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2	

Abstract		25	

Currently,	non-invasive	methods	for	studying	the	human	brain	do	not	reliably	measure	spike-rate-26	
dependent	 signals,	 independent	 of	 other	 responses	 such	 as	 hemodynamic	 coupling	 (fMRI)	 and	27	
subthreshold	neuronal	 synchrony	 (oscillations	and	event-related	potentials).	 In	contrast,	 invasive	28	
methods	 –	 animal	 microelectrode	 recordings	 and	 human	 electrocorticography	 (ECoG)	 –	 have	29	
recently	measured	broadband	power	elevation	in	field	potentials	(~50-200	Hz)	as	a	proxy	for	the	30	
locally	 averaged	 spike	 rates.	 Here,	we	 sought	 to	 detect	 and	 quantify	 stimulus-related	 broadband	31	
responses	 using	 magnetoencephalography	 (MEG)	 in	 individual	 subjects.	 Because	 extracranial	32	
measurements	 like	 MEG	 have	 multiple	 global	 noise	 sources	 and	 a	 relatively	 low	 signal-to-noise	33	
ratio,	we	developed	an	automated	denoising	technique,	adapted	from	(Kay	et	al.,	2013),	that	helps	34	
reveal	 the	broadband	signal	of	 interest.	 Subjects	viewed	12-Hz	contrast-reversing	patterns	 in	 the	35	
left,	 right,	 or	 bilateral	 visual	 field.	 Sensor	 time	 series	were	 separated	 into	 an	 evoked	 component	36	
(12-Hz	amplitude)	and	a	broadband	component	(60–150	Hz,	excluding	stimulus	harmonics).	In	all	37	
subjects,	 denoised	broadband	 responses	were	 reliably	measured	 in	 sensors	over	occipital	 cortex.	38	
The	spatial	pattern	of	the	broadband	measure	depended	on	the	stimulus,	with	greater	broadband	39	
power	 in	 sensors	 contralateral	 to	 the	 stimulus.	 Because	we	 obtain	 reliable	 broadband	 estimates	40	
with	 relatively	 short	 experiments	 (~20	 minutes),	 with	 a	 sufficient	 signal-to-noise-ratio	 to	41	
distinguish	responses	to	different	stimuli,	we	conclude	that	MEG	broadband	signals,	denoised	with	42	
our	method,	 offer	 a	practical,	 non-invasive	means	 for	 characterizing	 spike-rate-dependent	neural	43	
activity	for	a	wide	range	of	scientific	questions	about	human	brain	function.	44	

Significance	Statement		45	

Neuronal	 activity	 causes	 perturbations	 in	 nearby	 electrical	 fields.	 These	 perturbations	 can	 be	46	
measured	 non-invasively	 in	 the	 living	 human	 brain	 using	 EEG	 and	MEG.	 These	 techniques	 have	47	
emphasized	two	kinds	of	measurements:	oscillations	and	event-related	responses.	A	 third	 type	of	48	
signal,	a	stimulus-related	increase	in	power	spanning	a	wide	range	of	frequencies	(‘broadband’),	is	49	
routinely	measured	in	invasive	recordings,	but	not	with	MEG	and	EEG.	This	broadband	response	is	50	
of	 great	 interest	 because	 unlike	 oscillations	 and	 event-related	 responses,	 it	 is	 correlated	 with	51	
neuronal	 spike	 rates.	Here	we	 report	 quantitative,	 spatially	 specific	measurements	 of	 broadband	52	
fields	 in	 individual	 human	 subjects	 using	 MEG.	 These	 results	 demonstrate	 that	 a	 spike-rate-53	
dependent	measure	of	brain	activity	can	be	obtained	non-invasively	from	the	living	human	brain.	54	
 55	
Key words:  MEG, spectral analysis, denoising, broadband, visual cortex, steady state visual evoked 56	
fields 57	
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3	

Introduction	59	

The	time-varying	electric	and	magnetic	fields	near	neural	tissue	provide	an	indirect	but	rich	source	60	
of	 information	 about	 the	 activity	 of	 neural	 populations	 (reviewed	by	Buzsaki	 et	 al.,	 2012).	These	61	
signals	 include	 rapid,	 ‘evoked’	 responses	 that	 are	 time-locked	 to	 stimulus	 events	 (Norcia	 et	 al.,	62	
2015),	 oscillatory	 responses	 (Berger,	 1929),	 and	non-oscillatory,	 broadband	 signals	 (Miller	 et	 al.,	63	
2007;	Miller	 et	 al.,	 2009c).	 Broadband	 signals	 associated	with	 sensory	 or	motor	 tasks	 have	 been	64	
widely	 observed	 in	 human	 electrocorticography,	 or	 ‘ECoG’,	 (Miller	 et	 al.,	 2014)	 and	 animal	65	
microelectrode	 recordings	 (Henrie	 and	 Shapley,	 2005).	 The	 broadband	 signal	 is	 an	 elevation	 in	66	
spectral	power,	 typically	 spanning	50	 to	>200	Hz	 (Miller	et	 al.,	 2009b),	 and	has	attracted	a	great	67	
deal	of	attention	for	several	reasons.		68	

First,	 the	broadband	signal	 is	correlated	with	 the	 level	of	neural	activity	 (multi-unit	spiking),	and	69	
hence	 provides	 a	 way	 to	 study	 population-level	 spiking	 activity	 in	 a	 cortical	 region	 (Liu	 and	70	
Newsome,	2006;	Manning	et	al.,	2009;	Ray	and	Maunsell,	2011).	Second,	the	broadband	signal	has	a	71	
smaller	 point	 spread	 function	 on	 the	 cortical	 surface	 than	 low	 frequency	 oscillations	 (8-25	 Hz)	72	
(Miller	 et	 al.,	 2009c;	 Hermes	 et	 al.,	 2012b),	 and	 is	 therefore	 useful	 both	 for	 characterizing	 local	73	
properties	of	 cortex	and	as	a	 tool	 for	neural	prosthetics	 (Schalk	and	Leuthardt,	2011).	Third,	 the	74	
broadband	signal	 is	correlated	with	a	portion	of	 the	 fMRI	response	and,	 together	with	other	 field	75	
potential	 measures,	 can	 be	 used	 to	 understand	 neural	 factors	 underlying	 an	 observed	 BOLD	76	
response	 (Hermes	 et	 al.,	 2012b;	 Lima	 et	 al.,	 2014).	 Finally,	 because	 it	 can	 be	 measured	 at	 high	77	
temporal	 resolution,	 the	 broadband	 signal	 is	 useful	 for	 characterizing	 the	 temporal	 dynamics	 of	78	
neuronal	activity	(Honey	et	al.,	2012;	Podvalny	et	al.,	2017).	79	

