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Significance Statement 
 

Combining sensory inputs over time is fundamental to seeing. Due to temporal integration, we do not 
perceive the flicker in fluorescent lights nor the discrete sampling of movie frames; instead we see 
steady illumination and continuous motion. As a result of adaptation, elements of a scene that suddenly 
change in appearance are more salient than elements that do not. Here we investigated how the 
human nervous system combines visual information over time, measuring both functional MRI and 
intracortical EEG. We built predictive models using canonical neural computations, and account for 
temporal integration and adaptation. The models capture systematic differences in how information is 
combined in different visual areas, and generalize across instruments, subjects, and stimuli. 

Abstract 
The visual system analyzes image properties across multiple spatial and temporal scales. Population 
receptive field (“pRF”) models have successfully characterized spatial representations across the 
human visual pathways. Here, we studied temporal representations, measuring fMRI and 
electrocorticographic (“ECoG”) responses in posterior, lateral, ventral, and dorsal visual areas to briefly 
viewed contrast patterns. We built a temporal pRF model employing linear summation and time-varying 
divisive normalization. Our model accurately predicts the fMRI amplitude and ECoG broadband time-
course, accounting for two phenomena – accumulation of stimulus information over time (summation), 
and response reduction with prolonged or repeated exposure (adaptation). We find systematic 
differences in these properties: summation periods are increasingly long and adaptation more 
pronounced in higher compared to earlier visual areas.  We propose that several features of temporal 
responses – adaptation, summation, and the timescale of temporal dynamics – can be understood as 
resulting from a small number of canonical neuronal computations.  

 

Keywords: Electrocorticography, Functional MRI, Population Receptive Fields, Temporal Summation, 
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1. Introduction  
A successful visual system extracts meaning from stimuli that vary across space and time. This 
requires integrating and segregating features at multiple scales. The classic visual perception example 
that requires flexible spatial pooling is object recognition: recognizing an object requires grouping 
features across space (1), but grouping over too large a region results in a jumbled, or ‘crowded’, 
percept that interferes with recognition (2).  

Information is also integrated at multiple time scales to achieve a coherent interpretation of visual 
stimuli. At a fine scale, interpreting scenes requires combining and segregating features across image 
changes that arise from eye movements and blinks. At a longer scale, features must be appropriately 
combined across occlusion events and extended actions. Some visual features, such as texture 
boundaries, are integrated in short temporal windows (< ~20 ms) (3), whereas other stimuli, such as 
words, are integrated over much longer periods (> ~100 ms) (4). Abnormalities in temporal processing 
can cause perceptual deficits in patients with optic neuritis (5) and amblyopia (6), and may be a 
contributing factor in dyslexia (7). A model of how the different areas in the human visual system 
combine stimulus information over time is necessary for understanding the recognition process, and for 
establishing norms against which to compare disorders. 

In the spatial studies, two large-scale trends emerge, and may serve as correlates of achieving 
increasingly invariant representation of objects and scenes (8). First, along the visual hierarchy, from 
striate to extrastriate areas,  receptive field size increases, measured using both electrophysiology (9) 
and fMRI (10-12). Second, when two or more stimuli are presented together, spatial summation 
becomes increasingly more subadditive in later visual areas (11, 13, 14). 

Here, we investigated the scale and properties of how neuronal populations pool information over time. 
We characterized responses to brief stimuli at the time scale of neuronal dynamics (ten to hundreds of 
ms) in many visual areas, measured with fMRI and electrocorticography (ECoG). fMRI measurements 
have the advantage of being non-invasive and recording from many visual areas in parallel. But the 
fMRI measurements also have limits for interpreting the neuronal response. First, subadditivities in the 
fMRI response can arise from the stimulus-to-neuronal transform or neuronal-to-BOLD transform. 
Second, the slow hemodynamics does not enable us to characterize the detailed time course of the 
neuronal response. The ECoG measurements complement fMRI by providing much greater temporal 
resolution and by not compounding nonlinearities in the neuronal response with nonlinearities in the 
hemodynamics. 

To quantify and understand how temporal information is encoded across visual cortex, we built 
temporal population receptive field (“pRF”) models which predict the fMRI and ECoG responses to 
arbitrary stimulus time courses, and we examined the model parameters in visual areas spanning V1 to 
IPS. Together, the temporal pRF model reveals a systematic hierarchy of increasingly large temporal 
windows and increasingly large deviations from linear summation, paralleling the hierarchy of spatial 
receptive fields.  
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2. Results 
We present two variants of a temporal pRF model. The first was fit to fMRI data, and captures 
subadditivities of the BOLD amplitude for stimuli with different temporal profiles (sections 2.1-2.4). 
Fitting the ECoG responses required expanding the model to account for temporal dynamics at the ms 
scale (section 2.5). Finally, we test how accurately the expanded, dynamic model predicts the fMRI 
responses (section 2.6). 

2.1 Measuring temporal summation in visual cortex 
In each trial of the fMRI experiment, participants viewed either one or two pulses of a static spatial 
contrast pattern. Each pattern was an independently generated band-pass noise image (24° diameter), 
used in prior studies of spatial encoding (11, 15), except that for the two-pulse stimuli, the two spatial 
patterns were identical. Each trial used one of thirteen distinct time courses (Figure 1A). The durations 
of the one-pulse stimuli and the ISIs of the two-pulse stimuli were the same: 0, 17, 33, 67, 134, 267, 
533ms, and each pulse in the 2-pulse stimuli was 134ms. The 0-ms one-pulse stimulus was a blank 
(mean luminance), and the two-pulse stimulus with 0 ISI was identical to the one-pulse stimulus of 
twice the length (267ms). Four participants were scanned, and data were binned into nine bilateral, 
eccentricity-restricted (2-10°) visual areas defined from a separate retinotopy scan. 

The fMRI data were analyzed in two stages. First, we extracted the amplitude (ß-weight) for each 
stimulus condition using a variation of the general linear model, “GLM denoise” (16), a technique that 
improves the signal-to-noise ratio by including noise regressors in the GLM. Second, we fitted the 
temporal pRF model to the GLM ß-weights, averaged across voxels within ROIs. 
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Figure 1. Experimental design and analysis. (A) fMRI. Participants were presented with one or two pulses of large field 
(24°) spatial contrast patterns. One-pulse stimuli were of varying durations and two-pulse stimuli were of varying ISI (with each 
pulse lasting 134ms). Nine visual field maps or visual field maps pairs were bilaterally identified for each participant (V1; V2; 
V3; hV4; VO-1/2; V3A/B; IPS-0/1; LO-1/2; TO-1/2). The temporal conditions were presented in random order, indicated by the 
white bars in the 13-column design matrix (one column per temporal condition). To analyze the data, we extracted a ß-weight 
for each temporal condition per area using a variant of the general linear model, GLM denoise. (B) ECoG. In the ECoG 
experimental, one 500ms pulse of a large field (22°) noise pattern (either white, pink or brown noise) was presented at the 
beginning of each 1s trial. We summarized the ECoG signal as the envelope of the whitened broadband response (60-200 
Hz), averaged across stimulus class, trials, and electrodes within the same retinotopically defined visual areas. 

2.2 Temporal summation in visual cortex is subadditive 

We tested the linearity of the fMRI BOLD signal in each visual area. To do so, we assume a time-
invariant linear system such that the BOLD amplitude (GLM ß-weight) is proportional to the total 
stimulus duration within the trial1. For example, the linear prediction is that a stimulus of duration 2t 
produces twice the amplitude as a stimulus of duration t, and the same amplitude as two-pulse stimuli, 
with total duration 2t (Figure 2A). This prediction is not borne out by the data. The response to a 
stimulus of length 2t is about 75% of the linear prediction in V1 and 50% in TO (Figure 2B, left panel). 
This failure of linearity is found in all visual areas measured, with temporal summation ratios below 0.8 
for all ROIs, and a tendency toward lower ratios in later areas (Figure 2C). 

                                                
1 Because the stimulus events are short (≤800 ms), and the hemodynamic response function (hRF) is low-pass (on the order 
of seconds), the convolution of the stimulus time course with a neural impulse response function, followed by the convolution 
of this output with an hRF, is approximately the same as summing the stimulus time course (to create a scaled impulse), 
followed by convolution of the impulse with the hRF. 
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Figure 2. Sub-linear temporal summation in visual cortex. (A) Linear temporal summation prediction. The sum of the 
response to two separate events (top) is equal to the response to the two events in the same trial, with or without a brief gap 
between them (bottom). (B) Sub-linear temporal summation. Gray dots are the measured responses to a 134-ms pulse, a 268-
ms pulse, and two 134-ms pulses, with either a 17-ms or 134-ms gap between them. Plots show the mean across subjects 
and 50% CI (bootstrapped across repeated scans within each subject). The green circles and dotted lines are the linear 
prediction based on the response to the single 134-ms pulse. For V1, the measured responses are less than the linear 
prediction except when there is a long gap. For TO, all responses are less than the linear prediction. (C) Temporal summation 
ratio. Temporal summation ratio is the response to a stimulus of length 2x divided by twice the response to a single pulse 
stimulus of length x, averaged across 5 stimulus pairs (e.g., 17 and 34ms, 34 and 68ms, etc.). Linear summation occurs when 
the temporal summation ratio is 1. Error bars represent the 50% CI (bootstrapped across scans). The temporal summation 
ratio is higher in early visual areas (~0.7 in V1-V3), and lower in later areas (between 0.5 and 0.65). The ROIs on the X-axis 
are arranged in order of increasing spatial pRF size at 5 deg eccentricity, as a proxy for order in the visual hierarchy. 

