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ABSTRACT 40	

Gross primary production (GPP) is the largest flux in the carbon cycle, yet its 41	

response to global warming is highly uncertain. The temperature sensitivity of GPP is 42	

directly linked to photosynthetic physiology, but the response of GPP to warming 43	

over longer timescales could also be shaped by ecological and evolutionary processes 44	

that drive variation community structure and functional trait distributions. Here, we 45	

show that selection on photosynthetic traits within and across taxa dampen the effects 46	

of temperature on GPP across a catchment of geothermally heated streams.  47	

Autotrophs from cold streams had higher photosynthetic rates and after accounting for 48	

differences in biomass among sites, rates of ecosystem-level GPP were independent 49	

of temperature, despite a 20 ºC thermal gradient. Our results suggest that thermal 50	

adaptation constrains the long-term temperature dependence of GPP, and highlights 51	

the importance of considering physiological, ecological and evolutionary mechanisms 52	

when predicting how ecosystem-level processes respond to warming. 53	

 54	

INTRODUCTION  55	

The carbon cycle is fundamentally metabolic (Falkowski et al. 2000). At the 56	

ecosystem level, gross primary production (GPP) represents the total amount of CO2 57	

fixed by photosynthesis into organic carbon and is the largest flux in the global 58	

carbon cycle (Beer et al. 2010) transferring CO2 from the atmosphere to the 59	

biosphere, fuelling food webs and biological production (Field 1998). Understanding 60	

the mechanisms that shape how temperature influences rates of GPP across spatial, 61	

temporal and organisational scales is therefore an essential prerequisite to forecasting 62	

feedbacks between global warming and the carbon cycle.   63	
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 Temperature can dictate rates of GPP over short timescales through its effects 64	

on photosynthetic physiology (Medlyn et al. 2002; Allen et al. 2005; Galmes et al. 65	

2015). However, it is clear that over longer timescales (e.g. decades of gradual 66	

warming) ecological and evolutionary processes that mediate temperature induced 67	

changes in biomass, community composition and local adaptation of metabolic traits 68	

could feedback to influence the emergent effects of warming on ecosystem properties 69	

(Allen et al. 2005; Enquist et al. 2007; Michaletz et al. 2014; Cross et al. 2015). 70	

Indeed a recent analysis demonstrated that most of the variation in terrestrial primary 71	

production along a latitudinal temperature gradient could be explained by changes in 72	

biomass, and after controlling for biomass, rates were independent of temperature 73	

(Michaletz et al. 2014). Such temperature invariance in biomass-specific rates of 74	

primary production is counterintuitive considering the well-known exponential effects 75	

of temperature on the biochemistry of metabolism (Gillooly et al. 2001). Furthermore, 76	

it implies that selection on photosynthetic traits that compensate for the effects of 77	

temperature on physiological rates could play a fundamental role in mediating the 78	

effects of temperature on rates of primary production in the long-term (Kerkhoff et al. 79	

2005; Enquist et al. 2007).  80	

 Here we investigate the interplay between the direct effects of temperature on 81	

photosynthesis, local adaptation through selection on photosynthetic traits, and 82	

changes in community biomass, on rates of gross primary production. We do so by 83	

extending the general model for ecosystem metabolism from metabolic theory 84	

(Enquist et al. 2003, 2007; Allen et al. 2005; Kerkhoff et al. 2005; Michaletz et al. 85	

2014) to include the effects of thermal adaptation on the key traits that influence 86	

individual metabolism as well as potential temperature effects on ecosystem biomass 87	

pools. We then test our model’s predictions against empirical data collected from a 88	
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catchment of naturally warmed Icelandic geothermal streams spanning a gradient of 89	

20 ºC. 90	

 91	

THEORY 92	

The metabolic theory of ecology (MTE) provides a powerful framework for 93	

understanding how temperature affects GPP by linking the photosynthetic rates of an 94	

ecosystem’s constituent individuals with the size and biomass structure of the 95	

community (Enquist et al. 2003, 2007; Allen et al. 2005; Kerkhoff et al. 2005; Yvon-96	

Durocher & Allen 2012; Michaletz et al. 2014). Organism-level metabolism, ! " , 97	

responds predictably to temperature, increasing exponentially up to an optimum, 98	

followed by a more pronounced exponential decline (Fig. 1a). These thermal response 99	

curves can be quantified using a modification of the Sharpe-Schoolfield equation for 100	

high temperature inactivation (Schoolfield et al. 1981):  101	

! " = $(&'))*+
,( -
./'

0 -
./)

12+
,3(

-
./3

0 -
./)

                                           (1) 102	

where ! "  is the rate of metabolism at temperature " , in Kelvin (K), 4  is 103	

Boltzmann’s constant (8.62 × 10-5 eV K-1), 5  is the activation energy (in eV), 56 104	

characterises temperature-induced inactivation of enzyme kinetics above "6, which is 105	

the temperature at which half the enzymes are inactivated. In this expression, ! "7 	is 106	

the rate of metabolism normalised to a reference temperature (e.g. 10 ºC), where no 107	

low or high temperature inactivation occurs and 9:  is the mass dependence of 108	

metabolic rate characterised by an exponent α, that ranges between ¾ and 1 across 109	

multicellular and unicellular autotrophs (Gillooly et al. 2001; DeLong et al. 2010). 110	

Equation 1 yields a maximum metabolic rate at an optimum temperature,  111	
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                    (2) 112	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2017. ; https://doi.org/10.1101/108696doi: bioRxiv preprint 

https://doi.org/10.1101/108696
http://creativecommons.org/licenses/by/4.0/


	 5	

The parameters in equations 1 & 2, which govern the height and shape of the thermal 113	

response curve can be considered “metabolic traits” (Padfield et al. 2016) and have 114	

long been known to shift as organisms adapt to new thermal environments (Berry & 115	

Bjorkman 1980; Huey & Kingsolver 1989). Equation 1 can be simplified to the 116	

Arrhenius equation,  117	

! " = !("7)9:D
>( -

./'
C -
./
)                      (3) 118	

which captures only the rising part of the thermal response curve, if the temperatures 119	

organisms experience in the environment are below	";<= (Savage et al. 2004; Dell et 120	

al. 2011; Sunday et al. 2012). We use this simpler, more tractable model of the 121	

temperature dependence in the following theory, which attempts to explore the 122	

mechanisms driving the emergent temperature sensitivity of ecosystem-level gross 123	

primary production. 124	

 At the organism-level, the size and temperature dependence of gross 125	

photosynthesis can be characterized as: 126	

EF " = EF "7 9:D
>GB

-
./'

