics and it the infectious dead bodies (D) shown in Figure 5B.

A scenario where average virulence decreases initially is when it is positively correlated with

the latency period (Figure 5C). This occurs because less virulent strain have an advantage early in315

the epidemics by reaching the infectious class earlier. More virulent strains become more frequent

again when the value of D begins to take off (Figure 5B).

A secondary result shown in these figures is that dead bodies (in brown) always carry more

virulent strains on average.

Discussion320

Virulence could be adaptive for EBOV

Ebola Virus is one of the deadliest human pathogen (Feldmann and Geisbert, 2011). The re-

cent epidemic in West Africa has shown that it can transmit for months months among humans

throughout entire countries. As any microbe (especially RNA viruses), it is likely exposed to fast

evolution during the course of the epidemic. From a public health standpoint, it is important to325

predict Ebola virus’ next move and the current hope is that the shift from an emerging to an

endemic lifestyle could favour less virulent strains (Kupferschmidt, 2014).
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Predicting virulence evolution is usually challenging because we tend to lack details about

correlations between epidemiological parameters. Furthermore, even when there is data to estimate

a trade-off relationship, its exact shape can have huge quantitative and even qualitative effects on330

the evolutionary dynamics of the trait (Alizon and van Baalen, 2005; Svennungsen and Kisdi, 2009).

Our results stand out because they are robust both to parameter variation in wide biological ranges

(World Health Organization Ebola Response Team, 2014, 2015) and also to the type of trade-off

assumed (and even to its existence).

In addition to the strong selection on EBOV virulence due to its transmission via dead bodies,335

another striking result is that decreasing the ratio of unsafe burials is triply effective. First, it

decreases the spread of the virus (i.e. its R0). Second, in the short term, it can help limit a

transitory increase in virulence. Indeed, in the first weeks of an epidemic, the sexual transmission

route is negligible compared to the other routes that are maximised for maximum CFR. Third,

in the long term, decreasing the proportion of unsafe burials is necessary to shift the selective340

pressure in favour of less virulent strains.

Overall, EBOV is unlikely to evolve to become less virulent because that would require two

conditions. First, the proportion of unsafe burials must be brought to a very low value, which we

estimate to be lower than 4%. Second, there must be very little or no genetic relationship between

EBOV case fatality ratio and transmission rate. This latter condition is particularly frustrating345

because it cannot directly be addressed by public health policies. Finally, even if these conditions

are met, the level of virulence reached in the long term may still be high, especially if sexual

transmission is limited. On a more positive note, results from the Price equation approach show

that the virus may experience transitory lower levels of virulence before reaching this maximum

via a positive genetic correlation between virulence and incubation period. This is somehow350

unexpected because this latter parameter does not appear in the calculations related to long-term
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evolutionary or emergence.

In addition to the strong selection for maximum virulence of EBOV, another striking result is

that decreasing the ratio of unsafe burials is triply effective. First, it decreases the spread of the

virus (i.e. its R0). Second, in the short term, it can help limit a transitory increase in virulence.355

Indeed, in the first weeks of an epidemic, the sexual transmission route is negligible compared to

the other routes that are maximised for maximum CFR. Third, in the long term, decreasing the

proportion of unsafe burials is necessary to shift the selective pressure in favour of less virulent

strains.

Virulence is a shared trait360

In evolutionary biology, virulence is defined as the decrease in host fitness due to the infection

(Alizon and Michalakis, 2015). Given the speed at which a pathogen kills its host, EBOV’s

virulence can neither be measured as a decrease in instantaneous fecundity (which would be almost

zero) nor as an increase of instantaneous mortality rate (which would tend towards infinity or zero

depending on the infection outcome). The case fatality ratio (CFR) therefore appears to be the365

only measurable and epidemiologically relevant proxy for EBOV’s virulence.

We focused on the virus side but, like any infection trait, virulence is also determined by the

host and its environment. To predict how virulence will change in the future, we should also

consider how hosts may change. In the case of EBOV, it was known before the recent epidemics

that some people can become immune to the virus without exhibiting any symptoms (Leroy et al.,370

2000). The question remains to know if they can also be infectious. More generally, our assumption

of life-long protection could be oversimplifying.