A further failure of linearity occurs for trials with two pulses and variable ISI: the response is larger 
when the ISI is longer, especially in V1, whereas the linear prediction is that the amplitudes are the 
same, and double the response to the one-pulse (Figure 2B, right). When the ISI is long, the response 
in V1 is close to the linear prediction made from the one-pulse stimulus. In TO, even with a long ISI the 
response is well below the linear prediction. This pattern, whereby the response to a second stimulus is 
reduced for short ISIs, and larger for longer ISIs, is often called adaptation and recovery (17, 18). For 
TO, the recovery time is longer than V1.  

2.3 The temporal subadditivity is captured by a compressive temporal summation model (CTS) 

We modeled the temporal subadditivity with a compressive temporal summation model (“CTS”), 
analogous to the compressive spatial summation model (CSS) used to predict fMRI responses to 
spatial patterns (11, 19). The model predicts the neuronal response by convolving the stimulus time 
course with a temporal impulse response function, and then passing the output through a power-law 
static non-linearity (Figure 3). The model is linear if the exponent equals 1 and subadditive if less than 
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1. Finally, we summed the time-varying neuronal prediction to derive a single value, which, when 
scaled, represents the predicted BOLD amplitude.  

 
Figure 3. Compressive temporal summation (CTS) model. The CTS model takes the stimulus time course for a trial as 
input (1 when the contrast pattern is present, 0 when it is absent). The input is convolved with an impulse response function 
parametrized by t1, to produce a linear prediction. The linear prediction is then point-wise exponentiated, (parameterized by e) 
to make the CTS prediction. Finally, the time-varying CTS prediction is summed and scaled (g) to predict the percent BOLD 
response. If e is 1, the CTS prediction is identical to the linear prediction. In this special case, the value of t1 has no effect on 
the predicted BOLD, since the output will always be proportional to the total stimulus duration. The CTS model was fit for each 
ROI by finding the values of t1, e, and g that minimized the squared error between the model predictions and the GLM ß-
weights. 

We compared the CTS model (fitted exponent) to a linear model (exponent fixed at 1) by measuring 
cross-validated accuracy. The CTS model is more accurate than the linear model for all areas (Figure 
4A). The linear model substantially underpredicts responses to short durations and overpredicts 
responses to long durations, whereas the CTS model does not. Further, the predictions of the linear 
model do not depend on ISI, whereas the CTS model correctly predicts that the response amplitude 
increases with longer ISI. The cross-validated predictions of the CTS model capture more than 90% of 
the variance of the left-out data for all 9 ROIs. This represents an improvement of 8-17% compared to 
the linear model. The improvement is more pronounced in later than early areas (LO/TO/IPS vs. V1-
V3).  
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Figure 4. CTS model fits to BOLD data across visual areas. (A) Data and predictions. BOLD responses to each temporal 
condition averaged across subjects are plotted as circles. The temporal conditions on the x-axis show increasing durations of 
one-pulse stimuli (0 to 533ms; left) and increasing ISI of two-pulse stimuli (0 to 533ms, right). Error bars show the 50% CI 
bootstrapped across repeated scans. Predictions for the linear (green) and CTS (purple) model fits are computed by leave-out-
one-condition cross-validation. Shaded regions represent the 50% CI in predictions across bootstraps (not visible for the linear 
fit because the CI is narrow). The cross-validated accuracy (R2) is higher for the CTS model in each area. (B) CTS model 
parameter estimates. The estimated exponent e is below 1 in each area and lower (more sub-linear) in later areas (~0.15, hV4-
IPS versus ~0.25, V1-V3ab). The time constant t1 is short in V1-V3. (C) Summary metrics. Two summary metrics of the CTS 
model reveal a pattern across ROIs. Rdouble is the ratio of the predicted response to a 200-ms pulse divided by twice the 
response to a 100-ms pulse. Rdouble is below 1 for all ROIs, indicating sub-additivity, and decreases along the visual hierarchy 
(V1-V3, ~0.67, LO-IPS, < 0.6). TISI is the length of ISI required for the response to two 100-ms pulses to approach the linear 
prediction.  TISI is short in the earlier areas (V1-V3, ~250 ms) compared to most of the later areas. See figure S1 for fits to 
individual subjects. In the TISI panel, the data for TO is outside the range of other areas and is plotted on the right y-axis. 

2.4 The CTS model fits capture systematic differences between areas 

The CTS model is parameterized by t1, e, and a gain factor, g. t1 is the latency to peak in the temporal 
impulse response function, and therefore is related to temporal summation window length; e is the 
exponent, and represents how compressive the temporal summation is. The exponent e is less than 1 
for all ROIs, and is smaller in later (hV4-IPS) than in earlier areas (V1-V3), consistent with the pattern 
found for spatial summation (11) (Figure 4b; see Figure S1 for individual subject fits). The same pattern 
was also found in a second experiment using identical temporal conditions but different spatial patterns, 
including noise stimuli and face images (Figure S2). A consequence of more compressive temporal 
summation is that the response amplitude varies less with minor changes in stimulus duration, just as 
greater compression of spatial summation predicts more tolerance to changes in size and position (11). 
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From the current fMRI data set, we did not observe systematic variation in t1. Our interpretation is that 
we do not have enough power to accurately fit t1 due in part to the coarse temporal resolution of fMRI. 
(See Figure S8A for CTS parameter recovery.) Because fitting a parameter that is not well-constrained 
by the data can affect the fit to other parameters, we re-fit the CTS model with t1 fixed at 0.05, 0.1, or 
0.2 s; in each case, e is below 1 for all ROIs, and lower in later areas than early areas, just as observed 
in the full model fit.  

To further examine the differences in temporal processing between ROIs, we summarized the CTS 
model in terms of two metrics that have more directly interpretable units: Rdouble and TISI (Figure 4b). 
Rdouble is the ratio between the CTS-predicted BOLD response to a 100-ms stimulus and a 200-ms 
stimulus. Lower Rdouble means more compressive temporal summation. Later visual areas have lower 
Rdouble than earlier ones. TISI is the minimal duration separating two 100-ms pulses such that the 
response to the paired stimuli is close to the linear prediction from the single stimulus. Similar to 
previous measurements at longer time scales (20, 21), the recovery time is longer for later than earlier 
visual areas. 

In a separate analysis, we asked whether model parameters differed as a function of eccentricity, as 
suggested by differential temporal sensitivity in V1 between fovea and periphery (22). We did not find 
reliable differences for parafovea (2-5 deg) versus periphery (5-10 deg) (Figure S3). This may be due to 
the limited range of eccentricities; as Horiguchi et al (22) found the biggest difference in temporal 
sensitivity between fovea and the far periphery (20-60 deg), whereas we only tested out to 10 deg.  

2.5 Temporal dynamics of normalization 

There are at least two potential sources of subadditivity contributing to the BOLD response: 
subadditivity of the neuronal response with respect to the stimulus time course, and subadditivity of the 
fMRI amplitude with respect to the neuronal response. To evaluate additivity of the neuronal response 
in isolation, and to characterize the neuronal response at a finer temporal scale, we re-analyzed data 
from a published ECoG experiment (22) (Figure 1B). We analyzed data from 45 electrodes in visual 
cortex (Figure S4, ECoG subject 1; Figure S7, ECoG subject 2). In each trial, a static texture (22°-
diameter) was presented for 500ms followed by a 500-ms blank. We analyzed trials with noise patterns 
of 1/fn amplitude spectra, with n=0, 1, or 2 (white, pink, or brown noise). We summarized the ECoG 
signal as the time-varying envelope of the broadband response (60-200 Hz), averaged across stimulus 
class, trials, and electrodes within visual areas, as the broadband response is a correlate of the 
multiunit spiking activity (23). Because there were fewer electrodes in anterior ROIs than in V1-V3, we 
grouped the anterior electrodes into lateral, ventral, and dorsal regions. 

Across all visual areas, the time course of the ECoG broadband signal consisted of a large transient 
power increase, followed by a lower sustained response (e.g., Figure 5A, left). This transient/sustained 
pattern is similar to that observed for electrophysiological spiking data ((e.g., 24, 25, 26)). The CTS 
model predictions fail to capture the sharp onset transient (Figure 5A, middle panels). To account for 
the temporal pattern of the ECoG response, we implemented a dynamic variation of the CTS model, 
“dCTS”. 
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Figure 5. Dynamic CTS (dCTS) model. (A) The broadband envelope to ECoG data (left) contains an early transient and then 
a lower level sustained response, lasting until after stimulus offset (example response from a V2 electrode for a 500-ms 
stimulus). The linear and CTS predictions (middle panels; exponent 1 and 0.2, respectively) do not capture the transient-
sustained pattern observed in the data. A CTS model with a dynamic rather than static nonlinearity (dCTS; right panel) 
qualitatively matches the data. (B) DCTS model.  The first step of the dCTS model computation is the same as the CTS model 
– linear convolution of the stimulus time course with an impulse response function (parametrized by t1). The dCTS model uses 
divisive normalization rather than a static power law to achieve temporal compression. The numerator is the linear response 
time course raised point-wise to a power n, assumed to be greater than 1. We use the symbol n for the dCTS exponent rather 
than e to indicate that the exponent here is greater than 1 (expansive), whereas in the CTS model e is less than 1 
(compressive). This predicted response is then divisively normalized, with the normalization being the sum of a semi-
saturation constant (s), and a low-pass filtered linear response (parametrized by time constant t2), each raised to the same 
power n. The low-pass exponential causes the normalization to be delayed, so that the early response is large (un-
normalized), reflecting temporal summation, and the later response is reduced, reflecting adaptation or normalization. This 
pattern matches the transient-sustained pattern in the time series data. 