In	 contrast	 to	 intracranial	 recordings,	 in	 the	 extracranial	 measures	 of	 electroencephalography	80	
(EEG)	 and	 magnetoencephalography	 (MEG),	 broadband	 responses	 have	 not	 been	 widely	 and	81	
reliably	 observed.	 One	 significant	 challenge	 in	 identifying	 broadband	 in	 extracranial	measures	 is	82	
that	 non-neural	 noise	 sources,	 particularly	 from	 miniature	 saccades,	 can	 be	 confounded	 with	83	
experimental	 designs,	 making	 neurally	 induced	 broadband	 responses	 hard	 to	 isolate	 (Yuval-84	
Greenberg	et	al.,	2008;	Yuval-Greenberg	and	Deouell,	2009,	2011;	Carl	et	al.,	2012).		85	

A	second	challenge	in	measuring	broadband	extracranially	 is	that	the	response	is	most	evident	 in	86	
high	frequencies	(>	60	Hz),	and	the	signal	amplitude	at	these	frequencies	is	low.	While	intracranial	87	
recordings	have	relatively	high	signal-to-noise	ratios	(SNR)	even	at	these	higher	frequencies	(Miller	88	
et	al.,	2014),	EEG	and	MEG	do	not	(Hämäläinen	et	al.,	1993).	Broadband	signals	can	extend	to	lower	89	
frequencies	(Harvey	et	al.,	2013;	Winawer	et	al.,	2013),	but	oscillatory	processes	in	lower	frequency	90	
bands	often	mask	broadband	measures	in	this	range	(Miller	et	al.,	2009c).		91	

A	 third	 challenge	 is	 the	 potential	 confound	 between	 broadband	 signals	 and	 narrowband	 gamma	92	
oscillations.		Narrowband	gamma	oscillations	have	been	successfully	measured	with	MEG	and	EEG,	93	
particularly	in	visual	cortex	for	high	contrast	gratings	(Hoogenboom	et	al.,	2006;	Fries	et	al.,	2008;	94	
Muthukumaraswamy	 and	 Singh,	 2013).	 The	 frequency	 range	 of	 these	 oscillations	 (30-100	 Hz)	95	
overlaps	 the	 broadband	 range,	 but	 the	 narrowband	 and	 broadband	 signals	 reflect	 biologically	96	
different	processes	(Henrie	and	Shapley,	2005;	Miller	et	al.,	2009b;	Ray	and	Maunsell,	2011;	Miller	97	
et	al.,	2014).	The	ability	to	measure	one	does	not	imply	the	ability	to	measure	the	other.			98	

Here,	 we	 sought	 to	 measure	 broadband	 signals	 quantitatively	 in	 the	 human	 brain	 using	 a	 non-99	
invasive	 method	 (MEG).	 In	 order	 for	 this	 important,	 spike-dependent	 signal	 to	 be	 useful,	 it	 is	100	
necessary	to	measure	 it	reliably	 in	 individual	subjects,	with	a	high	SNR.	A	high	SNR	is	essential	 if	101	
this	signal	will	be	widely	used	to	study	differences	across	stimuli,	tasks,	or	groups.	We	developed	a	102	
novel,	automated	MEG	denoising	algorithm	adapted	 from	prior	 fMRI	work	(Kay	et	al.,	2013).	Our	103	
experiments	were	designed	 to	 elicit	 spatially	 localized	neural	 responses	 in	visual	 cortex,	 and	eye	104	
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4	

movements	were	measured	in	a	subset	of	subjects	to	test	for	possible	confounds	from	non-neural	105	
sources.		106	

Methods	107	

Data	acquisition	108	

Subjects		109	

Eight	 subjects	 (five	 females),	 ages	 20-42	 years	 (M	 =	 28.4	 /	 SD	 =	 6.7	 years)	 with	 normal	 or	110	
corrected-to-normal	vision	participated	in	the	NYU	study.	An	additional	4	subjects	(M	=	27.0	/	SD	=	111	
7.4	 years)	 participated	 in	 the	 same	 experiment	 at	 Center	 for	 Information	 and	 Neural	 Networks	112	
(CiNet),	National	Institute	of	Information	and	Communications	Technology	(NICT)	in	Osaka,	Japan.	113	
Observers	provided	written	informed	consent.	The	experimental	protocol	was	in	compliance	with	114	
the	safety	guidelines	for	MEG	research	and	was	approved	by	the	University	Committee	on	Activities	115	
involving	 Human	 Subjects	 at	 New	 York	 University	 and	 by	 the	 ethics	 committee	 of	 the	 National	116	
Institute	of	Information	and	Communications	Technology	(NICT).	117	

Display	118	

Stimuli	were	generated	using	MATLAB	(MathWorks,	MA)	and	PsychToolbox	(Brainard,	1997;	Pelli,	119	
1997)	on	a	Macintosh	 computer.	NYU:	 Images	were	presented	using	an	 InFocus	LP850	projector	120	
(Texas	Instruments,	Warren,	NJ)	with	a	resolution	of	1024	x	768	pixels	and	refresh	rate	of	60	Hz.	121	
Images	 were	 projected	 via	 a	 mirror	 onto	 a	 front-projection	 translucent	 screen	 at	 a	 distance	 of	122	
approximately	 42	 cm	 from	 the	 subject’s	 eyes	 (field	 of	 view:	 22	 deg	 ×	 22	 deg).	 The	 display	 was	123	
calibrated	 with	 the	 use	 of	 a	 LS-100	 luminance	 meter	 (Konica	 Minolta,	 Singapore)	 and	 gamma-124	
corrected	using	a	linearized	lookup	table.	CiNet:	The	display	parameters	were	similar,	except	that	125	
the	projector	was	PT-DZ680	(Panasonic,	 Japan),	with	800	x	600	resolution	and	60	Hz,	and	61	cm	126	
viewing	distance.	127	