C -
./                 (4) 127	

where EF "  is the rate of gross photosynthesis and temperature ", and EF "7  is the 128	

rate of gross photosynthesis normalised to a reference temperature and 5H<  is the 129	

activation energy of gross photosynthesis. Net photosynthesis, 	IF,  which is the 130	

amount of photosynthate available for allocation to biomass production after 131	

accounting for autotroph respiration is given by, 132	

IF " = EF "7 9:D
>GB

-
./'
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-
./'

C -
./ = IF "7 9:D

>NB
-
./'
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./   (5) 133	

where IF "  is the rate of net photosynthesis at temperature ", L("7) is the rate of 134	

respiration normalised to a reference temperature, "7 , and 5A<	 and 5O  are the 135	

activation energies of net photosynthesis and respiration. The form of equation 5 136	
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implies that the temperature sensitivity of IF  will not strictly follow a simple 137	

Boltzmann-Arrhenius relation (see supplementary information for a derivation of 138	

5A< ). Nevertheless, we can approximate the temperature sensitivity of net 139	

photosynthesis using an apparent activation energy, 5A<, with a reasonable degree of 140	

accuracy (Fig. S7). 141	

Using Equation 4 and principles from MTE, the rate of gross primary 142	

productivity per unit area, A, can be approximated by the sum of the photosynthetic 143	

rates of its constituent organisms (Fig. 1c): 144	

PQR " = PQ("7)D
>ST(

-
./'

C -
./
)                             (6) 145	

where PQR "  is the rate of gross primary production in ecosystem s, at temperature 146	

T, PQ "7 = 1

U
EFV "7

W
VX1 9V

: , is the ecosystem-level metabolic normalisation, 147	

where J is the total number of individual organisms, i, which comprise all autotrophs 148	

in s. In equation 6, the apparent long-term temperature dependence of gross primary 149	

production, 5YZ, is assumed to be equal to that of the average temperature dependence 150	

for individual-level gross photosynthesis, 5H< , provided that the ecosystem-level 151	

normalisation, PQ "7 , is independent of temperature (Fig. 1d). However, if gFV "7  152	

or total biomass, [R =
1

U
9V

W
VX1 , exhibit temperature dependence, for example via 153	

temperature driven selection on EFV "7  or covariance between resource availability, 154	

temperature and [R , then the scaling of the activation energy from individuals to 155	

ecosystems will no longer hold (e.g. 5YZ ≠ 5H< ). Thus, ecological processes that 156	

influence [R  and evolutionary dynamics which shape variation in EFV "7 	have the 157	

potential to play an integral, but as yet underappreciated role in mediating the 158	

response of ecosystem metabolism to temperature if they modify the metabolic 159	
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capacity of ecosystem biomass pools (but see Kerkhoff et al. 2005; Enquist et al. 160	

2007; Michaletz et al. 2014).  161	

 Previous work on aquatic and terrestrial autotrophs has shown that autotrophs 162	

adapt to long-term temperature changes by shifts in the respiratory and photosynthetic 163	

normalisation constant; up-regulating rates at low temperatures and down-regulating 164	

at high temperature, to alleviate the constraints of thermodynamics on enzyme 165	

kinetics (Atkin et al. 2015; Padfield et al. 2016; Reich et al. 2016; Scafaro et al. 166	

2016). We therefore expect EFV "7  to exhibit temperature dependence along long-167	

term thermal gradients, which in the absence of an explicit first principles derivation, 168	

we can approximate as 169	

 EFV "7 ≈ D
>^(

-
./'

C -
./
)              (7) 170	

where 5_ is an adaptation parameter that characterises the change in EFV "7  with 171	

temperature owing to thermal adaptation. Substituting the temperature dependence for 172	

EFV "7  into equation 6 and simplifying, yields the following expression for the 173	

temperature dependence of gross primary production, 174	

PQR " = PQ("7)D
>^2>GB(

-
./'

C -
./
)                                                 (8) 175	

Under the “hotter-is-better” model of thermal adaptation (Fig. 1a), where a single 176	

activation energy governs the temperature dependence of metabolism within and 177	

across species (Gillooly et al. 2001; Savage et al. 2004; Angilletta et al. 2010) and 178	

	5_ = 0, the ecosystem-level activation energy would equal that of individual-level 179	

metabolism (i.e. 5YZ = 	5H< ; Fig. 1d) – this is the typical assumption made in 180	

metabolic theory (Brown et al. 2004; Demars et al. 2016). However, when 	5_ ≠ 0, 181	

5YZ = 	5_ + 	5H< , and the ecosystem-level activation energy will deviate from the 182	

average organism-level temperature dependence owing to the effects of thermal 183	

adaptation on EFV "7 . If thermal adaptation results in complete compensation (i.e. 184	
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	5_ = −	5H< ; Fig. 1b), and [R  does not covary with temperature, then ecosystem-185	

level gross primary production will be independent of temperature (i.e. 5YZ = 0; Fig. 186	

1d). Following the same reasoning, any temperature dependence in [R	will also result 187	

in deviations from the average individual-level activation energy. For example, recent 188	

experimental work has shown that covariance between temperature and rates of 189	

nutrient cycling can cause [R  to increase with temperature (Welter et al. 2015; 190	

Williamson et al. 2016), [R ≈ 	D
>b(

-
./'

C -
./
) , where 5$ is the activation energy 191	

characterising the temperature dependence of total biomass. When 	5$ > 0 , 192	

substituting in the temperature dependence for [R into equation 8 leads to an increase 193	

in the ecosystem-level activation energy regardless of the mode of thermal adaptation 194	

(5YZ = 	5H< +	5$ +	5_;	Fig. 1d). This model emphasises how different ecological 195	

and evolutionary mechanisms that drive temperature dependent variation in 196	

individual-level metabolic traits and/or ecosystem biomass pools can influence the 197	

emergent long-term temperature sensitivity ecosystem metabolism (Fig. 1c:d). 198	

We now use measurements of the temperature dependence of organism- and 199	

ecosystem-level photosynthesis from a catchment of naturally warmed geothermal 200	

streams to test the expectations of our model and investigate how ecological and 201	

evolutionary processes shape the long-term temperature sensitivity of GPP. Critically, 202	

this system allows us to measure photosynthetic responses to temperature at both 203	

organism and ecosystem scales from sites that are in close proximity, yet differ 204	

substantially in their thermal history (i.e. 20 ºC in situ temperature gradient among 205	

sites). 206	

 207	

METHODS 208	

Study site 209	
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The study was conducted in a geothermally active valley close to Hveragerdi village, 210	

45 km east of Reykjavik, Iceland. The area contains a large number of mainly 211	

groundwater-fed streams that are subjected to differential natural geothermal warming 212	

from the bedrock (O’Gorman et al. 2014). Twelve streams have been mapped in the 213	

valley with average temperatures ranging from 7 – 27 ºC (Fig. S1 & Table S1). We 214	

measured a number of physical (width, depth, velocity) and chemical (pH, 215	

conductivity, nitrate, nitrite, soluble reactive phosphate, ammonium) variables across 216	

the stream catchment (Table S2) and none of these variables were significantly 217	

correlated with temperature (Table S3). The study was carried out during May and 218	