The dCTS model, like the CTS model, is linear-nonlinear. But in contrast to CTS, in which the non-
linearity is applied uniformly in time as a power law, the dCTS non-linearity was implemented as a 
divisive normalization, with the normalization signal low pass-filtered (Figure 5B). The low-pass filtering 
causes the response reduction to lag the linear response, producing an onset transient. This 
feedforward model with delayed normalization approximates a feedback normalization proposed by 
Heeger (27). The numerator contains the linear (un-normalized) response parameterized by t1. The 
denominator contains the sum of a semi-saturation constant (s) and the low-passed linear response 
(parameterized by t2). All three terms are raised to the power n. Following stimulus onset, the response 
increases rapidly due to the exponent n, and then reduces due to normalization (controlled by s and n). 
The time constant t2 controls the time scale of normalization. Because we are modeling the population 
response summed via the ECoG electrode, we treat the normalization pool (denominator) and the 
response pool (numerator) as the same, as previously assumed in spatial models of the fMRI signal 
(11). 
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Figure 6. Dynamic CTS model fits to ECoG data across visual areas. (A) Model fits. The dCTS model fits (red) accurately 
describe the ECoG broadband time course (black) in all visual areas. Due to lower numbers of electrodes in ROIs beyond V3, 
anterior ROIs are grouped into lateral (LO-1/2), ventral (hV4, VO-1/2), and dorsal (V3A/B, IPS-0-4). Data are averaged across 
trials and electrodes within ROIs, and models are fit to the average data. Each trial had a 500-ms stimulus (gray box) followed 
by a 500-ms blank. Plots show the mean and 50% CI for data (bootstrapped 100 times across electrodes within an ROI), and 
the model fit averaged across the 100 bootstraps. The number of electrodes per ROI and the 50% CI of model accuracy (r2 
per bootstrap) are indicated in each subplot. (B) DCTS model parameters. t1, t2, n, and s. (C) Re-parameterized dCTS model. 
The model fits were summarized by two derived constants, Tpeak, Rasymptote. Tpeak is the duration from the onset of a sustained 
stimulus to the peak response. Tpeak is longer for later ROIs, ranging from ~115ms (V1/V2) to ~160ms (lateral and dorsal 
ROIs). Rasymptote is the level at which the response asymptotes for a sustained stimulus, as a fraction of the peak response. A 
smaller Rasymptote indicates a greater extent of normalization. Rasymptote is largest in V1 (~0.18) and declines in extrastriate areas. 

The dCTS model, fitted to the ECoG broadband time series, captures the main features of the temporal 
dynamics in all ROIs - an initial transient followed by a sustained response (Figure 6A) – explaining 
93% to 99% of the variance in the time courses. In some electrodes, especially those with peripheral 
receptive fields (Figure S4), there is a small positive deflection 100-200ms after stimulus offset. This is 
consistent with the finding that peripheral V1 has a relatively greater sensitivity to visual transients (28).  
This feature of the data is not captured by our model. A variant of the model, in which the linear impulse 
response function is biphasic, predicts the offset transient (Figure S5). Because the offset response is 
not evident for most electrodes, we use the monophasic response function for primary analyses. 

Although the time-courses in all ROIs follow a transient-sustained pattern, they differ in detail. These 
differences are reflected in model parameters (Figure 6B). This is clearest for the time-scale of the 
impulse response function, t1, which generally increases along the visual hierarchy, from ~90ms (V1) to 
~150ms in later areas. The parameters n, s, and t2, do not follow as clear a pattern. However, the 
relationship between a single model parameter and the predicted response depends on the other 
parameters. For example, the level of the sustained response increases with n and decreases with s. 
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To clarify the effect of the fitted parameters on the resultant time series, we derived two summary 
metrics for each model fit (Figure 6C): For a sustained stimulus, the model predictions were 
summarized by the time to peak (Tpeak) and the asymptotic response amplitude (Rasymptote). A longer 
Tpeak indicates a longer temporal summation window, and increases slightly from V1 to V3, and 
substantially in more anterior areas. A smaller Rasymptote corresponds to a lower sustained response, 
indicative of more normalization. Rasymptote is highest in V1, and decreases substantially in extrastriate 
areas.  

In a separate analysis, we assessed the effect of our signal processing pipeline on the parameter 
estimates. Because the broadband envelope is derived from a modulating signal, its temporal 
resolution is limited by the period of the oscillations. Simulations show that this has a small but 
measurable effect on parameter estimates of the dCTS model, with no change in the general pattern 
of results (Figure S6). 

2.6 Integration of fMRI and ECoG 

The fMRI and ECoG data sets were fit with different variants of the CTS model. The two variants were 
chosen for practical reasons – the slow time scale of the fMRI response limits our ability to resolve the 
dynamics of the nonlinearity, and the static non-linearity used to fit the fMRI data is a poor fit to the 
ECoG time course. Here we asked how accurately the dCTS model, fit to ECoG data, predicts the fMRI 
responses. In each ROI, the dCTS parameters derived from ECoG data were used to generate time-
course predictions for the 13 distinct temporal stimuli used in the fMRI experiment. We converted these 
time courses to predicted BOLD amplitudes assuming one of two fMRI transforms: either linear, which 
was shown to be a reasonable approximation for relatively long ISIs (a few to many seconds) (29-31), 
or a square root transform, as recently proposed (32) (Figure 7). Because the dCTS model parameters 
were derived from the ECoG data alone, there were no free parameters other than a gain factor. 
Although the models were solved with different participants, different stimuli, and a different instrument, 
they nonetheless accurately fit the BOLD data, with r2 ranging from 67% to 94% for the linear fMRI 
transform, and 80% to 96% for the square root transform. For every ROI, the square root transform was 
slightly more accurate than the linear transform. The most accurate fits for both transforms are for V1-
V3.  
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Figure 7. DCTS model fit to ECoG data predicts fMRI responses. (A) Predicting BOLD amplitude from dCTS models fitted 
to ECoG data.  We predicted the fMRI responses using dCTS model parameters fitted to ECoG data. We used two types of 
transforms to relate the predicted ECoG time series to a percent BOLD response: 1. Linear transform. We summed the 
predicted ECoG time series for each temporal condition, and fit a gain factor to convert the sums to percent BOLD responses. 
2. Sublinear transform. Same as linear transform, except that the predicted ECoG response was point-wise square-rooted 
prior to summing. Data are from V1. (B) Predictions across ROIs.  Using parameters fitted to the ECoG experiment only, the 
dCTS predictions (lines) are well matched to the fMRI ß-weights (circles). The red and black curves represent the linear and 
sublinear transform predictions. In each ROI, the sublinear transform fits the data slightly better than the linear transform. Data 
from V1 are replotted from panel A. 

3. DISCUSSION 
3.1 Summation and adaptation in visual cortex  

We report subadditive temporal summation throughout human visual cortex. Across 9 areas, responses 
to long stimuli were less than the linear prediction from briefer stimuli, with more pronounced sub-
additivities in areas anterior to V1-V3. We captured this effect in a new temporal receptive field model, 
with a static non-linearity to explain the fMRI amplitude and a dynamic non-linearity to explain the 
ECoG time course. The dynamic implementation is more general, as it accurately predicts responses in 
both modalities. Nonetheless, the simpler instantiation of the model (CTS) is adequate to make highly 
accurate predictions for the fMRI data (cross-validated R2 ~ 90%); an adequate model can be useful 
and is commonly employed in science and engineering, even when the model is known to fail for 
certain conditions (which all models do) (12, 33).  

The two variants of the model, CTS and dCTS, account for two phenomena: first, areas accumulate 
information over time (summation, modeled as temporal convolution), and second, response levels 
reduce from prolonged or repeated exposures (adaptation, modeled with an exponent or divisive 
normalization). Both phenomena, and the corresponding model parameters, vary systematically across 
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the visual hierarchy: the summation window lengthens and the effect of adaptation grows more 
pronounced in later compared to earlier visual areas. 

3.2 Subadditivities in fMRI  

We observed temporal subadditivities for fMRI and ECoG and therefore these effects cannot be solely 
due to hemodynamic nonlinearities. For the fMRI model fits, we assumed a linear transformation from 
the neural to BOLD response, as proposed previously (29, 31). A recent alternative proposal is a 
square root transformation (32). We compared fMRI predictions from ECoG models using linear and 
square root transforms, and found both fit well, with slightly better fits for the square root transform. 
There are numerous differences between the ECoG and fMRI experiments so we do not consider this a 
compelling reason to reject the linear assumption. If we do assume the square root transform as the 
last stage of the CTS model (conversion to fMRI), the CTS model parameters would differ, with 
exponents between 0.2 and 0.5, rather than 0.1 and 0.25, still consistent with significant temporal 
subadditivities across visual cortex. Thus, the fMRI results, as well as the ECoG results, provide strong 
evidence for temporal nonlinearities in the neural response. 