Stimuli	128	

The	 stimuli	 were	 contrast-reversing	 dartboard	 patterns	 (12	 square	 wave	 contrast	 reversals	 per	129	
second),	windowed	within	either	a	half	circle	(left	or	right	visual	field)	or	full	circle	(bilateral	visual	130	
field)	aperture,	with	a	diameter	of	22	degrees	at	NYU	(26	degrees	at	CiNet).	Mean	luminance	gray	131	
(206	cd/m²	 (NYU),	83	cd/m²	 (CiNet))	was	used	as	background	color	 for	 the	dartboards	and	was	132	
shown	in	the	full	field	during	blank	trials	between	stimulus	periods	(Figure	1).		133	

Experimental	design	134	

One	 run	 consisted	 of	 six	 seconds	 flickering	 ‘on’	 periods,	 alternated	 with	 six	 seconds	 ‘off’	 mean	135	
luminance	periods,	repeated	6	times	(72	seconds).	The	order	of	the	left-,	right-	or	both-visual	field	136	
apertures	was	 random.	There	was	 a	 fixation	dot	 in	 the	middle	 of	 the	 screen	 throughout	 the	 run,	137	
switching	 between	 red	 and	 green	 at	 random	 intervals	 (averaging	 3	 seconds).	 The	 subjects	were	138	
instructed	 to	maintain	 fixation	 throughout	 the	run	and	press	a	button	every	 time	the	 fixation	dot	139	
changed	 color.	 The	 subjects	 were	 asked	 to	 minimize	 their	 blinking	 and	 head	 movements.	 After	140	
every	72-second	run,	there	was	a	short	break	(typically	30-s	to	1	minute).	Each	subject	participated	141	
in	15	runs.		142	

 143	
 144	
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5	

	145	
Figure	1.		Overview	of	experimental	design.		Large-field	on-off	stimuli	were	presented	in	6-s	blocks	consisting	of	either	146	
both-,	 left-,	 or	 right-hemifield	 flicker,	 alternating	 with	 6-s	 blocks	 of	 blanks	 (mean	 luminance).	 A	 run	 consisted	 of	 six	147	
stimulus	and	six	baseline	blocks,	after	which	the	observer	had	a	short	break.	The	figure	shows	the	first	half	of	one	run.	148	
Within	a	run,	the	order	of	both-,	left-,	and	right-field	flickering	periods	was	randomized.	Fifteen	runs	were	obtained	per	149	
observer,	so	that	there	were	30	repetitions	of	each	stimulus	type	across	the	15	runs.	The	fixation	dot	is	increased	in	size	150	
for	visibility.	Actual	fixation	dot	was	0.17	degrees	in	radius	(6	pixels).	151	

MEG	signal	acquisition	152	

Data	 for	 the	 main	 experiment	 were	 acquired	 continuously	 with	 a	 whole	 head	 Yokogawa	 MEG	153	
system	 (Kanazawa	 Institute	 of	 Technology,	 Japan)	 containing	 157	 axial	 gradiometer	 sensors	 to	154	
measure	brain	activity	and	3	orthogonally-oriented	reference	magnetometers	located	in	the	dewar	155	
but	 away	 from	 the	 brain	 area,	 used	 to	 measure	 environmental	 noise.	 The	 magnetic	 fields	 were	156	
sampled	at	1000	Hz	and	were	filtered	during	acquisition	between	1	Hz	(high	pass)	and	200	Hz	(low	157	
pass).	158	

In	a	 subset	of	 subjects	 (S6-S8),	 eye	movements	were	 recorded	by	an	EyeLink	1000	 (SR	Research	159	
Ltd.,	Osgoode,	ON,	Canada).	Right	eye	position	data	were	continuously	recorded	at	a	rate	of	1000	160	
Hz.	Calibration	and	validation	of	the	eye	position	was	conducted	by	having	the	subject	saccade	to	161	
locations	 on	 a	 5-point	 grid.	 Triggers	 sent	 from	 the	 presentation	 computer	were	 recorded	 by	 the	162	
EyeLink	acquisition	computer.	The	same	 triggers	were	recorded	simultaneously	by	 the	MEG	data	163	
acquisition	 computer,	 allowing	 for	 synchronization	between	 the	 eye-tracking	 recording	 and	MEG	164	
recording.		165	

The	4	data	 sets	 acquired	with	 an	Elekta	Neuromag	 at	 CiNet	 and	were	pre-processed	 in	MATLAB	166	
(MathWorks,	MA,	USA)	using	 the	 identical	 code	 and	procedure.	The	CiNet	data	were	 acquired	 as	167	
102	pairs	of	planar	gradiometer	 signals	 (204	 sensors).	Data	were	analyzed	 from	each	of	 the	204	168	
gradiometers	separately	and	paired	into	102	locations	for	mesh	visualization	(e.g.,	 the	broadband	169	
signal-to-noise-ratio	for	sensor	121	and	122	out	of	204	would	be	averaged	to	show	one	signal-to-170	
noise-ratio	in	the	position	of	sensor	61	out	of	102).		171	

Data	analysis	172	

Reproducible	computation	and	code	sharing	173	

All	 analyses	were	 conducted	 in	MATLAB.	 In	 the	 interest	 of	 reproducible	 computational	methods,	174	
both	 the	 analysis	 code	 and	 the	 MEG	 data	 for	 all	 results	 reported	 in	 this	 paper	 will	 be	 publicly	175	
available	 via	 the	 Open	 Science	 Framework	 at	 the	 url	 https://osf.io/c59sh/	 (doi	176	
10.17605/OSF.IO/C59SH).	Figures	2-15	(except	3)	can	be	reproduced	by	running	scripts	from	the	177	
GitHub	repository	of	the	form	dfdMakeFigure4.m,	or	the	master	script	dfdMakeAllFigures.m.	178	

...