June in 2015 and 2016. 219	

 220	

Measuring the population level metabolic thermal response 221	

We sampled 13 of the most abundant autotrophic biofilm taxa from 8 streams 222	

spanning the catchment’s full thermal gradient. Multiple taxa were removed from four 223	

streams where more than one taxon was at high density (Table S4). Measurements 224	

first entailed characterising a photosynthesis-irradiance (PI) curve from 0 – 2000 225	

µmol m-2 s-1 at the average stream temperature for each taxon. Net photosynthesis 226	

(IF) was measured as O2 evolution in a Clark-type oxygen electrode (Hansatech Ltd, 227	

King's Lynn UK Chlorolab2) at increasing light intensities in intervals of 50 µmol-1 228	

m-2 s-1 up to 300 µmol-1 m-2 s-1, and then in intervals of 100 µmol-1 m-2 s-1 up to 1000 229	

µmol-1 m-2 s-1, followed by 200 µmol steps up to 2000 µmol-1 m-2 s -1. Rates of 230	

respiration (L) were measured as O2 consumption in the dark. This yielded a PI curve 231	

from which the optimal light intensity for net photosynthesis was estimated using a 232	

modification of Eilers’ photoinhibition model (Eilers & Peeters 1988) fitted via non-233	

linear least squares regression (Fig. S2): 234	
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IF e = 	 A<f^gh

(A<f^g/:hjBk
l)	hl2		 1C lNBf^g

*mjBk
	 h2	NBf^g

*

− L                                               (9) 235	

where IF e , is the rate of net photosynthesis at irradiance, e , IF)_n  is the 236	

photosynthetic maximum that occurs at optimal light, e;<=, o controls the gradient of 237	

the initial slope and L is respiration, the rate of oxygen consumption in the dark. The 238	

optimum light intensity (e;<= , µmol-1 m-2 s-1) for each taxon was then used for 239	

measuring net photosynthesis at all other assay temperatures in the acute thermal 240	

gradient experiments. Rates of gross photosynthesis were calculated by the 241	

summation of the measured rates of net photosynthesis and respiration. 242	

Rates of photosynthesis and respiration were normalised to biomass by 243	

expressing rates per unit of chlorophyll a. Chlorophyll a extraction was achieved by 244	

grinding the sample tissue with methanol for 5 minutes, centrifugation and measuring 245	

chlorophyll a extinction coefficients on a spectrophotometer. Total chlorophyll a (µg) 246	

was then calculated by measuring absorbance at 750 nm, 665 nm and 632 nm. 247	

Chl	a = 13.26(yzz{ −	y|{}) − 2.68(yzz{ −	y|{}) 	×	10CÄ                 (10) 248	

 Acute temperature responses of biomass normalised gross and net 249	

photosynthesis and respiration were fitted to the modified Sharpe-Schoolfield 250	

equation for high temperature inactivation (Equation 1). Best fits for each thermal 251	

response curve were determined using non-linear least squares regression using the 252	

‘nlsLM’ function in the ‘minpack.lm’ (Elzhov et al. 2009) package in R statistical 253	

software (R Core Team 2014; v3.2.2), following the methods outlined in Padfield et 254	

al., (2016).  255	

 We tested for thermal adaptation by assessing whether the parameters in eqns. 256	

1 and 2 as well as the rate of gross photosynthesis at the average stream temperature, 257	

EF "R  varied systematically with stream temperature. We fitted the metabolic traits 258	
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to a modified Boltzmann-Arrhenius function within a linear mixed effects modelling 259	

framework:  260	

ln Ç(") = ln Ç "7 + 5_
1

?&'
−	 1

?&
+	É=               (11) 261	

where z is the metabolic trait at stream temperature, ", Ç("7) is the value of the trait at 262	

the mean temperature across all streams, "7 , and 5_  is the activation energy that 263	

determines how much z changes as a function of " due to thermal adaptation and É= is 264	

a random effect on the intercept accounting for multiple measurements of the same 265	

metabolic trait of each isolated biofilm taxon (i.e. one value each for gross and net 266	

photosynthesis and respiration). We fitted eq. 11 to each metabolic trait with stream 267	

temperature, flux (3 level factor with ‘gross’ and ‘net photosynthesis’ and 268	

‘respiration’) and their interaction as fixed effects (Table S5). Significance of the 269	

parameters were determined using likelihood ratio tests. Model selection was carried 270	

out on models fitted using maximum likelihood and the most parsimonious model 271	

was refitted using restricted maximum likelihood for parameter estimation. 272	

 273	

Measuring in situ rates of ecosystem-level gross primary production 274	

Ecosystem metabolism was calculated from measurements of dissolved oxygen over 275	

time using the single station method (Odum 1956). Sensors were deployed in all 276	

streams and at multiple sites within a stream where temperature gradients existed 277	

within streams due to differential geothermal warming. Dissolved oxygen 278	

concentration and temperature were monitored at 1-minute intervals using miniDOT 279	

dissolved oxygen loggers (PME Inc) (Fig. S3 & Fig. S5). Light sensors (LI-COR Inc) 280	

were deployed simultaneously at two sites in the centre of the catchment. Physical 281	

variables of each stream, including the depth (m), width (m), velocity (m s-1), were 282	

measured along horizontal transects at 10 m intervals up to 100 m upstream of the 283	
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sensor deployment. Values for depth, width and velocity were averaged across the 284	

reach (Table S2). 285	

 The change in O2 concentration at a single station between two subsequent 286	

measurements (∆DO) can be approximated as: 287	

	△ ÖÜ = ál kC	 ál k0-	

△=
                                                                                                (12) 288	

with [O2]t the concentration of oxygen (mg L-1) at time t and can be modelled using a 289	

framework based on the Odum’s O2 change technique (Odum 1956):  290	

△ ÖÜ = PQQ − 5à	 ± ä                                                                                           (13) 291	

where PQQ (g m-3 hr -1) is the composite of volumetric gross primary productivity, 292	

minus volumetric ecosystem respiration, 5à (g m-3 hr -1) and ä is the net exchange of 293	

oxygen with the atmosphere (g O2 m-3). The net exchange of oxygen with the 294	

atmosphere is the product of the O2 gas transfer velocity, 4 (m min-1), and the O2 295	

concentration gradient between the water body and the atmosphere (temperature and 296	

atmosphere corrected DO concentration at 100% saturation minus [O2]t) over the 297	

measurement interval. 298	

 The gas transfer velocity, 4  (m min-1), was calculated using the surface-299	

renewal model and corrected for the stream temperature: 300	

4 = 50.8	å}.z|	×	ÖC}.ç{	×	1.024(&Cè})                                                                    (14) 301	

where V is velocity (cm s-1), D is the mean stream depth (cm) adjusted for stream 302	

temperature, T (Bott 1996). This value was subsequently transformed into (m h-1). 303	