3.3 Subadditivities in Temporal Summation 

Prior literature has characterized temporal subadditivities in several ways. For example, the fMRI 
response to a long presentation of a reversing contrast pattern is less than the prediction from a short 
presentation (29); the fMRI response to contrast patterns is larger for short ISIs than long ISIs (34); the 
response of V1 neurons to a steady flash is not predicted by its temporal frequency tuning and 
decreases over time (24); the response of a neuron to a repeated stimulus is less than the response to 
the first stimulus (17, 25). Our model accounts for effects such as these with a small number of 
components – temporal summation (convolution) and a normalization that depends on response 
history. By formulating a quantitative, forward model, we can then ask whether a phenomenon is 
unexpected, requiring additional explanation, or is already predicted by the model. For example, 
repetition suppression and fMRI adaptation at a long time-scale (several seconds (35, 36)) might not be 
predicted by our model, and hence may be distinct from the short-term adaptation effects we observe.  

A phenomenon as ubiquitous as subadditive temporal summation (adaptation) is likely to be a critical 
part of neural information processing (37). For example, adaption may serve to prioritize new 
information or act as a gain control (38). An interesting consequence of subadditive temporal 
summation is that responses to stimuli of different durations are more similar to one another than they 
would be if summation were linear. This may be thought of as a form of duration tolerance or timing 
tolerance, analogous to size and position tolerance in spatial encoding, which are increasingly 
prominent in higher visual areas (11).   

3.4 Multiple Scales of Temporal Dynamics 

Our finding that temporal windows lengthen across the visual hierarchy is consistent with prior work 
measuring temporal dynamics at a larger scale. For example, temporal receptive window length was 
studied by measuring response reliability to scrambled movie segments (39, 40): In visual cortex, 
responses depended on information accumulated over ~1s, whereas in anterior temporal, parietal and 
frontal areas the time scale ranged from ~12-36s. Similarly, in event related fMRI, the influence of prior 
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trials was modeled with an exponential decay, with longer time constants in later areas: Boynton et al 
(29) reported a time constant of ~1s in V1 for contrast reversing checkerboards, and  Mattar et al (21), 
using static face images, reported short time constants in V1 (~0.6s) and much longer constants in face 
areas (~5s). In macaque, the timescale of fluctuations in spike counts was longer for areas higher in the 
hierarchy compared to sensory areas (41).  

Analyzing visual information at multiple temporal scales has benefits. First, accumulating information in 
the past is necessary for predicting the future, and a hierarchy of temporal windows may thus be useful 
for predictions over different time-scales (42). Second, signal-to-noise ratios are optimized when the 
temporal scale of the analysis is matched to the temporal scale of the event of interest (i.e., a “matched 
filter”); different visual areas extract information about different image properties, which in turn are likely 
to have different temporal (or spatiotemporal) distributions in natural viewing. Conversely, the time-
scale of cortical areas may set the time-scale of integration for behavior. For example, words, faces, 
and global motion patterns are integrated over periods 5-10 times longer than textures and local motion 
patterns (43, 44); modeling the time-scale of cortical areas critical for these tasks may help explain 
these large behavioral effects.  

3.5 Models of Temporal Dynamics 

Several models have been proposed to account for temporal dynamics (Figure S9). For example, 
psychophysical temporal sensitivity (45-47) and fMRI responses in V1 (28) and extrastriate cortex (48) 
can be accounted for by a model with two temporal frequency channels, sustained and transient. This 
model also captures some features of the ECoG broadband response, but does not match the time 
series in detail for our 500-ms stimuli (Figure S9). For example, it does not predict a gradual decline in 
signal amplitude following the peak response. The dCTS model has a different form, which was 
motivated to capture important phenomena governing temporal dynamics, the timescale of summation 
and the degree of subadditivity. The model components accounting for these phenomena are grounded 
in canonical computations used to model visual cortex: linear filtering, exponentiation, and 
normalization (49-51). The two temporal channels model contains filtering and exponentiation but not 
normalization. A potential way to assess a specific role for normalization would be an experiment with 
two stimuli superimposed spatially but with different temporal frequencies: The two-channel model 
would predict summation, but normalization would predict subadditivity of fMRI responses or frequency 
tagged MEG or EEG responses. On the other hand, a model with two temporal channels may be useful 
for capturing differential time courses to stimuli that preferentially drive magno vs parvo pathways, or for 
differences in foveal vs peripheral sensitivity (28, 48); hence the two types of models are 
complementary.  

The dCTS model we propose is input-referred (12), i.e. a computational description of the output 
specified in terms of the visual stimulus, rather than a model of how the dynamics arise. Hypotheses 
about circuit mechanisms giving rise to temporal dynamics in cortex have been proposed (52, 53); 
these dynamical systems models predict differences in time scales across cortical hierarchies, in 
agreement with empirical results, though they don’t account for the specific shape of neural temporal 
responses (e.g., compare Figure 3A in [ (53)] to Figure S9). Another way to account for the different 
time scales across visual areas would be a cascade model, in which the dCTS is a canonical 
computation, with the output of one stage used as the input to the next stage, with the same model 
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parameters used in each stage. Such a cascade model can account for some of the properties in later 
visual areas, such as more subadditive temporal summation.   

3.6 Generalization and future directions 

The dCTS model we fit accurately predicts responses across multiple visual field maps using two 
different types of measures and many stimulus temporal profiles. An important test of a model is 
whether it can make informative predictions for conditions it was not designed to account for. The fact 
that the dCTS model, fit only to ECoG data from 500-ms stimuli, predicts the fMRI responses for many 
different temporal patterns is an example of successful quantitative generalization. As a test of 
qualitative generalization to conditions that differ even further from those the model was designed for, 
the dCTS model predicts different time course shapes as a function of stimulus contrast, similar to 
multi-unit activity (MUA) observed in human visual cortex (44) (Figure 8A). One reason that our model, 
developed to account only for temporal patterns, generalizes to contrast is that the model is comprised 
of elements fundamental in sensory processing (filtering and normalization). Finally, the dCTS model 
predictions for temporally white noise stimuli have autocorrelation functions that decline with temporal 
lag, with slower declines for later visual areas, consistent with network models of macaque cortex (53).  

 
Figure 8. Applications of dCTS models. (A) dCTS model predictions as a function of contrast.  We plot the dCTS time 
course for stimuli whose contrast ranged from 0.1 to 1.0. The input time course was a 500-ms boxcar with the height equal to 
the contrast. For high contrast stimuli, there is an initial sharp transient, followed by a lower sustained response. For lower 
contrast stimuli, there is little to no transient response. This is because a lower contrast is effectively the same as a higher s 
and therefore less normalization. This is qualitatively similar to MUA results from human V1 (inset, from (44)). The dCTS 
model parameters were similar to our V1 fits (0.1, 0.1, 2, 0.1 for t1, t2, n, s, respectively). (B) Temporal scale of dCTS 
autocorrelation. Autocorrelation functions were computed for simulated dCTS response time courses (insets) to temporal white 
noise inputs (uniform randomization on [0, 1]). The autocorrelation functions (dashed lines) were fit by a declining exponential 
(solid lines). (C) Time constants of fitted exponentials from B. The time constants are short in early visual areas, and longer in 
later areas, similar to the resting state data and network models from (41, 53). ROI labels as in Figure 6. 

However, just as with spatial pRF models, it is likely that our model will fail for certain tasks or stimuli 
(12). For example, sustained attention to the stimulus (44), presence of a surround (43), non-separable 
spatiotemporal patterns (motion), and stimulus history of many seconds or more (20), can all affect the 
time course of the response, phenomena not captured by our current model. However, a model with 
these limits is still quite useful: By formulating a forward model of responses to large-field contrast 
stimuli during passive viewing, we provide a quantitative benchmark that can be used to assess how 
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other factors influence response dynamics, and a platform upon which to extend the model to new 
stimulus or task features. An important goal for future work is to develop a space-time model that 
simultaneously accounts for nonlinearities in spatial (11) and temporal summation.  

METHODS  
4.1 fMRI procedure 

Participants 

Data from four experienced fMRI participants (2 males, age range 21- 48, mean age 31) were collected 
at the Center for Brain Imaging (CBI) at NYU. All participants had normal or corrected-to-normal visual 
acuity. The experimental protocol was approved by the University Committee on Activities Involving 
Human Subjects, and informed written consents were obtained from all participants prior to the study. 
Each subject participated in one 1.5-hour session for the main experiment, and an additional 1 hour 
session for visual field map identification and high-resolution anatomical volumes.  

Visual Stimuli 

Stimuli. In each trial, we used an independently generated large field (24° diameter) band-pass noise 
pattern (centered at 3 cycles per degree). The pattern was chosen because it was previously shown to 
be effective in eliciting responses in most visual areas (15). (See ref [ (15)] for details on stimulus 
construction). In each trial of the supplementary fMRI experiment, participants viewed either an 
independently generated pink noise (1/f amplitude spectrum, random phase) large field image (24° 
diameter, 768 x 768 pixels), or a face image embedded in the pink noise. Stimulus generation, 
presentation and response recording were coded using Psychophysics Toolbox (54, 55) and vistadisp 
(https://github.com/vistalab/vistadisp). We used a MacBook Air computer to control stimulus 
presentation and record responses from the participants (button presses) during the experiment.  