Time

30 ×

6 s

22°
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6	

MEG	preprocessing		179	

For	 some	analyses,	 data	were	 environmentally	 denoised	using	published	 algorithms	prior	 to	 any	180	
further	analysis.	This	enabled	us	to	compare	data	denoised	with	our	new	algorithm	alone,	or	with	181	
our	 new	 algorithm	 following	 environmental	 denoising.	 For	 the	 NYU	 data,	 we	 used	 either	 of	 two	182	
algorithms.	One	was	 the	 continuously	 adjusted	 least-square	method	 (CALM;	Adachi	 et	 al.,	 2001),	183	
applied	to	data	with	a	block	length	of	20	seconds	(20,000	time	samples).	The	second	algorithm	was	184	
time-shifted	 principal	 component	 analysis	 (TSPCA;	 de	 Cheveigne	 and	 Simon,	 2007),	with	 a	 block	185	
length	 of	 20	 seconds	 and	 shifts	 of	 up	 to	 +/-	 100	 ms	 in	 1	 ms	 steps.	 	 For	 the	 CiNet	 data,	 the	186	
environmental	 denoising	 algorithm	 was	 temporal	 signal	 space	 separation	 (‘tSSS’)	 (with	 default	187	
parameters,	 e.g.	 inside	 and	 outside	 expansion	 orders	 of	 8	 and	 3,	 respectively;	 80	 inside	 and	 15	188	
outside	harmonic	terms;	correlation	limit	of	0.98).		189	

The	 FieldTrip	 toolbox	 (Oostenveld	 et	 al.,	 2011)	 was	 used	 to	 read	 the	 data	 files	 (either	190	
environmentally-denoised	 or	 raw).	 For	 all	 subsequent	 analyses,	 custom	 code	 was	 written	 in	191	
MATLAB.	Using	either	the	environmentally-denoised	data	or	raw	data,	the	signals	were	divided	into	192	
short	 epochs.	 Each	 stimulus	 type	 (left-,	 right-,	 or	 both-hemifield,	 or	 blank)	was	 presented	 in	 6-s	193	
blocks,	 and	 these	 blocks	were	 divided	 into	 6	 non-overlapping	 1-s	 epochs.	We	discarded	 the	 first	194	
epoch	 of	 each	 6-s	 block	 to	 avoid	 the	 transient	 response	 associated	with	 the	 change	 in	 stimulus.	195	
After	 epoching	 the	 data,	we	 used	 a	 simple	 algorithm	 to	 detect	 outliers.	 	We	 first	 defined	 a	 ‘data	196	
block’	 as	 the	1-s	 time	series	 from	one	epoch	 for	one	sensor.	 So	a	 typical	 experiment	 consisted	of	197	
~170,000	data	blocks	(157	sensors	x	1080	1-s	epochs).	We	computed	the	standard	deviation	of	the	198	
time	series	within	each	data	block,	and	labeled	a	block	as	 ‘bad’	if	 its	standard	deviation	was	more	199	
than	20	times	smaller	or	20	times	larger	than	the	median	standard	deviation	across	all	data	blocks.	200	
The	time	series	for	bad	data	blocks	were	replaced	by	the	time	series	spatially	 interpolated	across	201	
nearby	sensor	(weighting	sensors	 inversely	with	the	distance).	Further,	 if	more	than	20%	of	data	202	
blocks	were	 labeled	bad	 for	 any	 sensor,	 then	we	 removed	 the	entire	 sensor	 from	analysis,	 and	 if	203	
more	 than	 20%	of	 data	 blocks	were	 bad	 for	 any	 epoch,	 then	we	 removed	 the	 entire	 epoch	 from	204	
analysis.	Typically,	 two	to	seven	sensors	and	2%-4%	of	the	epochs	were	removed	per	session	for	205	
the	NYU	data.	For	the	CiNet	datasets,	almost	no	sensors	or	epochs	were	removed	(one	sensor	and	206	
one	 epoch	 across	 all	 data	 sets).	 These	 preprocessing	 steps	 were	 implemented	 with	207	
dfdPreprocessData.m.		208	

Computation	of	stimulus	locked	and	broadband	responses	209	

Data	were	summarized	as	two	values	per	sensor	and	per	epoch:	a	stimulus-locked	and	a	broadband	210	
power	 value.	 These	 calculations	were	 done	 by	 first	 computing	 the	 Fourier	 transform	of	 the	 time	211	
series	within	each	epoch	(Figure	2A,B).	212	

The	stimulus-locked	signal	was	then	defined	as	the	amplitude	at	the	stimulus	locked	frequency	(12	213	
Hz).	 The	 broadband	 response	 was	 computed	 as	 the	 geometric	 mean	 of	 the	 power	 across	214	
frequencies	within	 the	 range	 of	 60-150	Hz,	 excluding	multiples	 of	 the	 stimulus	 locked	 frequency	215	
(see	also	Figure	2	AB).	The	geometric	mean	is	the	exponential	of	the	average	of	the	log	of	the	signal.	216	
We	averaged	in	the	log	domain	because	log	power	is	better	approximated	by	a	normal	distribution	217	
than	 is	power,	which	 is	highly	skewed.	These	 two	calculations	converted	 the	MEG	measurements	218	
into	 a	 broadband	 and	 a	 stimulus-locked	 summary	metric,	 each	 sampled	once	per	 second	 (Figure	219	
2C).	 	 The	 two	 summary	 metrics	 were	 computed	 by	 the	 functions	 getstimlocked.m	 and	220	
getbroadband.m.		221	