Finally, to make predictions on the long term evolution, we need to factor in how the virus

population will evolve in response to the variation in the host population’s immune status. Since
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the immunological status of the host population is determined by that of the virus population, this375

de facto qualifies as a coevolutionary interaction. Earlier models shows that host heterogeneity

in resistance and tolerance can lead to a variety of outcomes (Miller et al., 2006; Cousineau and

Alizon, 2014). Overall, introducing realistic host heterogeneity, in particular age-dependent or

sex-dependent mortality, appears like a relevant extension of this model.

Spatial structure380

Trait evolution is shaped by contact patterns between hosts (Lion and van Baalen, 2008). Re-

garding the recent Ebola epidemic, the lack of medical personnel and infrastructure in the affected

countries played an key role in the spread of the disease as, for example, according to the World

Health Organisation, in 2008 Liberia and Sierra Leone had only a density of 0.015 physicians per

1000 inhabitants, when at the same time France had a density of 3.5 and the United States of385

America 2.4. This was further exacerbated by historical, political and sociological factors (Ali et

al., 2016).

It is difficult to predict how explicitly accounting for spatial structure would affect the results.

Indeed, it is generally thought that the more ‘viscous’ the population, the more virulence is counter-

selected (Boots and Sasaki, 1999). However, the life cycle of the parasite and the host demography390

can create epidemiological feedbacks that alter this prediction by causing virulence to be maximised

for intermediate levels of population structures (Lion and Boots, 2010). This is why predicting

virulence evolution in a fully spatially structured model is beyond the scope of this study.
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Testable predictions

One of the underlying assumptions of our model, which could be tested is that the variation we395

observe in virulence is at least partially controlled by the virus genetics. This could be done by

combining virus sequence data with infection traits (virus load or infection outcome) through a

phylogenetic comparative approach (Alizon et al., 2010) or a genome wide association study on the

virus genome (Power et al., 2017). If virus load is confirmed to be partially controlled by the virus

genetics and if, as current evidence suggests, it is correlated with virulence (Towner et al., 2004;400

Crowe et al., 2016), then studying variations in virus load throughout the 2013-2016 epidemics

can help us understand the evolutionary dynamics of virulence. On that note, an experiment

consisting in generating pseudovirions based on ancestral or recent EBOV sequences suggests that

some of the substitutions observed during the 2013-2016 epidemics may confer increased tropism

for human cells (Urbanowicz et al., 2016).405

Another result of the short-term evolutionary dynamics analysis is that individuals who contract

EBOV from dead bodies should have a higher probability of dying than those infected by contact

with living infectious individuals. This could be tested by collecting data from individuals where

the transmission route is well documented.

Finally, the remote possibility that lower virulence strains will evolve depends on the existence410

of a transmission-virulence trade-off. Assessing the shape of this trade-off may be, therefore, very

valuable. Note that in the case of EBOV, it is not the exact shape that matters but rather the

general trend.
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Conclusion

This evolutionary epidemiology work shows that EBOV’s high virulence, whether it is about415

emergence, short-term or long-term dynamics, can be explained by its particular life cycle that

mixes parasitism and parasitoidism (post mortem transmission). Unfortunately, any long term

decrease in virulence is unlikely for West African strains at any time scale, although increasing the

safe burial proportion appears to be an optimal response in both the short and long terms.
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Table 1: Parameter list, description and default values.
See the main text for further details about the calibration of the transmission constants. Note that
the sexual transmission constant is higher because it involves frequency-dependent transmission.
ind stands for individuals. When used in the main text or in the appendix, these estimated values
are denoted by a hat.
Notation Description Default value Reference or inference

λ Host inflow 2 · 102 ind.day−1 such that λ/µ ≈ 4 · 106, (Central In-
telligence Agency, 2016)