Display. Stimuli were displayed via an LCD projector (Eiki LC_XG250; resolution: 1024 x 768 pixels; 
refresh rate: 60 Hz) onto a back-projection screen in the bore of the magnet. Participants, at a viewing 
distance of ~58 cm, viewed the screen (field of view, horizontal: ~32°, vertical: ~24°) through an angled 
mirror. The images were confined to a circular region with a radius of 12º. The display was calibrated 
and gamma corrected using a linearized lookup table.  

Fixation task. To stabilize attention level across scans and across subjects during the main experiment, 
all participants were instructed to do a one-back digit task at the center of fixation throughout the 
experiment. The digit (0.24° x 0.24°) was presented at the center of a neutral gray disk (0.47° 
diameter). Within a scan, each digit (randomly selected from 0 to 9) was on for 0.5 second, off for 0.167 
second before the next digit appeared at the same location. Participants were asked to press a button 
when a digit repeated. Digit repetition occurred around 2-3%, with no more than two identical digits 
being presented successively. To reduce visual adaptation, all digits alternated between black and 
white, and on average participants pressed a button every 30 seconds. During the retinotopy task, the 
fixation alternated pseudo-randomly between red and green (switches on average every 3s), and the 
subject pressed a button to indicate color changes. 
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Experimental Design 

We used a randomized event-related experimental design to prevent subjects from anticipating the 
stimulus conditions. An event is a stimulus presented according to one of thirteen distinct time courses 
(< 800 ms in total), either a single pulse with variable duration or a double pulse with fixed duration and 
variable inter-stimulus interval (ISI). Durations and ISIs were multiples of the monitor dwell time (1/60 
s). Each pulse in the double-pulse stimuli lasted 134ms. The 0-ms stimulus was a blank (zero-contrast, 
mean luminance, and hence identical to the preceding and subsequent blank screen between stimulus 
events). Each participant completed seven scans, and within a scan, each temporal event repeated 4 
times. A temporal event started with the onset of a pattern image, and the inter-trial interval (stimulus 
plus subsequent blank) was always 4.5 seconds. For experiments with two pulses, the two noise 
patterns were identical. The design was identical for the supplementary fMRI experiment, except that 
each time course repeated three times per scan, and each participant completed 12 scans.  

MRI Data Acquisition 

All fMRI data were acquired at NYU Center for Brain Imaging (CBI) using a Siemens Allegra 3T head-
only scanner with a Nova Medical phased array, 8-channel receive surface coil (NMSC072). For each 
participant, we collected functional images (1500 ms TR, 30 ms TE, and 72-degree flip angle). Voxels 
were 2.5mm3 isotopic, with 24 slices. The slice prescription covered most of the occipital lobe, and the 
posterior part of both the temporal and parietal lobes. Images were corrected for B0 field inhomogeneity 
using CBI algorithms during offline image reconstruction.  

In a separate session, we acquired two to three T1-weighted whole brain anatomical scans (MPRAGE 
sequence; 1mm3). Additionally, a T1-weighted “inplane” image was collected with the same slice 
prescription as the functional scans to aid alignment of the functional images to the high-resolution T1-
weighted anatomical images. This scan had an inplane resolution of 1.25 x 1.25 mm and a slice 
thickness of 2.5 mm. 

Data Preprocessing and Analysis 

Data preprocessing. We co-registered and segmented the T1-weighted whole brain anatomical images 
into gray and white matter voxels using FreeSurfer’s auto-segmentation algorithm 
(surfer.nmr.mgh.havard.edu). Using custom software, vistasoft (https://github.com/vistalab/vistasoft), 
the functional data were slice-time corrected by resampling the time series in each slice to the center of 
each 1.5s volume. Data were then motion-corrected by co-registering all volumes of all 7 scans to the 
first volume of the first scan. The first 8 frames (12 seconds) of each scan were discarded for analysis 
to allow longitudinal magnetization and stabilized hemodynamic response. 

GLM analysis. We used a variant of the GLM procedure—GLM denoise (16), a technique that improves 
signal-to-noise ratios by entering noise regressors into the GLM analysis. Noise regressors were 
selected by performing principle component analysis on voxels whose activities were unrelated to the 
task. The optimal number of noise regressors was selected based on cross-validation R2 improvement. 
The input to GLM denoise was the pre-processed EPI data and a design matrix for each scan (13 
distinct temporal profiles x number of time points per scan), and the output was ß-weights for each 
temporal profile for each voxel, bootstrapped 100 times across scans. For analysis, we normalized all 
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13 ß-weights per voxel by the vector length and selected a subset of voxels (see Voxel selection). We 
then averaged the ß-weights for a given temporal condition from the first bootstrap across voxels within 
each ROI and across all subjects to get a mean; this gives one estimate of the mean response per ROI 
for a given condition. This was repeated for each condition, and then repeated for each of the 100 
bootstraps, yielding a matrix of 100 x 13 for each ROI (bootstraps by temporal condition). 

ROI identification. We fitted a linear pRF model (10) to each subject’s retinotopy data (average of two 
scans). We made an initial guess of ROI locations by first projecting the maximum likelihood 
probabilistic atlas from Wang et al (56) onto the cortical surface. Then we visualized eccentricity and 
polar angle maps derived from the pRF model fits and modified ROI boundaries based on visual 
inspection. For each participant, we defined nine bilateral ROIs (V1, V2, V3, hV4, VO-1/2, LO-1/2, TO-
1/2, IPS-0/1). 

Voxel selection. All analyses were restricted to voxels that satisfy the following three criteria. First 
voxels be must located within 2-10° (eccentricity) based on the pRF model. Second, voxels must have 
positive bootstrapped ß-weights (averaged across bootstraps) for all non-blank temporal conditions. 
Third, voxels must have > 3% GLM R2. Voxels that satisfy all criteria were pooled across subjects, and 
the group average (bootstrapped) ß-weights were analyzed and plotted. 

4.2 ECoG Procedure 
We re-analyzed previously published ECoG data (22).  

Preprocessing. The data were pre-processed as in the original paper. In brief, electrodes that had large 
artifacts or epileptic activity, as identified by the neurologist, were excluded from analysis. From the 
remaining electrodes, we re-referenced the time series to the common average, and then down 
sampled the data from the recorded frequency 3052/1528 Hz (Subject 1/Subject 2) to 1,000 Hz.  

Trial structure.  At the beginning of each 1-second trial, a large field (22°) noise image was randomly 
selected from one of 8 image classes. Several of these image classes were chosen for studying 
gamma oscillations in the original paper, which was not the purpose of this study. For this study, we 
analyzed data from 3 of the 8 image classes, those that were most similar to the noise stimuli in the 
fMRI experiment:  white, pink, and brown noise (amplitude spectra proportional to 1/f0, 1/f1, 1/f2). Each 
image was presented for 500ms followed by a 500ms blank. We analyzed data in 1200 ms epochs, 
beginning 200 ms prior to stimulus onset and ending 500 ms after stimulus offset.  

Broadband envelope. We computed the time varying broadband envelope in several steps, as follows. 
First, we band-pass filtered the time series in 12 adjacent 10-Hz bins from 80 Hz to 200 Hz (80-90 Hz, 
90-100 Hz, etc) using a Butterworth filter (passband ripples < 3 dB, stopband attenuation 60 dB). For 
each filtered time series, we computed the envelope as the magnitude of the analytic function (Hilbert 
transform). We then normalized the envelope of each bin by dividing by the variance, so that each 
envelope had a variance of 1. We normalized the variance to compensate for the fact that the power in 
field potentials declines with frequency. We then summed the 12 envelopes to derive a single, time-
varying broadband envelope. Finally, we defined the baseline as the average value of the envelope in 
the 200 ms prior to stimulus onset and subtracted this baseline value from the time series at all points. 
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Broadband units. Because of the normalization of the 12 bands, the broadband power is the sum of 12 
z-scores. So, for example, a stimulus-driven power increase of 12 means an average increase in power 
of 1-zcore per each of the 10-Hz frequency bands. 

Electrode selection. We selected all electrodes located in identifiable visual areas based on separate 
retinotopy scans, and whose stimulus-triggered broadband response, averaged across trials, reached 
at least a power of 3 (see broadband units, above). 

4.3 Temporal pRF Models 
We used three variants of a temporal pRF model, one linear and two non-linear, to predict neuronal 
summation measured using fMRI and ECoG. All model forms take the time course of a spatially uniform 
contrast pattern as input (Tinput), and produce a predicted neuronal response time course as output. To 
predict the fMRI data (BOLD), we summed the predicted time course within a trial (< 1 s) to yield one 
number per temporal condition. These numbers were compared to the fMRI ß-weights for model fitting 
(see below). For ECoG data, the predicted time course was compared directly to the broadband time 
series for model fitting. 

Models 

Linear model. The linear model prediction is computed by convolving a neuronal impulse response 
function (IRF) with the stimulus time course (Tinput), and scaling by a gain factor (g) 

𝑅"#$%&' = 𝑔	 𝐼𝑅𝐹	 ∗ 𝑇#$/01  

The time course is then summed for the fMRI predictions (plus an error term, e): 

𝐵𝑂𝐿𝐷"#$%&' = 𝑔	 𝐼𝑅𝐹	 ∗ 𝑇#$/01 + 𝑒 

For the IRF, we assumed a gamma function, parameterized by 𝜏9, of the form, 

𝐼𝑅𝐹 = 𝑡 ∗ 	exp −𝑡/𝜏9  
Because the IRF was assumed to have unit area, the specific shape of the IRF has no effect on the 
predictions, and the prediction reduces to: 

𝐵𝑂𝐿𝐷"#$%&' = 𝑔 𝑇#$/01 + 𝑒 

and the only value solved for is the gain factor. We did not fit the linear model to ECoG data because 
the linearly predicted time courses clearly differ from broadband traces. 