Estimated rates of reaeration, derived using the surface renewal model from 304	

measurements of velocity and depth, correspond well to reaeration rates measured 305	

experimentally using propane additions in an adjacent Icelandic catchment with 306	

comparable physico-chemical characteristics (see Fig. S8; Demars et al. 2011). 307	
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 The net metabolic flux for a given measurement interval is equal to △ ÖÜ −308	

ä. During the night (where light < 5 µmol m-2 s-1), GPP is zero, so the net metabolic 309	

flux is equal to ER. During the day, ER was determined by interpolating average ER 310	

over the defined night period. GPP for each daytime interval was the difference 311	

between net metabolism flux and interpolated ER. Daily volumetric rates of GPP (g 312	

O2 m-3 day-1) were calculated as the sum of the 15-minute rates over each 24-hour 313	

period. Volumetric rates were converted to areal units (g O2 m-2 day-1) by multiplying 314	

by the mean water depth of the stream reach.  315	

 We measured autotrophic biomass density (g Chl a m-2) across the stream 316	

catchment by taking measurements of chlorophyll a. A core of 28.27 cm2 was 317	

removed from 3 randomly chosen rocks and chlorophyll a was measured using the 318	

extraction protocol detailed above. The total standing biomass, [R, of each stream 319	

reach was estimated by multiplying average biomass density by the total reach area, 320	

which was estimated from the mean width and the distance upstream from the oxygen 321	

sensor integrated over (Chapra & Di Toro 1991; Demars et al. 2015), 322	

ê = Äë

?l
                                                                                                                        (15) 323	

where three times the velocity of the stream (v; m d-1) divided by the gas transfer 324	

coefficient (K2; d-1) gives the approximation of the distance upstream integrated by 325	

the single station method (d; m) (Grace & Imberger 2006).  Biomass normalised rates 326	

of GPP per stream (g O2 g Chl a-1 day-1) were calculated by dividing areal rates of 327	

GPP by the total standing biomass in the upstream reach. 328	

We used linear mixed-effects modelling to investigate the temperature 329	

dependence of GPP across catchment, allowing us to control for the hierarchical 330	

structure of the data (e.g. variance of days nested within years nested within streams). 331	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2017. ; https://doi.org/10.1101/108696doi: bioRxiv preprint 

https://doi.org/10.1101/108696
http://creativecommons.org/licenses/by/4.0/


	 14	

We characterised the temperature dependence of GPP with a linearised version of the 332	

Boltzmann-Arrhenius function in a linear mixed effects model: 333	

ln PQR " = 5YZ
1

?&'
− 1

?&
+ ( ln PQ "7 + ÉZ

R/í/ì	)                                            (16) 334	

where PQR "  is the rate of gross primary production in stream s on year y on day d at 335	

temperature T (Kelvin), 5YZ  is the activation energy (eV) which characterises the 336	

exponential temperature sensitivity of photosynthetic rates, ln PQ "7 	 	is the average 337	

rate of PQ across streams and days normalised to "7 = 283 K (10 ºC) and ÉZ
R/í/ì is a 338	

nested random effect that characterises deviations from ln PQ "7 	 	at the level of d 339	

within y within s. Significance of the parameters and model selection was carried out 340	

as described above for the analysis of the population-level metabolic traits (Table 1).  341	

We tested for the effect of total biomass and temperature on GPP across the 342	

catchment using the data from 2016 (where we also quantified autotroph biomass) by 343	

undertaking a multiple regression by expanding eq. 16 to include the effect the 344	

biomass on GPP: 345	

 ln PQ " = 5YZ
1

?&'
− 1

?&
+ βln[R + ( ln PQ "7 + ÉZ

R/ì)                                 (17) 346	

where β  characterises the power-law scaling of PQ " 	with [R  and the random 347	

effects specification changed to account for deviation from ln PQ "7 	between days 348	

nested within streams. Model selection was as described above (Table 1). 349	

 350	

Inorganic nutrients 351	

Water samples for measuring dissolved inorganic nutrient concentrations (NO2, NO3, 352	

NH4 and PO4; µmol L-1) were collected from each stream. Samples were filtered 353	

(Whatmann GF/F) and stored frozen at -20 ºC for subsequent analysis using a 354	

segmented flow auto-analyser (Table S3) (Kirkwood 1996). 355	
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 356	

RESULTS 357	

Population level metabolism 358	

Macroscopic cyanobacteria, filamentous eukaryotic algae, and bryophytes were the 359	

dominant autotrophs across the catchment (Table S4). To investigate how long-term 360	

differences in temperature shaped variation in photosynthetic traits across the 361	

catchment, we sampled the most abundant autotroph taxa from 8 streams spanning the 362	

full temperature gradient and measured the acute responses of gross photosynthesis 363	

and respiration to temperatures spanning 5 to 50 ºC. Gross photosynthesis and 364	

respiration followed unimodal responses to acute temperature variation and were well 365	

fit by equation 1 (Fig. 2a-b). We predicted exponential declines in the metabolic 366	

normalisation constants, moving from cold to warm environments, owing to the 367	

effects of thermal adaptation. Consistent with this hypothesis, the log-transformed 368	

rates of gross photosynthesis, (ln EF "7 ) and respiration	(ln L "7 ) normalised to a 369	

reference temperature, "7  = 10 ºC, declined linearly with increasing stream 370	

temperature with the same activation energy (5_ =	-0.64 eV; 95% CI: -1.22 to -0.05 371	

eV; Fig. 2c). Since IF "7 = 	EF("7) − L "7 , the normalisation for net 372	

photosynthesis also declined with increasing temperature with an 5_ =	-0.64 eV.  373	

Because the dominant autotroph taxa varied across the streams (Table S4), the 374	

decline in the photosynthetic trait, EF("7) , with increasing stream temperature is 375	

likely influenced by species sorting (e.g. filtering of species and traits from the 376	

regional species pool). To investigate whether adaptive evolution also played a role, 377	

we analysed data from only the most common genera Nostoc, which was distributed 378	

across 5 streams spanning a gradient of 10.2 ºC. EF("7) , IF "7  and L("7)  also 379	

decreased with increasing stream temperature in Nostoc with the thermal sensitivity 380	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2017. ; https://doi.org/10.1101/108696doi: bioRxiv preprint 

https://doi.org/10.1101/108696
http://creativecommons.org/licenses/by/4.0/


	 16	

not significantly different from that of all the autotroph taxa together (Fig. S6). This 381	

trend provides evidence for local thermal adaptation. An important consequence of 382	

the decrease in EF("7) with increasing stream temperature was that rates of gross 383	

photosynthesis at the average temperature of each stream, EF("R), were independent 384	

of temperature (Fig. 2d), indicating that species sorting and adaptation led to complete 385	

compensation of organism-level metabolism over the catchment’s thermal gradient. 386	