We	then	bootstrapped	across	epochs	to	compute	confidence	intervals	on	the	signal	estimates	(per	222	
sensor	 and	per	 condition).	 For	 each	of	1000	bootstraps,	we	 sampled	n	 epochs	with	 replacement,	223	
where	n	is	the	total	number	of	epochs	in	the	experiment.	We	then	computed	the	average	response	224	
across	epochs	 for	each	stimulus	condition,	minus	 the	average	across	blank	epochs.	This	provided	225	
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7	

one	 summary	measure	 for	 each	 of	 the	 three	 stimulus	 conditions	 and	 each	 of	 the	 two	 dependent	226	
measures	 (broadband	and	 stimulus	 locked)	 for	 each	of	 the	1000	bootstraps.	 Finally,	we	 took	 the	227	
median	across	bootstraps	as	the	estimate	of	signal	and	half	of	the	68%	confidence	interval	across	228	
bootstraps	as	the	estimate	of	the	noise	(Figure	2D,E).	For	some	analyses,	the	ratio	of	these	values	229	
was	defined	as	the	signal-to-noise	ratio	(SNR).	230	

  231	
Figure	 2.	 Data	 analysis	 without	 denoising.	 A.	 The	232	
time	 series	 for	 each	 sensor	 were	 epoched	 into	 non-233	
overlapping	 one-second	 periods.	 BC.	 The	 time	 series	234	
in	each	epoch	was	fast	Fourier	transformed	and	then	235	
summarized	 as	 two	 values,	 a	 stimulus-locked	 value	236	
(amplitude	 of	 the	 fast	 Fourier	 component	 at	 the	237	
stimulus	frequency),	and	a	broadband	value	(mean	of	238	
the	 log	 power	 of	 all	 frequencies	 from	 60-150	 Hz,	239	
excluding	 those	 within	 +/-	 1	 Hz	 of	 stimulus	240	
harmonics).	 D.	 The	 summary	 of	 conditions	 is	 shown	241	
as	a	matrix,	where	each	column	corresponds	to	one	of	242	
the	three	stimulus	conditions,	and	the	number	of	rows	243	
is	 equal	 to	 the	 total	 number	 of	 epochs	 across	 the	244	
session.	 Rows	 with	 no	 color	 are	 blank	 epochs.	 E.	245	
Summary	metrics	 were	 computed	 separately	 for	 the	246	
stimulus-locked	 values	 and	 broadband	 measures,	247	
yielding	three	measures	per	sensor	per	data	type.	The	248	
summary	 metric	 was	 the	 mean	 across	 condition	249	
minus	 the	 mean	 across	 blanks,	 bootstrapped	 1000	250	
times.	 The	 bar	 plot	 show	 the	 median	 and	 the	 68%	251	
confidence	interval	based	on	1000	bootstraps.		252	

MEG	Denoise	Algorithm		253	

Extracranial	 measurements	 like	 MEG	 have	254	
multiple	 global	 noise	 sources	 and	 a	255	
relatively	 low	 signal-to-noise	 ratio	256	
compared	 to	 intracranial	 measures,	257	
especially	 for	 high	 frequency	 signals.	 In	258	
order	 to	 increase	 the	 signal-to-noise	 ratio,	259	
we	 developed	 a	 denoising	 technique	 that	260	
helps	 reveal	 the	 broadband	 signal	 of	261	
interest.	 A	 denoising	 algorithm	 developed	262	
for	 fMRI	 (‘GLMdenoise’;	 (Kay	 et	 al.,	 2013))	263	
was	 adapted	 for	 MEG	 to	 project	 out	 noise	264	
from	the	data	for	each	epoch	in	each	sensor.	265	
The	logic	behind	the	algorithm	is	that	many	266	
sources	 of	 noise	 are	 global,	 and	 therefore	267	
spread	 across	 sensors.	 The	 algorithm	268	
identifies	 sensors	 that	 have	 no	 stimulus-269	
related	response	(the	‘noise	pool’),	and	uses	270	
these	 sensors	 to	 define	 noise	 components.	271	
The	 noise	 components	 are	 then	 projected	272	
out	 from	 all	 sensor	 time	 series	 in	 each	273	
epoch.	274	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2017. ; https://doi.org/10.1101/108993doi: bioRxiv preprint 

https://doi.org/10.1101/108993
http://creativecommons.org/licenses/by-nc-nd/4.0/


8	

Noise	pool	selection	275	

The	noise	pool	was	defined	as	the	75	(NYU)	or	100	(CiNet)	sensors	with	the	lowest	stimulus-locked	276	
SNR	 across	 conditions.	 The	 SNR	 was	 computed	 by	 (a)	 dividing	 the	 median	 response	 across	277	
bootstraps	 by	 the	 variability	 across	 bootstraps	 (half	 of	 the	 68%	 confidence	 interval)	 for	 each	278	
condition,	 and	 (b)	 taking	 the	maximum	of	 the	 three	 values	 (corresponding	 to	 the	 three	 stimulus	279	
conditions)	for	each	sensor.			280	

We	used	 the	stimulus-locked	signal	 to	 identify	 the	noise	pool	because	 this	 signal	had	a	very	high	281	
SNR,	 and	 could	 easily	 by	 measured	 prior	 to	 running	 our	 denoise	 algorithm,	 and	 because	 we	282	
assumed	(and	confirmed	by	inspection)	that	sensors	with	broadband	responses	also	had	stimulus-283	
locked	responses.		284	

For	most	observers,	most	of	the	sensors	in	the	noise	pool	were	located	over	the	front	of	the	head	285	
(see	for	example	Figure	3A).	286	