Compressive summation model (CTS). To compute the CTS predicted neuronal response, we first 
computed the linear response by convolving an IRF (gamma function with variable time to peak t1) with 
an input stimulus time course. Then an exponent e is applied point-wise to the predicted linear output.  

𝑅@AB = 𝑔	 𝐼𝑅𝐹(𝜏9) 	∗ 𝑇#$/01
E 

To fit the CTS model to the fMRI data, we again summed the predicted response time series: 

𝐵𝑂𝐿𝐷@AB = 𝑔	 𝐼𝑅𝐹(𝜏9) 	∗ 𝑇#$/01
E
+ 𝑒 
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and solved for t1, e, and g. We did not fit the CTS model to ECoG broadband traces because CTS-
predicted neuronal response differs from the measurements qualitatively.  

Dynamic compressive temporal summation (dCTS). This variant of the CTS model implemented the 
compressive nonlinearity with a divisive normalization rather than a compressive power law. The 
numerator contains the linear neuronal response (same computation as the linear part in CTS). The 
denominator is the sum of two terms, a semi-saturation constant (s) and an exponentially filtered (low-
pass) linear response. The rate of the exponential decay is determined by a parameter t2. All three 
terms (one in the numerator, two in the denominator), are raised to the power n, assumed to be greater 
than 1. 

 

We fit the 4 parameters as well as a gain factor, g, to the ECoG broadband time series. To predict the 
fMRI response from the dCTS model (Figure 7), we used the parameters fitted from ECoG data for 
each ROI, generated a neuronal time course for each of the 13 distinct temporal profiles from the fMRI 
experiment. Then we either summed each predicted time course (linear assumption) or point-wise 
square-rooted the time course and then summed, and finally scaled the sum by a gain factor.  

Parameter estimation 

CTS model for fMRI. Models were fit in two steps, one to obtain seed parameters, and one to fit 
parameters. 

In the first step, we obtain seed values for t1 and e for each ROI. To do so, we generated 1000 seeds 
by randomly selecting t1 from [0.01 1] and e from [0, 1]. These were then used to make 1000 sets of 
model predictions for the 13 temporal stimuli. For each ROI, the 1000 sets of model predictions were 
compared to the 13 ß-weights. Using linear regression, we then derived the gain factor, g, and the 
variance explained for each of the 1000 sets of predictions. The model parameters t1, e, g were 
averaged from all models with variance explained greater than 95%. This gave us seeds for the three 
parameters for each ROI.  

We then did a search fit using Matlab’s fminsearch, 100 times per ROI, using the 100 sets of 
bootstrapped ß-weights, and the seeds as derived above. The search finds the parameters which 
minimize the squared error between predicted and measured ß-weights. This gave us 100 estimates of 
each model parameter for each ROI, which we summarized by the median and 50% confidence 
interval.  

Linear model for fMRI. The linear model does not require a search or seeds. Instead, we fit the 100 
bootstrapped data sets per ROI by linear regression, giving us 100 estimates of the gain factor, g, per 
ROI.  

dCTS model for ECoG. We again used a two-stage approach to fitting the dCTS model, first to obtain 
seeds and then to estimate parameters. For each ROI, we averaged the broadband envelope across 
electrodes and trials, yielding one time course per ROI.  We then generated 1000 model predictions by 

RdCTS =
[Rlinear (τ1)]

n

σ n + [Rlinear (τ1)∗exp(τ 2 )]
n
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randomly selecting each parameter: t1 from [0.01, 1],  t2 from [0.01, 1], n from [0.5, 5], and s from [0.01, 
0.5]. Using linear regression on the ECoG data, we derived the gain factor, g, and the variance 
explained for each of the 1000 predicted time series. For each ROI, the sets of parameters that 
generated reasonably accurate model predictions ( > 80% variance explained) were averaged and 
served as the seed for the search fit.  

For the search fit, we did 100 bootstraps per ROI over the electrodes in that ROI. For each of the 100 
bootstrapped time courses per ROI, we used fminsearch to find the parameters that minimized the 
squared error between the predicted and observed time series. In addition to the four parameters 
above, we included a nuisance shift parameter, which delays the onset of the response. In principle, 
this delay is important, since the time at which the signal from the stimulus reaches cortex is delayed, 
and the delay varies across visual field maps, and could be as high as 50-150ms. However, the 
impulse response function includes a slow ramp, and the broadband envelope extraction contains a 
small amount of blur. Hence in practice, the shifts were quite small (< 10 ms), and not informative about 
the latency of neuronal response.  

Model accuracy 

fMRI experiment. For the fMRI experiment, we compared model accuracy of the CTS and the linear 
model. Because the models have different numbers of free parameters, it is important to obtain an 
unbiased estimated of model accuracy, which we did by leave-one-out cross validation. For each ROI, 
and for each of the 100 bootstrapped sets of ß-weights, we fit 13 linear models and 13 CTS models by 
leaving out each of the 13 temporal stimuli. For each bootstrap, we thus obtain 13 left-out predictions, 
which were compared to the 13 ß-weights by coefficient of determination, R2: 

 
This yielded 100 R2’s per ROI, and we summarized model accuracy as the median and 50% 
confidence interval derived from these values.  

For the dCTS model fit to the ECoG data, there was only one temporal condition, and no model 
comparison, so we did not cross-validate the model fits. Instead, we summarized model accuracy as 
the variance explained, r2, the square of the Pearson-correlation coefficient r.  

Note that the coefficient of determination, R2, is bounded by [-¥, 1], as the residuals between model 
and data can be larger than the data. In contrast, r2 is bounded by [0, 1].   

Public Data Sets and Software Code 
To ensure that our computational methods are reproducible, all data and all software will be made 
publicly available via an open science framework site, https://osf.io/v843t/. The software repository will 
include scripts of the form trf_MakeFigure2 to reproduce figure 2, etc., as in prior publications (57).  

  

R2 = 100 × 1−
(MODEL − DATA)2∑

DATA2∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/108639doi: bioRxiv preprint 

https://doi.org/10.1101/108639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Page 23 of 36 

Acknowledgements 
We thank Dora Hermes for helpful discussion and for helping us analyze ECoG data from prior work. 
We also thank Josef Parvizi and the Stanford Human Intracranial Cognitive Electrophysiology Program 
for helping us with ECoG data acquisition for a prior paper, which was re-analyzed for this paper. We 
thank David Heeger, Brian Wandell, and Mike Landy for comments on an earlier draft of this 
manuscript. We also thank Bosco Tjan, David Heeger, XJ Wang, Denis Pelli, Rachel Denison, and 
Geoff Aguirre for helpful discussions and feedback as we developed our models and analyses. The 
research was supported by NIH grants R00-EY022116 and R01-MH111417 (J.W.) 

References 
1. Rock I (1984) Perception (Scientific American Library : Distributed by W.H. Freeman, New York) 

pp x, 243 p. 
2. Pelli DG & Tillman KA (2008) The uncrowded window of object recognition. Nat Neurosci 

11(10):1129-1135. 
3. Motoyoshi I & Nishida S (2001) Temporal resolution of orientation-based texture segregation. 

Vision research 41(16):2089-2105. 
4. Holcombe AO & Judson J (2007) Visual binding of English and Chinese word parts is limited to 

low temporal frequencies. Perception 36(1):49-74. 
5. Raz N, Dotan S, Chokron S, Ben-Hur T, & Levin N (2012) Demyelination affects temporal 

aspects of perception: an optic neuritis study. Ann Neurol 71(4):531-538. 
6. Bonneh YS, Sagi D, & Polat U (2007) Spatial and temporal crowding in amblyopia. Vision 

research 47(14):1950-1962. 
7. Farmer ME & Klein RM (1995) The evidence for a temporal processing deficit linked to dyslexia: 

A review. Psychon Bull Rev 2(4):460-493. 
8. Riesenhuber M & Poggio T (1999) Hierarchical models of object recognition in cortex. Nature 

Neuroscience 2(11):1019-1025. 
9. Maunsell JH & Newsome WT (1987) Visual processing in monkey extrastriate cortex. Annual 

Reviews of Neuroscience 10:363-401. 
10. Dumoulin SO & Wandell BA (2008) Population receptive field estimates in human visual cortex. 

Neuroimage 39(2):647-660. 
11. Kay KN, Winawer J, Mezer A, & Wandell BA (2013) Compressive spatial summation in human 

visual cortex. Journal of neurophysiology 110(2):481-494. 
12. Wandell BA & Winawer J (2015) Computational neuroimaging and population receptive fields. 

Trends Cogn Sci 19(6):349-357. 
13. Britten KH & Heuer HW (1999) Spatial summation in the receptive fields of MT neurons. J 

Neurosci 19(12):5074-5084. 
14. Rolls ET & Tovee MJ (1995) The responses of single neurons in the temporal visual cortical 

areas of the macaque when more than one stimulus is present in the receptive field. Exp Brain 
Res 103(3):409-420. 