Both the optimum temperature, ";<= , and "6 , which is the temperature at 387	

which half the enzymes are inactivated, were positively correlated with average 388	

stream temperature (Table S5) providing further evidence for local adaptation. We 389	

found no evidence for systematic variation in the activation or inactivation energies 390	

(5_  or 56 ) across the thermal suggesting these traits are unlikely to be under 391	

temperature dependent-selection (Table S5). Previous work has often shown that 392	

photosynthesis has a lower activation energy than respiration (Allen et al. 2005; 393	

López-Urrutia et al. 2006; Padfield et al. 2016). In contrast, we found that the average 394	

activation energies of gross photosynthesis and respiration were not significantly 395	

different and could be characterised by a common activation energy, 5 = 0.87 eV; 396	

95% CI = 0.77 to 0.97 eV. Similarly, 56, which characterises inactivation of kinetics 397	

past the optimum was not significantly different between fluxes and could be 398	

characterised by a common value for respiration and photosynthesis (56 = 4.91 eV; 399	

95% CI: 3.95 – 5.97 eV). 400	

 401	

Ecosystem level gross primary productivity 402	

Based on the observation that the activation energies of gross photosynthesis and the 403	

adaptation parameter were of equal magnitude and opposite sign, our model for the 404	

scaling of metabolism from organisms to ecosystems (Eq. 8) predicts that rates of 405	
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gross primary production should be independent of temperature across the catchment 406	

(e.g. 5YZ = 5H< + 5_ ≈ 0), provided that biomass does not covary with temperature. 407	

We measured rates of in situ GPP in 11 streams across the catchment’s full 408	

temperature gradient in 2015 and 2016. Rates of GPP increased with average stream 409	

temperature and the long-term temperature sensitivity of GPP (characterised by fitting 410	

the Boltzmann-Arrhenius function [see Methods]) yielded an activation energy of 411	

5YZ= 0.57 eV (95% CI: 0.10 – 1.04 eV; Fig. 3a).  412	

To investigate potential covariance between temperature and biomass, [R, and 413	

its impact on the temperature dependence of GPP, we also quantified in situ standing 414	

autotrophic biomass. Autotroph biomass density, Ms, increased systematically with 415	

temperature across the catchment with a temperature sensitivity of 5$ = 0.68 eV (95% 416	

CI: 0.24 – 1.12 eV; Fig. 3b). The similarity between 5YZ	and 5$	 – they have 95% 417	

confidence intervals that overlap – indicates that covariance between biomass and 418	

temperature could be the main driver of the temperature dependence of GPP across 419	

the catchment. 420	

We quantified the effects of both temperature and [R on GPP using multiple 421	

regression in a mixed effects modelling framework (see Methods). The best fitting 422	

model included only ln	([R) as a predictor (Table 1; Fig. 3c) and after controlling for 423	

variation in ln	([R) , rates of GPP were independent of temperature across the 424	

catchment (Table 1; Fig. 3d). These findings are consistent with predictions from our 425	

model and provide evidence that systematic variation in the photosynthetic 426	

normalisation owing to thermal adaptation results in complete compensation of 427	

biomass-specific metabolic rates at organism and ecosystem scales. 428	

 429	

Discussion 430	
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Understanding how ecosystem-level properties like gross primary production (GPP) 431	

will respond to global warming is of central importance to predicting the response of 432	

the carbon cycle and contributing biogeochemical and food web processes to climate 433	

change. It is however a major challenge that requires an integration of physiological, 434	

ecological and evolutionary processes that together shape the emergent response of 435	

ecosystem metabolism to long-term changes in temperature. We have addressed this 436	

key problem by extending the general model of ecosystem metabolism from 437	

metabolic theory (Enquist et al. 2003, 2007; Allen et al. 2005; Kerkhoff et al. 2005) 438	

and testing its predictions at organism and ecosystem scales in a catchment of 439	

naturally warmed geothermal streams. Our model and analyses demonstrate that 440	

temperature-dependent selection on organism-level metabolic traits and shifts in 441	

ecosystem biomass can be as important as the direct effects of temperature on 442	

metabolism in shaping the temperature dependence of GPP.  443	

Our model predicted that when the temperature dependence of the metabolic 444	

normalisation constant across taxa inhabiting environments with different thermal 445	

histories is of a similar magnitude but opposing sign to that of organism-level 446	

metabolism, the two temperature sensitivities cancel, rendering biomass-specific 447	

metabolic rates independent of temperature. Measurements of the thermal response 448	

curves for photosynthesis and respiration from the autotrophs isolated across the 20 449	

ºC in situ gradient provided strong support for this prediction, with rates of gross 450	

photosynthesis invariant with respect to differences in average in situ temperatures 451	

and activation energies of organism-level gross photosynthesis and the photosynthetic 452	

normalisation, EF("7) , across taxa that were not significantly different and of 453	

opposite sign.  454	
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 The exponential decline in EF "7  along the in situ thermal gradient primarily 455	

reflected turnover in the composition of the dominant autotroph taxa across the 456	

streams driven by species sorting. This result is in line with work demonstrating 457	

declines in the metabolic normalisation constant across vascular plant species along 458	

broad-scale latitudinal gradients in terrestrial ecosystems (Atkin et al. 2015). 459	

However, we also found a comparable negative temperature dependence of EF("7) in 460	

the genera, Nostoc, which was distributed across 5 streams, indicating that 461	

evolutionary adaptation within taxa was also an important determinant of variation in 462	

this key trait among sites in our study. This finding is consistent with work 463	

demonstrating down-regulation of the metabolic normalisation in a unicellular alga 464	

via rapid (e.g. over 100 generations or 45 days) evolutionary adaptation to an 465	

experimental thermal gradient in the laboratory (Padfield et al. 2016). Collectively, 466	

this work highlights that changes in the metabolic normalisation result from 467	

temperature-driven selection both within and across species and can give rise to 468	

temperature invariance of metabolic rates along thermal gradients (Fig. 1b).   469	