Filtering	of	time	series	287	

As	described	above,	the	broadband	summary	metric	was	derived	from	power	at	a	limited	range	of	288	
temporal	frequencies	(60-150	Hz,	excluding	multiples	of	the	stimulus	frequency).	After	defining	the	289	
noise	 pool,	 the	 time	 series	 of	 all	 sensors	 in	 all	 epochs	 were	 filtered	 to	 remove	 signal	 at	 all	290	
frequencies	not	used	to	compute	the	broadband	signal.	Hence	the	remaining	time	series	contained	291	
power	only	at	frequencies	defining	the	signal	of	interest.	This	step	was	important	because	the	noise	292	
pool,	 though	 selected	 for	 a	 low	 stimulus-locked	 SNR,	 could	 nonetheless	 have	 contained	 a	 small,	293	
residual	 stimulus-locked	 signal.	 This	 residual	 signal	 would	 have	 been	 correlated	 with	 the	294	
experimental	design	(larger	when	stimuli	were	present	than	absent)	and	hence	projecting	it	out	of	295	
the	data	could	have	caused	a	systematic	bias	(see	the	script	denoisingProjectingInVariance.m).	296	

PCA		297	

Following	 filtering,	 the	 next	 step	 in	 the	 algorithm	was	 principal	 component	 analysis	 (PCA).	 This	298	
identified	the	common	components	of	the	time	series	across	the	sensors	in	the	noise	pool.	PCA	was	299	
computed	 separately	 for	 each	 1-s	 epoch	 (Figure	 3C).	 This	means	 that	 denoising	 occurred	 at	 the	300	
same	temporal	scale	(1	second)	as	the	computation	of	the	summary	metrics.	This	differs	from	some	301	
denoising	algorithms,	in	which	noise	regressors	are	identified	over	a	much	longer	time	period,	e.g.,	302	
several	minutes	(Vigario,	1997).	Denoising	at	a	short-time	scale	can	be	advantageous	if	the	spatial	303	
pattern	 of	 the	 noise	 responses	 is	 not	 consistent	 across	 the	 entire	 experiment.	 As	 a	 control	304	
comparison,	we	also	ran	our	algorithm	by	identifying	PC	time	series	on	the	entire	duration	of	the	305	
experiment	 (~20	minutes)	 rather	 than	 epoch	 by	 epoch.	 (See	 Results,	 ‘Control	 analyses	 for	 MEG	306	
Denoise	algorithm’.)			307	

Projecting	out	PCA	components	308	

The	first	one	to	ten	principal	components	(PCs)	in	each	epoch	were	projected	out	of	the	time	series	309	
for	all	sensors,	using	linear	regression.	This	resulted	in	ten	new	data	sets:	One	with	PC	1	projected	310	
out,	one	with	PC	1	and	2	projected	out,	etc.	up	to	10	PCs	projected	out	(Figure	3D).	After	projecting	311	
out	 the	 noise	 components,	 we	 summarized	 the	 data	 into	 a	 stimulus-locked	 and	 broadband	312	
component	as	described	in	Figure	2.	 	313	
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 314	
Figure	3.	Denoising	procedure.	Following	an	estimate	of	response	reliability	computed	from	non-denoised	data	(Figure	315	
2),	 the	 algorithm	 first	 selects	 a	 noise	 pool.	 A.	 The	 noise	 pool	 is	 comprised	 of	 sensors	 whose	 SNR	 from	 the	 evoked	316	
(stimulus-locked)	 component	 falls	 below	 a	 threshold.	B.	 	 The	 time	 series	 from	 each	 sensor	 in	 the	 noise	 pool	 is	 then	317	
filtered	to	remove	components	that	do	not	contribute	to	the	broadband	computation.	C.	Principal	component	analysis	is	318	
then	computed	within	each	epoch.	D.	for	each	epoch,	the	first	n	PCs	are	projected	out	from	the	time	series	of	all	sensors,	319	
yielding	n	new	data	sets.	For	each	new	data	set,	broadband	responses	were	recomputed,	as	in	Figure	2.		 	320	
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Statistical	comparisons	321	

To	 assess	 the	 effect	 of	 the	 MEG	 Denoise	 algorithm	 on	 the	 broadband	 SNR,	 we	 compared	 the	322	
broadband	SNR	after	applying	MEG	Denoise	to	the	broadband	SNR	either	without	denoising	or	after	323	
applying	other	denoising	algorithms.	To	make	these	comparisons,	we	first	identified	10	sensors	of	324	
interest	from	each	subject.	These	sensors	of	interest	were	the	10	with	the	highest	SNR	in	any	of	the	325	
three	stimulus	conditions,	either	before	or	after	denoising,	excluding	sensors	from	the	noise	pool.	326	
For	 each	 of	 the	 three	 stimulus	 conditions,	we	 then	 took	 the	 average	 SNR	 from	 these	 10	 sensors	327	
without	 denoising	 or	 after	 applying	 MEG	 Denoise	 or	 another	 denoising	 algorithm.	 	 Finally,	 we	328	
conducted	 two-tailed	 t-tests,	 paired	 by	 subject	 (n=8),	 between	 the	 broadband	 SNR	 after	 MEG	329	
Denoise	 to	 the	 broadband	 SNR	without	 denoising	 (or	 with	 another	 algorithm).	 The	 t-tests	 were	330	
conducted	separately	for	each	of	the	three	stimulus	conditions	(both-hemifield,	left-hemifield,	and	331	
right-hemifield).	332	

Control	analyses	333	

To	 investigate	 the	 validity	 of	 our	 algorithm,	we	 ran	multiple	 control	 analyses.	 In	 particular,	 it	 is	334	
important	to	rule	out	the	possibility	that	the	denoising	algorithm	produces	significant	results	even	335	
when	 the	 data	 contains	 no	 sensible	 signal.	 To	 test	 this,	 we	 compared	 the	 difference	 in	 SNR	 of	336	
denoised	data	with	the	following	controls:	(1)	phase-scrambling	the	PC	time	series,	and	(2)	using	all	337	
sensors	 to	 define	 the	 noise	with	 PCA	 rather	 than	 only	 a	 subset	 of	 sensors	 that	 have	 little	 to	 no	338	
stimulus-locked	signal.		We	also	assessed	the	effect	of	identifying	and	projecting	out	PC	time	series	339	
equal	 in	 length	 to	 the	 entire	 experiment	 (~20	minutes),	 rather	 than	 PC	 time	 series	 matched	 in	340	
length	 to	 our	 analysis	 epochs	 (1-s).	 This	 comparison	 tested	 the	 assumption	 that	 denoising	 in	341	
shorter	epochs	was	advantageous,	possibly	due	 to	 the	pattern	of	noise	 sources	differing	over	 the	342	
course	of	the	experiment.	343	