15. Kay KN, Winawer J, Rokem A, Mezer A, & Wandell BA (2013) A two-stage cascade model of 
BOLD responses in human visual cortex. PLoS Comput Biol 9(5):e1003079. 

16. Kay KN, Rokem A, Winawer J, Dougherty RF, & Wandell BA (2013) GLMdenoise: a fast, 
automated technique for denoising task-based fMRI data. Frontiers in neuroscience 7:247. 

17. Priebe NJ, Churchland MM, & Lisberger SG (2002) Constraints on the source of short-term 
motion adaptation in macaque area MT. I. the role of input and intrinsic mechanisms. Journal of 
neurophysiology 88(1):354-369. 

18. Kohn A (2007) Visual adaptation: physiology, mechanisms, and functional benefits. Journal of 
neurophysiology 97(5):3155-3164. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/108639doi: bioRxiv preprint 

https://doi.org/10.1101/108639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Page 24 of 36 

19. Winawer J, et al. (2013) Asynchronous broadband signals are the principal source of the BOLD 
response in human visual cortex. Curr Biol 23(13):1145-1153. 

20. Weiner KS, Sayres R, Vinberg J, & Grill-Spector K (2010) fMRI-adaptation and category 
selectivity in human ventral temporal cortex: regional differences across time scales. Journal of 
neurophysiology 103(6):3349-3365. 

21. Mattar MG, Kahn DA, Thompson-Schill SL, & Aguirre GK (2016) Varying timescales of stimulus 
integration unite neural adaptation and prototype formation. Current Biology 26(13):1669-1676. 

22. Hermes D, Miller KJ, Wandell BA, & Winawer J (2015) Stimulus dependence of gamma 
oscillations in human visual cortex. Cerebral cortex 25(9):2951-2959. 

23. Mukamel R, et al. (2005) Coupling between neuronal firing, field potentials, and FMRI in human 
auditory cortex. Science 309(5736):951-954. 

24. Tolhurst DJ, Walker NS, Thompson ID, & Dean AF (1980) Non-linearities of temporal 
summation in neurones in area 17 of the cat. Exp Brain Res 38(4):431-435. 

25. Motter BC (2006) Modulation of transient and sustained response components of V4 neurons by 
temporal crowding in flashed stimulus sequences. J Neurosci 26(38):9683-9694. 

26. Burns SP, Xing D, & Shapley RM (2010) Comparisons of the dynamics of local field potential 
and multiunit activity signals in macaque visual cortex. J Neurosci 30(41):13739-13749. 

27. Heeger DJ (1993) Modeling simple-cell direction selectivity with normalized, half-squared, linear 
operators. Journal of neurophysiology 70(5):1885-1898. 

28. Horiguchi H, Nakadomari S, Misaki M, & Wandell BA (2009) Two temporal channels in human 
V1 identified using fMRI. Neuroimage 47(1):273-280. 

29. Boynton GM, Engel SA, Glover GH, & Heeger DJ (1996) Linear systems analysis of functional 
magnetic resonance imaging in human V1. J Neurosci 16(13):4207-4221. 

30. Dale AM & Buckner RL (1997) Selective averaging of rapidly presented individual trials using 
fMRI. Hum Brain Mapp 5(5):329-340. 

31. Boynton GM, Engel SA, & Heeger DJ (2012) Linear systems analysis of the fMRI signal. 
Neuroimage 62(2):975-984. 

32. Bao P, Purington CJ, & Tjan BS (2015) Using an achiasmic human visual system to quantify the 
relationship between the fMRI BOLD signal and neural response. Elife 4. 

33. Box GEP & Draper NR (1987) Empirical model-building and response surfaces (Wiley, New 
York) pp xiv, 669 p. 

34. Heckman GM, et al. (2007) Nonlinearities in rapid event-related fMRI explained by stimulus 
scaling. Neuroimage 34(2):651-660. 

35. Grill-Spector K & Malach R (2001) fMR-adaptation: a tool for studying the functional properties 
of human cortical neurons. Acta Psychol (Amst) 107(1-3):293-321. 

36. Miller EK, Gochin PM, & Gross CG (1991) Habituation-like decrease in the responses of 
neurons in inferior temporal cortex of the macaque. Vis Neurosci 7(4):357-362. 

37. Webster MA (2015) Visual Adaptation. Annu Rev Vis Sci 1:547-567. 
38. Solomon SG & Kohn A (2014) Moving sensory adaptation beyond suppressive effects in single 

neurons. Curr Biol 24(20):R1012-1022. 
39. Hasson U, Yang E, Vallines I, Heeger DJ, & Rubin N (2008) A hierarchy of temporal receptive 

windows in human cortex. J Neurosci 28(10):2539-2550. 
40. Honey CJ, et al. (2012) Slow cortical dynamics and the accumulation of information over long 

timescales. Neuron 76(2):423-434. 
41. Murray JD, et al. (2014) A hierarchy of intrinsic timescales across primate cortex. Nat Neurosci 

17(12):1661-1663. 
42. Heeger DJ (2017) Theory of cortical function. Proc Natl Acad Sci U S A. 
43. Bair W, Cavanaugh JR, & Movshon JA (2003) Time course and time-distance relationships for 

surround suppression in macaque V1 neurons. J Neurosci 23(20):7690-7701. 
44. Self MW, et al. (2016) The Effects of Context and Attention on Spiking Activity in Human Early 

Visual Cortex. PLoS Biol 14(3):e1002420. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/108639doi: bioRxiv preprint 

https://doi.org/10.1101/108639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Page 25 of 36 

45. Watson AB (1986) Temporal Sensitivity. Handbook of perception and human performance, eds 
Boff KR, Kaufman L, & Thomas JP (Wiley, New York), pp 6.1-6.43. 

46. Watson AB & Robson JG (1981) Discrimination at threshold: labelled detectors in human vision. 
Vision research 21(7):1115-1122. 

47. Hess RF & Plant GT (1985) Temporal frequency discrimination in human vision: evidence for an 
additional mechanism in the low spatial and high temporal frequency region. Vision research 
25(10):1493-1500. 

48. Stigliani A, Jeska B, & Grill-Spector K (2017) An encoding model of temporal processing in 
human visual cortex. bioRxiv:108985. 

49. Albrecht DG & Geisler WS (1991) Motion selectivity and the contrast-response function of 
simple cells in the visual cortex. Vis Neurosci 7(6):531-546. 

50. Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9(2):181-
197. 

51. Carandini M & Heeger DJ (2012) Normalization as a canonical neural computation. Nature 
reviews. Neuroscience 13(1):51-62. 

52. Kiebel SJ, Daunizeau J, & Friston KJ (2008) A hierarchy of time-scales and the brain. PLoS 
Comput Biol 4(11):e1000209. 

53. Chaudhuri R, Knoblauch K, Gariel MA, Kennedy H, & Wang XJ (2015) A Large-Scale Circuit 
Mechanism for Hierarchical Dynamical Processing in the Primate Cortex. Neuron 88(2):419-
431. 

54. Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10(4):433-436. 
55. Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into 

movies. Spat Vis 10(4):437-442. 
56. Wang L, Mruczek RE, Arcaro MJ, & Kastner S (2015) Probabilistic Maps of Visual Topography 

in Human Cortex. Cereb Cortex 25(10):3911-3931. 
57. Winawer J & Parvizi J (2016) Linking Electrical Stimulation of Human Primary Visual Cortex, 

Size of Affected Cortical Area, Neuronal Responses, and Subjective Experience. Neuron 
92(6):1213-1219. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/108639doi: bioRxiv preprint 

https://doi.org/10.1101/108639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Page 26 of 36 

Supplementary Material 
 

Figure S1. Individual subject fMRI results.  

Figure S2. FMRI data and model fits from a second experiment. 

Figure S3. CTS model fits by eccentricity. 

Figure S4. Individual electrode responses. 

Figure S5. ECoG responses to stimulus offset.  

Figure S6. Relationship between broadband envelope and neural time series. 

Figure S7. ECoG responses from ECoG subject 2.  

Figure S8. CTS and dCTS parameter recovery. 
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Figure S1. Related to Figure 4. 

 
Figure S1. Individual subject fMRI results. (A) Four subject’s individual ROI data and CTS model fits are presented, one 
subject per row. Plotting conventions as in Figure 4. (B) The cross-validated accuracy of the CTS models (y-axis) and linear 
models (x-axis) are plotted for each subject (separate subplots) and each ROI (different colors). Each dot represents the 
cross-validated R2 for one bootstrap. Dots above the line indicate higher accuracy for the CTS model than the linear model. 
(C) The CTS exponent, e is plotted for each ROI and each subject. Exponents less than 1 indicate subadditive temporal 
summation.  
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Figure S2. Related to Figure 4. 

  

Figure S2. FMRI data and model fits from a second experiment. Four subjects participated in the experiment (two of which 
participated in the experiment described in the main text). The experiment was the same as the experiment in the main text, 
except that two different image classes were used: pink noise, and a face embedded in pink noise. Temporal conditions are 
identical to those in Figure 4. Models were fit simultaneously to both image classes, with a separate gain factor for each class. 
In general, the response amplitudes are lower than the main experiment due to stimulus selectivity, and the responses are 
noisier due to fewer trials per condition. In addition to the 9 ROIs in the main text, we also plot data from face areas (union of 
FFA and OFA). (A&B) We fitted both the linear model (green) and the CTS model (purple) to the group averaged data (50% CI 
from bootstrapping across scans). As in the main fMRI experiment, the CTS model fits the data in each ROI better than the 
linear model. (C) The exponent of the CTS model is below 1, and tends to be lower in extrastriate areas compared to V1. (D) 
The derived metrics, Rdouble, TISI, show similar patterns as in the main experiment: decreased Rdouble and increased TISI in 
higher visual areas.   
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Figure S3. Related to Figure 4. 