Our work shows that the mode of thermal adaptation, in driving complete 470	

temperature compensation of organism-level metabolism, had important implications 471	

for understanding the temperature dependence of ecosystem-level GPP across the 472	

catchment. GPP increased with temperature across the catchment (Fig. 3a), but it did 473	

so because biomass also positively covaried with temperature (Fig. 3b). After 474	

accounting for biomass, GPP was independent of temperature (Fig. 3c), consistent 475	

with the effects of thermal adaptation in driving temperature compensation of 476	

organism-level metabolism. These findings confirm the predictions of our model and 477	

previous suggestions (Kerkhoff et al. 2005; Enquist et al. 2007) that local adaptation 478	

of metabolic traits can yield the paradoxical phenomenon that rates of ecosystem 479	
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metabolism are independent of temperature over thermal gradients that have been 480	

maintained over long timescales. 481	

A great deal of empirical and theoretical work is still required to develop a 482	

complete, general theory that predicts how ecosystem properties emerge from 483	

evolutionary and community processes. Our work adds to recent efforts to this end 484	

(Enquist et al. 2007; Yvon-Durocher & Allen 2012; Schramski et al. 2015) by 485	

showing how temperature dependence of ecosystem biomass and the organism-level 486	

photosynthetic normalisation alter the emergent temperature sensitivity of ecosystem-487	

level GPP. One important gap in the theory presented here is a mechanistic model for 488	

the temperature dependence of the metabolic normalisation owing to thermal 489	

adaptation. Our representation in equation 7 is merely a statistical description of an 490	

empirical phenomenon. The metabolic cold adaptation hypothesis seeks to explain the 491	

observation that species from cold environments often have higher mass-specific 492	

metabolic rates compared to counterparts from warmer regions as an evolutionary 493	

adaptation to compensate for lower biochemical reaction rates (Addo-Bediako et al. 494	

2002). However, a quantitative, first principles derivation of this pattern remains 495	

elusive. Recent work on autotrophs has proposed that down-regulation of respiration 496	

rates as organisms adapt to warmer environments is driven by a necessity to maintain 497	

the carbon-use efficiency above a threshold when rates of respiration are more 498	

sensitive to temperature than those of photosynthesis (Padfield et al. 2016). Yet, as 499	

we have shown here, the assumption that the activation energy of respiration is 500	

always larger than that of photosynthesis does not always hold.  501	

A better understanding of the mechanisms that give rise to the emergence of 502	

ecosystem properties is central to improving predictions of how global warming will 503	

alter the feedbacks between the biosphere on the carbon cycle (Levin 1998; Ziehn et 504	
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al. 2011; Booth et al. 2012). Incorporating evolution into earth system and ecosystem 505	

models should be considered as a priority, especially in light of our finding that 506	

thermal adaptation can completely override the direct effects of temperature on 507	

metabolic rates. However, despite much recent progress (Smith & Dukes 2013; 508	

Daines et al. 2014; Smith et al. 2016), substantial work remains.  509	

We capitalised on a ‘natural experiment’ using a geothermally heated stream 510	

catchment to show that thermal adaptation of photosynthesis drives an equivalence in 511	

biomass normalised GPP over a 20 ºC in situ temperature gradient. Our results 512	

suggest that local thermal adaptation plays a key role in determining how metabolic 513	

rates scale from populations to ecosystems and questions the assumption that the 514	

effects of temperature on enzyme kinetics can be applied to assess the long-term 515	

effects of temperature on ecosystem metabolism (Demars et al. 2016). They also shed 516	

light on the way in which the interplay between ecological and evolutionary processes 517	

could influence the response of the carbon cycle, and hence constituent food web and 518	

biogeochemical processes, to future environmental change.  519	

 520	
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 713	
Figure 1 | Scaling metabolism from organisms to ecosystems. (a) In a “hotter-is-714	
better” scenario, thermodynamic constraints entirely dictate individual metabolic rates 715	
such that adaptation can only occur by moving peak performance up and down an 716	
“across-species” thermal performance curve. (b) Under complete thermal adaptation, 717	
an equalisation of peak rates occurs through upregulation of metabolic rates at cold, 718	
and downregulation of rates at high temperatures. (c) The long-term ecosystem 719	
temperature response, 	5YZ , is an emergent property dependent on the thermal 720	
response of each ecosystem’s constituent individuals. (d) If local thermal adaptation 721	
drives temperature dependence in the metabolic normalisation (e.g. as expected under 722	
the ‘complete thermal adaptation’ hypothesis) or standing biomass is temperature 723	
dependent, the long-term temperature sensitivity of ecosystem metabolism may 724	
deviate away from the average activation energy of individual metabolism.  725	
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 726	
 727	
Figure 2 | Patterns of metabolic thermal adaptation. (a,b) Acute thermal response 728	
curves for gross photosynthesis and respiration were measured for each isolated 729	
autotroph from streams spanning average temperatures from 7 ºC (blue) to 27 ºC 730	
(red). Fitted lines are based on the best-fit parameters from non-linear least squares 731	
regression using the modified Sharpe-Schoolfield model (see Methods). (c) Metabolic 732	
rates normalised to 10 ºC, !("7) , decrease exponentially with increasing stream 733	
temperature for gross photosynthesis (green), net photosynthesis (blue) and 734	
respiration (red) (d) Rates of gross photosynthesis at the average stream temperature 735	
showed no temperature dependence. Fitted lines and coloured bands in (c) and (d) 736	
represent the best fit and the uncertainty of the fixed effects of the best linear mixed 737	
effect model.  738	
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 740	
 741	
 742	
Figure 3 | The effects of temperature and biomass on gross primary productivity. 743	
Gross primary productivity (a) and biomass density (b) increase with temperature 744	
across the catchment. (c) A multiple regression shows that variation in GPP is driven 745	
primarily by changes in biomass. (d) After accounting for biomass, rates of GPP are 746	
invariant with respect to temperature across the catchment. Fitted lines in (a, c, d) 747	
represent the best fit and the uncertainty of the fixed effects of the best linear mixed 748	
effect model (Table 1). In (b) the lines represent the fitted line and associated 749	
confidence interval of a linear regression.750	
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Table 1 | Results of the linear mixed effects model analysis for gross primary 751	
productivity (GPP) for all years and 2016 only. The results of the model selection 752	
procedure on the fixed effect terms are given and the most parsimonious models are 753	
highlighted in bold. Analyses reveal that GPP increased significantly with stream 754	
temperature. The analyses for 2016 show that the observed temperature response was 755	
driven by covariance between biomass and temperature rather than the direct effects 756	
of temperature on rates of photosynthesis per se. 757	

 758	

  759	

Model d.f. AICc log Lik L-ratio P 

 
All years : 
 
random effects structure 
    random = 1 | stream/year/day 
 

     

fixed effects structure 
1. ln GPP ~ 1 + stream temperature  

 
2. ln flux ~ 1  

 

 
6 
 
5 

 
82.9 

 
85.8 

 
-34.0 

 
-36.9 

 
 
 

5.80 

 
 
 

0.016 
 

2016 only : 
 
random effects structure 
    random = 1 | stream/day 
 

     

fixed effects structure 
1. ln GPP ~ 1 + stream temperature  + 

biomass 
2. ln GPP ~ 1 + biomass 
3. ln flux ~ 1  

 
6 
 
5 
4 

 
48.8 

 
45.3 
45.8 

 
-14.9 

 
-15.3 
-17.4 

 
 