Eye	tracking	analysis	344	

Since	an	increase	in	microsaccade	rate	can	induce	broadband	spectral	components	in	extracranial	345	
measurements	such	as	EEG	or	MEG	(Yuval-Greenberg	et	al.,	2008;	Keren	et	al.,	2010),	we	checked	in	346	
three	 NYU	 subjects	 (S6-S8)	 whether	 there	 was	 a	 difference	 in	 rate	 between	 the	 ‘off’	 baseline	347	
periods	 and	 ‘on’	 stimulus	 periods,	 and	 within	 the	 three	 stimulus	 (both-,	 right-,	 left-hemifield)	348	
conditions.	 Microsaccades	 were	 identified	 as	 changes	 in	 position	 with	 above	 a	 relative	 velocity	349	
threshold	(6º/s)	and	a	minimum	duration	of	6	ms,	as	reported	in	Engbert	&	Mergenthaler	(2006)	to	350	
analyze	rate	and	direction	of	microsaccades	as	well	as	separating	MEG	data	into	epochs	that	did	and	351	
did	not	contain	microsaccades.	 	352	
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Results	353	

A	 large	 field	 ‘on-off’	 stimulation	experiment	was	used	to	characterize	 the	stimulus-locked	(steady	354	
state	evoked	field,	‘SSVEF’)	and	broadband	responses	in	visual	cortex	measured	with	MEG.	The	two	355	
measures	are	reported	below,	both	prior	to	and	after	applying	our	new	denoising	algorithm.	356	

Stimulus-locked	and	broadband	signals	measured	with	MEG	 	357	

In	 each	 stimulus	 condition	 (left-,	 right-,	 and	 both-hemifield),	 the	 stimulus	 contrast	 reversed	 12	358	
times	per	second,	so	the	stimulus-locked	signal	was	measured	at	12	Hz	and	harmonics.	Because	the	359	
largest	 component	was	 at	 12	Hz,	we	 defined	 the	 stimulus-locked	 signal	 for	 a	 particular	 stimulus	360	
condition	as	the	amplitude	at	12	Hz,	averaged	over	all	1-second	epochs	with	that	stimulus	(typically	361	
~180	 epochs)	 computed	 for	 each	 of	 the	 157	 sensors	 in	 each	 subject	 (Figure	 4;	 see	Methods	 for	362	
details).	 The	 broadband	 signal	 was	 computed	 by	 averaging	 the	 log	 power	 across	 frequencies	363	
between	 60	 and	 150	 Hz,	 excluding	 multiples	 of	 the	 stimulus	 frequency	 (12	 Hz),	 and	 then	364	
exponentiating	the	mean	(Figure	4	inset;	see	Methods	for	details).	365	

		366	
Figure	 4.	 Example	 response	 to	 flickering	 large-field	 stimulus.	 The	main	 panel	 plots	 the	 spectral	 power,	 averaged	367	
across	180	1-s	epochs,	during	which	the	subject	viewed	either	the	both-hemifield	stimulus	(blue	line)	or	a	blank	screen	at	368	
mean	luminance	(gray	line).	The	black	dot	on	the	schematic	head	indicates	the	location	of	the	sensor.		The	peak	at	12	Hz	369	
corresponds	to	the	frequency	of	dartboard	contrast	reversals,	and	is	a	measure	of	the	stimulus-locked	component	(orange	370	
arrow).	The	 lower	 inset	 zooms	 in	on	higher	 frequencies	 to	 emphasize	 the	broadband	 component,	most	 evident	 in	 this	371	
example	data	set	as	a	 spectral	power	elevation	spanning	60	 to	150	Hz.	The	 increase	 in	 the	broadband	response	of	 the	372	
stimulus	condition	relative	to	the	blank	condition	is	shown	by	the	orange	arrow.	The	histograms	on	the	right	show	the	373	
broadband	level	separately	for	the	stimulus	condition	(blue)	and	the	blank	condition	(gray),	and	the	difference	between	374	
them	(black),	computed	1000	times	by	bootstrapping	over	epochs	 in	the	experiment.	Data	 from	subject	S1.	 	Made	with	375	
function	dfdMakeFigure4.m.		376	

Both	 the	 stimulus-locked	 and	 broadband	 signals	 were	 largest	 in	 medial,	 posterior	 sensors,	 as	377	
expected	 from	 activations	 in	 visual	 cortex	 (Seki	 et	 al.,	 1996).	 For	 the	 stimulus-locked	 signal,	 the	378	
both-hemifield	 condition	 tended	 to	 produce	 broadband	 signals	 in	 bilateral	 posterior	 sensors,	379	
whereas	the	single-hemifield	conditions	produced	responses	that	were	lateralized,	with	higher	SNR	380	
contralateral	to	the	stimulus.	This	pattern	could	be	seen	in	an	example	subject	and	in	the	average	381	
across	 subjects	 (Figure	 5).	 The	 lateralization	 of	 the	 stimulus-locked	 signal	 was	 less	 clear	 in	 the	382	
average	across	subjects	due	to	imperfect	alignment	of	the	sensors	showing	the	largest	differential	383	
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response	to	the	left-	and	right-	hemifield	stimuli.	In	each	of	the	8	individual	subjects	and	in	each	of	384	
the	3	conditions,	the	stimulus-locked	response	was	evident,	with	the	signal	at	 least	10x	above	the	385	
noise	(data	not	shown).		386	