µ Host baseline mortality
rate

4.5 · 10−5 day−1 (Central Intelligence Agency, 2016)

bI
Regular contact trans-
mission (from infectious
hosts) factor

10−7 ind−1.day−1

with the constrain R0,I ≈ 10 R0,D,
R0,I ≈ 102 R0,C and R0 ≈ 1.8

bC
Sexual transmission
(from convalescent
hosts) factor

10−4day−1 (World Health Organization Ebola
Response Team, 2014; Weitz and
Dushoff, 2015; Abbate et al., 2016)

bD
Post mortem transmis-
sion (from dead hosts)
factor

10−8 ind−1.day−1

ω Inverse of latency period 10−1 day−1 (World Health Organization Ebola
Response Team, 2014)

α Case fatality ratio 0.7 (World Health Organization Ebola
Response Team, 2014)

γ Inverse of symptomatic
infectious period

0.25 day−1 (Abbate et al., 2016)

θ Unsafe burial proportion 0.25 (Nyenswah et al., 2016)
ε Inverse of post mortem

infectious period
10−1 day−1 (Prescott et al., 2015)

σ Elimination rate of con-
valescent hosts

10−2 day−1 (Uyeki et al., 2016; Abbate et al.,
2016)
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Figure 1: Epidemiology of Ebola Virus in humans. A) Epidemiological life cycle of Ebola
Virus in humans and B) Population dynamics for default parameters. S,E, I, C,R and D are
host densities that correspond to the following compartments: susceptible, exposed (infected but
not yet infectious), symptomatic infected, convalescent, recovered (immunised) and dead bodies
respectively. N is the total living population size. Lower-case letters are rate and flow parameters,
the description of which is given in Table 1.
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Figure 2: Basic reproduction number as a function case fatality ratio (α), unsafe burial
ratio and trade-off shape.
Colors indicate five trade-off scenarios: absence (p = 0, in grey), very weak (p = 0.1, in red),
concave (p = 0.5, in green), linear (p = 1, in dark blue), and convex (p = 2, in light blue). The
width of the coloured regions corresponds to variations in the unsafe burial ratio from completely
unsafe (θ = 1, dashed upper bound) to completely safe (θ = 0, solid lower bound). The intersection
between the horizontal line and the colored areas indicates the range of αmin for each scenario.
The dotted gridlines show the α and R0 estimates from the literature. Other parameter values are
in Table 1. See Supplementary Material D.4 for more details.
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Figure 3: Evolutionary stable virulence (α?) as a function of unsafe burial ratio (θ) and
trade-off exponent (p).
The solid, dashed and dotted lines correspond to α? = 1, 0.7 and 0.3 respectively. Parameter
vlaues are shown in Table 1. See Supplementary Material D.4 for more details.
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Figure 4: Sensitivity analysis of long-term virulence evolution.
The graphic shows the sign of the selection gradient for virulence when varying the relative weight
(in orders of magnitude) of the post-mortem transmission component (log10 (δ), on the x-axis)
and the sexual transmission component (log10 (κ/S0), on the y-axis) in the overall transmission of
EBOV. When the basic reproduction number is set at its upper bound (R̂0 = 2.53, dashed line),
the selection gradient at the maximum virulence (α = 1) is positive below the dashed line (red
area). When the basic reproduction number is set at its lower bound (R̂0 = 1.26, plain line), the
selection gradient is also positive for a range of virulence higher than one half (α ≥ 50%) in the pink
area. It is negative for lower virulences (α < 50%) above the dashed line (green area). The unsafe
burial proportion and the trade-off exponent are low (θ = 0 and p = 0.1). See Supplementary
Material E for more details.
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Figure 5: Short-term evolution of CFR with standing genetic variation in three sce-
narios.
A) Without correlations between traits, B) with a positive correlation between CRF and transmis-
sion rate and C) with a negative correlation between CRF and latency period. The CFR averaged
over the exposed individuals (αE) is depicted in cyan, over the symptomatic individuals (αI) in
pink and over the infectious dead bodies (αD) in brown. Parameter values are shown in Table 1.
See Supplementary Material G for details about the simulations.
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