 

0.87 
4.25 

 
 
 

0.35 
0.04 
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Section 1. Supplementary Tables and Figures 783	
 784	
 785	
 786	

 787	
Figure S1. Map of the geothermal stream system in a valley near Hveragerdi, SW 788	

Iceland. Temperatures measured a various locations across the catchment are also 789	

given. 790	

 791	

  792	
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Table S1. Mean, minimum and maximum temperature values averaged across days 793	
and years (May 2015, May 2016) in the 15 sites. Values are based on a temperature 794	
estimates taken at 1 minute intervals. The streams are listed with increasing mean 795	
temperature. 796	
 797	

   798	
  Temperature (ºC) 
Stream Mean Minimum Maximum 
S9 6.8 5.3 7.9 
S7 : high 7.1 6.7 7.9 
S4 7.3 5.1 8.9 
S1A 8 4.5 11.8 
S1B 8.2 7.1 9.7 
S6 11 7.3 14.1 
S7 : low 11.4 10.4 12.1 
S1 : low 12.1 9.7 16.3 
S5 : low 13.2 12.1 14.8 
S10 14.4 10.4 16.9 
S11A 14.4 12.4 16.6 
S1 : high 16.5 13.3 18.8 
S11B : high 17.2 14.7 19.6 
S11B : low 21.5 19.8 23.4 
S5 : high 26.9 24.8 28.6 
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Table S2. Key physical and chemical features of the 15 sites investigated 
 

 
stream width (m) depth (m) velocity (m s-1) pH conductivity (µS m-1) nutrients (µmol L-1) 

NO2 NO3 NH4 PO4 
S9 0.41 0.027 0.11 7.57 173.3 0.29 0.23 0.27 0.86 
S7 : high 0.4 0.053 0.3 7.43 359.1 0.22 0.44 0.28 0.7 
S4 0.46 0.06 0.36 7.27 204.6 0.2 0.08 0.22 0.14 
S1A 0.59 0.07 0.5 7.40 230.9 0.25 0.4 0.7 0.54 
S1B 0.42 0.058 0.14 7.50 462.4 0.28 0.25 0.18 0.17 
S6 0.19 0.029 0.12 7.43 289.6 0.22 0.4 0.21 1.02 
S7 : low 0.3 0.043 0.4 7.43 304.7 0.22 0.44 0.28 0.7 
S1 : low 1.1 0.13 0.81 7.36 305.2 0.26 0.26 0.48 0.35 
S5 : low 0.32 0.041 0.09 7.63 273.6 0.22 0.57 0.17 0.14 
S10 0.22 0.109 0.24 7.53 167.0 0.35 - 0.24 0.74 
S11A 0.71 0.078 0.77 7.17 235.7 0.24 0.29 0.19 0.55 
S1 : high 0.74 0.12 0.61 7.20 321.7 0.26 0.26 0.48 0.35 
S11B : high 0.31 0.042 0.33 7.33 407.9 0.25 0.25 0.27 1.25 
S11B : low 0.4 0.042 0.33 7.33 407.9 0.25 0.25 0.27 1.25 
S5 : high 0.17 0.037 0.06 7.63 319.2 0.22 0.57 0.17 0.27 
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Table S3. Pearson correlation coefficients between temperature and physical and 
chemical variables 
  1	

Variable r P value 
width -0.14 0.56 
depth 0.07 0.77 

velocity 0.04 0.87 
pH -0.03 0.91 

conductivity -0.02 0.92 
NO2 -0.001 0.47 
NO3 0.18 0.47 
NH4 -0.19 0.44 
PO4 0.07 0.77 
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Table S4. The photosynthetic traits governing the thermal response curves for the dominant biofilms of each stream.   2	

  3	

Stream Year Taxon 

Net photosynthesis Respiration Gross photosynthesis 
ln np(Tc) 
(µmol O2 µg 
Chla-1 h-1 @ 

10ºC) 
Enp 
(eV) 

Eh 
(eV) Th (ºC) Topt 

(ºC) 
ln r(Tc) 
(µmol O2 
µg Chla-1 h-

1 @ 10ºC) 

Er 
(eV) 

Eh 
(eV) 

Th 
(ºC) 

Topt 
(ºC) 

ln gp(Tc) 
(µmol O2 µg 
Chla-1 h-1 @ 

10ºC) 

Egp 
(eV) 

Eh 
(eV) 

Th 
(ºC) 

Topt 
(ºC) 

S4 2016 Cladophora 3.9 1.03 4.39 30.6 28.48 2.48 1.01 3.78 31.66 29.53 4.2 0.92 9.19 32.49 30.57 

S1A 2016 Cladophora 4.74 0.79 2.58 28.33 25.88 3.07 0.64 4.36 37.28 33.97 4.77 0.89 2.71 26.98 24.95 
S1A 2016 Nostoc 4.37 0.52 8.77 36.87 34.28 3.14 0.44 4.26 38.83 34.63 4.8 0.47 2.72 35.36 30.71 
S4 2015 Cladophora 3.55 0.87 1.78 21.67 21.52 1.71 0.45 17.21 43.78 41.97 3.61 0.53 2.18 30.18 26.1 

S7 : high 2016 Cladophora 4.35 0.73 7.04 31.77 29.33 3.85 0.8 2.94 31.06 28.42 4.48 0.93 3.51 28.24 25.99 

S7 : high 2016 Nostoc 2.67 0.98 3.57 34.32 32.1 1.27 0.93 1.77 34.12 34.59 3.33 0.62 9.05 38.83 36.43 

S7 : high 2015 Feathermoss 1.32 0.77 4.99 34.19 31.44 1.26 0.55 2.13 42.8 38.64 1.99 0.66 8.81 35.6 33.28 

S11A 2016 Nostoc 2.67 1.91 5.29 28.47 27.62 1.13 0.71 5.85 45.74 42.79 2.95 1.57 4.37 28.46 27.43 

S10 2016 Nostoc 2.68 1.08 9.9 38.53 36.76 -0.66 1.64 3.15 34.74 34.94 3.42 0.85 7.12 38.39 36.06 

S1 : high 2016 Nostoc 3.77 1.03 8.87 39.61 37.69 1.33 1.09 3.23 41.01 39.26 4.36 0.85 3.66 37.86 35.15 

S11b : high 2015 Feathermoss 1.82 1.12 2.64 24.53 23.64 1.1 0.48 1.64 49.7 45 2.08 1.14 2.5 25.19 24.64 
S5 : high 2015 Anabaena 2.58 0.54 5.9 42.5 39.19 0.68 0.66 2.04 39.71 36.65 2.73 0.55 5.69 42.37 39.02 