 
Figure S3. CTS model fits by eccentricity. Data from the main fMRI experiment are replotted separating each ROI into 2 
eccentricity bins. (A) The left panels are the data and CTS model fits restricted to voxels with population receptive field centers 
within 2 - 5°.  The right panels are data and CTS model fits restricted to voxels with 5 - 10° eccentricity. (B) The CTS model 
parameters do not differ systematically between the two eccentricity ranges.  

  

0

0.2

0.4

V1

V2

V3

V3ab

hV4

VO

LO

TO

IPS

0

0.2

0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V1 V2 V3 V3ab hV4 VO LO TO IPS
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

τ1

ε

low eccentricity (2-5 dgs)

high eccentricity (5-10 dgs)

2-5 dg. CTS fit 5-10 dg. CTS fit
A B

V1 V2 V3 V3ab hV4 VO LO TO IPS
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/108639doi: bioRxiv preprint 

https://doi.org/10.1101/108639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Page 30 of 36 

Figure S4. Related to Figure 6. 
 

 

Figure S4. Individual electrode responses. The plots show the ECoG broadband time course in individual electrodes from 
ECoG subject S1, averaged across 90 trials (30 repeats each of three stimulus types). Each row shows electrodes from one 
ROI. Some electrodes (e.g., 74) are in two rows, since the electrode was near an ROI boundary. The plots are color coded by 
eccentricity bin (0-5º, 5-10, >10º). The pRF location was based on a separate ECoG pRF data set published previously (1). 
The two mesh images show a magnified view of S1’s right occipital lobe, exposing the medial surface (left) and lateral surface 
(right). Insets show the zoomed-out view of the cortical mesh.  
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Figure S5. Related to Figure 6. 

 
Figure S5. ECoG responses to stimulus offset. Some electrodes show a positive broadband response at stimulus offset. 
(A) We derived an offset index for each electrode as follows. We first normalized the time series by dividing each point by the 
peak response, so that the time series maximum was 1. We then fit the dCTS model to the response from -200ms to 500ms 
(200ms pre-stimulus, and 500ms stimulus duration). We then extended the model prediction for the subsequent 500ms post-
stimulus. The metric is the mean of the difference between model prediction and data for the 500ms following stimulus offset. 
The three plots are example electrodes with low, medium, and high offset indices. Red is the model fit and black is the data. 
(B) The table shows the average offset index binned by ROI and by pRF eccentricity. The highest number in each row is 
shown in red. In most rows, the highest offset index is for the most peripheral electrodes. The mesh image on the right shows 
S1’s right occipital cortex, viewed from behind. The color overlay shows an eccentricity map from fovea (blue) to periphery 
(red), derived from a V1-V3 atlas template (2, 3). The ECoG electrodes with high offset indices are circled in red. In most 
cases (with a few exceptions) these electrodes have anterior locations with high eccentricity. (C) Although the dCTS model in 
the main text does not predict an offset response, a slight variant of the model with a biphasic rather than monophasic impulse 
response function (IRF) does predict the offset response. We computed biphasic IRFs as the difference of 2 gamma functions, 
with the negative lobe having a time constant 1.5 times longer than the positive lobe, shown on the left. We used three IRFs 
for simulations with different weights on the negative lobe: weight 0 (monophasic), 0.5 (biphasic) and 0.65 (biphasic). We then 
show the model outputs for three stimuli: a 100-ms stimulus pulse (left), a 500-ms pulse (middle), and a train of 25-ms pulses 
(right). When the weight on the negative lobe of the IRF is high (0.65), there are significant offset responses predicted for the 
500-ms pulse and the train of 25-ms pulses. For simulations, we assumed the following dCTS parameters: t1=0.1s; t2=0.1s; 
n=2; s=0.1.  
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Figure S6. Related to Figure 6. 
 

 
Figure S6. Relationship between broadband envelope and neural time series. (A) To understand the effect of extracting 
the broadband envelope, we simulated a neural response and extracted the envelope. We assumed that a population of 
neurons has a time-varying average firing rate governed by a Poisson process.  The Poisson rate is a latent variable, plotted in 
the upper left. The result of Poisson sampling, summed over a population of neurons, is shown to the right. This is the 
presumed neural time series. From this time series, we extract the broadband envelope the way we do from ECoG data, 
shown on the right in the yellow. The envelope is slightly wider than the original Poisson rate (black). This widening is similar 
to the effect of smoothing the Poisson time series with a Gaussian blur kernel with a 30ms standard deviation (below, red), 
which results in a similar time series to the extracted broadband (yellow). (B) We replot the dCTS parameters for each ROI in 
black (same as main text), and compare this to the parameter fits if we insert a Gaussian smoothing step between the model 
prediction and comparison to the broadband data. The parameters computed this way, shown in red, tend to have slightly 
shorter t1 and t2, and smaller n, but the general pattern of results is very similar whether this step is inserted or not. 
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Figure S7. Related to Figure 6. 
 

 
Figure S7. ECoG responses from ECoG subject 2. ECoG broadband responses and dCTS model fits are shown for 2 
electrodes in ECoG subject 2. Because there are only two electrodes, one per ROI, we cannot estimate the range of 
parameters. However, the general form of the time series is comparable to those for S1 in the main text (Figure 6), and the 
time series is well explained by the model fits. 
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Figure S8. Related to Figures 4 and 6. 
 

 
Figure S8. CTS and dCTS parameter recovery. To estimate how accurately we should expect to be able to recover model 
parameters, we simulated experimental data. (A) We simulated responses to the 13 temporal conditions uses the CTS model 
with random values for t1 from the range [0.01 1], and e from [0.01 1]. We then added Gaussian white noise to the predictions, 
and then solved the models on the noisy predictions. The standard deviation of the noise equal to the average residuals 
between the fMRI data and model fits across all ROIs (as plotted in Figure 4). The plots show the values of the parameter 
used to generate the predictions (x-axis) and the values recovered from the model fits (y-axis).  The e parameter is recovered 
more accurately than t1. (B) The same simulations were done for ECoG using the dCTS model, selecting parameters from the 
range [0.01 1] for t1, t2, and s, and [0.01 6] for n. The added noise was pink (1/f) for each time series, scaled to match the 
residuals between data and model fits across all ROIs. The parameters n and t1 are recovered most accurately, s and t2 least 
accurately. 
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Figure S9. Related to Figure 5. 
 

 

Figure S9. Model comparisons. We illustrate predicted time courses for 6 types of models using a common stimulus - a 500-
ms static contrast pattern followed by a 500-ms blank. For each type of model, two sets of parameters were used, generating 
two time courses: one fit to ECoG data in V1 (red), and one fit to ECoG data in V3A (blue). (i) The CTS model, used to fit fMRI 
data in this paper. (ii) A close variant of the CTS model, except that the static non-linearity is implemented by divisive 
normalization rather than a power function. (iii) The dCTS model, used to fit ECoG data in this paper. (iv) Feedback 
normalization, as proposed by Heeger (1993). This is similar to the dCTS model, except that the normalization is feedback 
rather than feedforward. (v) A cascade model, which uses the dCTS model to account for V1 data, and computes the 
downstream response by using the V1 output as input to the identical dCTS model. (vi) A weighted sum of two temporal 
channels. One channel is sustained and linear; the other is transient with a squaring non-linearity. This model was used by 
Horiguchi et al (2009) to explain fMRI data, and adapted from related models that account for psychophysical data (Watson, 
1986).  Overall, the dCTS and feedback normalization models are most similar to the ECoG data. The two temporal channels 
model captures some features but not others. 

  

feedback 
normalization

(Heeger 1993)

CTS with 
normalization
components

dCTS model

Model form Model prediction

σ    +   *

n
n

( )
n

σ   +   

n
n

prediction to
V1

prediction to
V3A 

CTS model
ε

feedback 
normalization

Two temporal
channels

(Horiguchi et al. 2009)
* *+ a b c+ · ·

2

sustained channel transient channel

Cascaded dCTS
dCTS dCTS

n

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/108639doi: bioRxiv preprint 

https://doi.org/10.1101/108639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Page 36 of 36 

Supplementary References 

 
1. Winawer J, et al. (2013) Asynchronous broadband signals are the principal source of the BOLD 

response in human visual cortex. Curr Biol 23(13):1145-1153. 
2. Benson NC, Butt OH, Brainard DH, & Aguirre GK (2014) Correction of distortion in flattened 

representations of the cortical surface allows prediction of V1-V3 functional organization from 
anatomy. PLoS Comput Biol 10(3):e1003538. 

3. Benson NC, et al. (2012) The retinotopic organization of striate cortex is well predicted by 
surface topology. Curr Biol 22(21):2081-2085. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2017. ; https://doi.org/10.1101/108639doi: bioRxiv preprint 

https://doi.org/10.1101/108639
http://creativecommons.org/licenses/by-nc-nd/4.0/