S5 : high 2016 Anabaena 2.66 0.85 4.02 37.4 34.71 0.45 1.58 2.35 29.63 32.12 2.79 0.77 5.63 39.89 37.14 
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Table S5. Results of a linear effects model analysis for each metabolic trait with fixed 4	
effects of stream temperature and metabolic flux (see Methods). Significant models 5	
are highlighted in bold. 6	

  7	

Metabolic 
Trait 

Effect d.f. AIC Log Lik L-ratio P value 

b(Tc) ~ 1 + stream temperature * 
metabolic flux 
~ 1 + stream temperature 
+ metabolic flux 
~ 1 + metabolic flux 

8 
 
6 

 
5 

96.94 
 

94.89 
 

 98.28 

-40.47 
 

-41.43 
 

-44.14 

 
 

1.93 
 

5.41 

 
 

0.37 
 

0.02 
Ea ~ 1 + stream temperature * 
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 8	
 9	

 10	
Fig S2. Photosynthesis irradiance curve used to determine optimal light for the 11	

acute temperature response of gross photosynthesis. Rates of net photosynthesis 12	

were measured at various light intensities at the average stream temperature of each 13	

biofilm. Here data are presented for Nostoc spp. in stream 7 (high) at 7.1 ºC. Lines 14	

represent the best fit to the modified Eiler’s model using non-linear least squares 15	

regression (See methods). 16	
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 18	
Fig S3. Daily cycles in temperature from each stream across days and years. 19	

Each panel is a single day of temperature variation split by each unique stream and 20	

across years (2015 or 2016). The data is split into “night” (black points) and “day” 21	

(yellow points) by defining night as < 5µmol m-2 s-1 (see Methods). 22	
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 24	
Fig S4. Daily cycles in light from across days and years. Each panel is a single day 25	

of light variation split by each unique stream and across years (2015 or 2016). The 26	

data is split into “night” (black points) and “day” (yellow points) by defining night as 27	

< 5µmol m-2 s-1 (see Methods). 28	
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 31	

32	
Fig S5. Daily cycles in metabolic flux from each site across days and years. Each 33	

panel is a single day of metabolic rate after accounting for reaeration (ΔDO – K; see 34	

Methods) split by each unique stream and across years (2015 or 2016). The data is 35	

split into “night” (black points) and “day” (yellow points) by defining night as < 36	

5µmol m-2 s-1 (see Methods). 37	
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 39	
Fig S6. Patterns of thermal adaptation in Nostoc spp. only.  (a) (a,b) Acute thermal 40	

response curves for gross photosynthesis and respiration were measured for each 41	

isolated autotroph from streams spanning average temperatures from 7 ºC (blue) to 17 42	

ºC (red) for stream biofilms dominated by Nostoc spp. (c) Optimum temperatures 43	

were consistently higher than the average stream temperature. (c) Metabolic rates 44	

normalised to 10 ºC, !(#$) , decrease exponentially with increasing stream 45	

temperature for gross photosynthesis (green), net photosynthesis (blue) and 46	

respiration (red). (d) Rates of gross photosynthesis at the average stream temperature 47	

showed no temperature dependence. Grey points and lines highlight the other taxa to 48	

facilitate direct comparison to the relationship for Nostoc spp. 49	
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	 46	

Section 2. Supplementary Methods.  51	

Derivation of the activation energy of net photosynthesis. The rate of net 52	

photosynthesis, &'(#), at temperature, #, is equal to the difference between the rates 53	

of gross photosynthesis, ('(#), and respiration, )(#). Equation 5 (main text) implies 54	

that the temperature sensitivity of net photosynthesis will not follow a simple 55	

Boltzmann-Arrhenius relationship. Instead, the apparent activation energy of net 56	

photosynthesis, *+,, can be approximated in the vicinity of #$ as (Yvon-Durocher et 57	

al. 2014),  58	

*+, ≡ ./+(+, 0 )
. 1

23 0405
= 	 89:	;, 05 <	8=>(05)

;,(05)<	>(05)
      (S1) 59	

which is equal to an average of the activation energies of *;, and *>, weighted by 60	

their respective normalisations, (' #$  and ) #$ . Using this approximation, we can 61	

then express the temperature dependence of &' as  62	

&' # = &' #$ ?@A8B:
1
235C

1
23     (S2) 63	

where &' #$ = (' #$ − ) #$ . We quantified the accuracy of this approximation 64	

by comparing *+,  derived using eq. S1 to the apparent activation energy of net 65	

photosynthesis measured by fitting eq. (1) to the net photosynthesis data (see 66	

Methods). The derived and measured estimates of *+,were positively correlated with 67	

a slope that had confidence intervals which overlapped unity (slope = 1.22, 95% CI: 68	

0.78 – 1.65)  and R2 = 0.75 (Fig. S7). 69	

  70	
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 71	
Figure S7. Comparison between measured and derived activation energies for 72	

net photosynthesis. Activation energies of net photosynthesis measured from fitting 73	

the rate data to the modified Sharpe-Schoolfield equation (eq. 1) correlate well with 74	

the derived activation energy of net photosynthesis calculated using equation S1. The 75	

fitted line is the best fit of a linear model and the 1:1 line is shown for comparison.  76	
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Comparison of measured and modelled reaeration rates. To assess the robustness 79	

of our modelled values of reaeration, we compared measurements of the reaeration 80	

rate made in nearby streams in Iceland with comparable physical characteristics using 81	

propane additions (from Demars et al. 2011), to values estimated using the surface 82	

renewal model (eq. 14, main text). In Demars et al. (2011), the reaeration rate was 83	

measured using a tracer study, where propane was bubbled continuously across the 84	

width of the stream at an upstream station. Water samples were taken at a downstream 85	

station and analysed by gas chromatography back in the laboratory (see for a more 86	

detailed description of the methods). The change in propane concentration the over 87	

the reach and the travel time were used to estimate the reaaeration rate, E (min-1).  88	

 We compared the measured values of reaeration, E (min-1), from Demars et al. 89	

(2011) to estimated values of E derived Eq. 14 (main text) and measurements of 90	

velocity, depth and temperature for those streams. We found a strong correlation 91	

between modelled and measured values of E with 95% confidence intervals on the 92	

slope that included unity (slope = 1.13, 95% CI: 0.76 – 1.50) and an R2 = 0.61 (Fig. 93	

S8). Consequently, we are confident that estimates of reaeration derived from the 94	

surface renewal model are robust for the streams included in our survey. 95	
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	97	

Figure S8. Comparison of modelled and measured rates of reaeration. Rates of 98	

measured reaeration using a propane tracer study are positively correlated with those 99	

derived using the surface renewal model (eq. 14; main text) with slope that was 100	

statistically indistinguishable from unity.  101	
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