	387	
Figure	5.	Topographic	map	of	stimulus-locked	and	broadband	responses.	Data	from	subject	S1	(left)	and	averaged	388	
across	subjects	S1-S8	by	sensor	(right).	The	top	3	rows	show	data	from	the	3	stimulus	conditions	(both-,	left-,	and	right-389	
hemifield)	compared	to	blank,	and	the	lower	row	shows	data	as	the	left-only	minus	right-only	conditions.	The	dependent	390	
variable	 plotted	 for	 the	 single	 subject	 data	 is	 the	 signal-to-noise	 ratio	 at	 each	 sensor,	 computed	 as	 the	 mean	 of	 the	391	
contrast	 (stimulus	minus	 blank)	 across	 bootstraps	 divided	 by	 the	 standard	 deviation	 across	 bootstraps	 (bootstrapped	392	
over	epochs).	For	the	group	data,	the	signal-to-noise	ratio	is	the	mean	of	the	subject-specific	SNRs	at	each	given	sensor.	393	
The	same	scale	bar	is	used	for	all	stimulus-locked	plots.	For	the	broadband	plots,	one	scale	bar	is	used	for	the	first	three	394	
rows,	and	a	different	scale	bar	with	a	smaller	range	is	used	for	the	fourth	row.		Made	with	dfdMakeFigure5.m.		395	

The	 spatial	 pattern	 of	 broadband	 signals	 was	 qualitatively	 similar	 to	 the	 spatial	 pattern	 of	 the	396	
stimulus	 locked	 signal,	 with	 bilateral	 posterior	 responses	 in	 the	 both-hemifield	 condition,	 and	397	
lateralized	 responses	 in	 the	 single-hemifield	 conditions	 (Figure	5,	 individual	 example	 and	 group-398	
averaged	 data).	 However,	 the	 broadband	 responses	 had	 much	 lower	 signal-to-noise	 than	 the	399	
stimulus-locked	responses,	 and	 in	many	of	 the	 individual	 subjects,	broadband	was	not	evident	 in	400	
one	or	more	conditions	(data	not	shown).	The	broadband	responses	were	less	reliable	for	the	left-	401	
and	right-hemifield	conditions	than	for	the	both-hemifield	conditions.		402	

The	fact	that	broadband	responses	were	evident	in	a	few	subjects	in	some	conditions	indicates	that	403	
it	 is	possible	 to	measure	broadband	 fields	with	MEG.	However,	 if	 this	 signal	 cannot	be	measured	404	
reliably	 in	many	 subjects	 and	many	 conditions,	 then	 the	practical	 value	 of	measuring	broadband	405	
with	 MEG	 is	 limited.	 This	 motivated	 us	 to	 ask	 whether	 denoising	 the	 MEG	 data	 could	 unmask	406	
broadband	signals,	making	it	more	reliable	across	subjects	and	stimulus	conditions.		407	
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	408	
Denoising	increases	the	broadband	SNR	by	reducing	variability		409	

The	MEG	data	were	denoised	using	a	new	algorithm	as	described	in	detail	in	the	Methods	section.	410	
In	brief,	 for	each	subject	a	subset	of	sensors	that	contained	 little	 to	no	stimulus-locked	responses	411	
were	defined	as	the	noise	pool.	Once	the	noise-pool	was	defined,	the	time	series	in	each	sensor	and	412	
in	each	epoch	was	 filtered	to	remove	all	signals	not	contributing	 to	 the	broadband	measurement.	413	
Global	noise	regressors	were	then	derived	by	principal	component	analysis	from	the	filtered	time	414	
series	 in	the	noise	pool	 in	each	1-s	epoch.	The	first	10	PCs	were	projected	out	of	the	data	 in	each	415	
sensor,	 epoch	 by	 epoch.	 	 The	 remainder	 of	 the	 analysis	 was	 identical	 to	 that	 used	 in	 the	 non-416	
denoised	data	set	(Figure	2).		417	

	418	
Figure	6.	Effect	of	denoising	on	broadband	response.	(A)	The	upper	panel	shows	the	power	spectra	from	sensor	42,	419	
subject	1,	averaged	across	178	epochs	with	the	both-hemifield	stimulus	(blue)	and	blank	screen	(gray).	The	left	panel	is	420	
prior	to	denoising	and	is	identical	to	the	inset	in	figure	4,	except	that	harmonics	of	stimulus-locked	frequencies	have	been	421	
removed.	The	right	panel	is	the	same	as	the	left,	except	after	denoising.	(B)	The	lower	panel	shows	the	distributions	of	the	422	
bootstrapped	broadband	power	for	the	both-hemifield	(blue),	blank	(gray),	and	both-hemifield	minus	blank	(black,	inset),	423	
prior	 to	 denoising	 (left)	 and	 after	 denoising	 (right).	 The	 SNR	 is	 defined	 as	 the	 median	 of	 the	 difference	 distribution	424	
divided	by	half	of	the	68%	confidence	interval	in	the	difference	distribution	(7.7	prior	to	denoising,	14.0	after).	The	effects	425	
of	denoising	are	to	reduce	the	mean	power,	and	more	importantly,	reduce	the	standard	deviation	across	epochs.	 	Made	426	
with	dfdMakeFigure6.m.		427	

We	 first	 illustrate	 the	 effect	 of	 denoising	 with	 an	 example	 from	 a	 single	 sensor	 in	 one	 subject	428	
(Figure	 6).	 This	 sensor	 showed	 a	 broadband	 response	 both	 prior	 to,	 and	 after,	 denoising.	 The	429	
benefit	 of	 denoising	was	 not	 evident	when	 comparing	 the	mean	 power	 spectra	 before	 and	 after	430	
denoising	(Figure	6A).	Denoising	did	not	reduce	the	variability	in	power	across	frequencies,	nor	did	431	
it	increase	the	separation	in	the	spectra	for	the	contrast	stimulus	and	the	blank.		Instead,	the	effects	432	
of	denoising	are	better	appreciated	by	examining	the	variability	across	epochs	rather	than	across	433	
frequencies	 (Figure	 6B).	 The	 biggest	 effect	 is	 that	 the	 broadband	 power	 estimates	 became	 less	434	
variable	across	epochs,	both	for	the	blank	condition	and	the	stimulus	condition.	This	is	indicated	by	435	
the	 narrower	 distributions	 in	 the	 response	 amplitudes	 for	 the	 two	 conditions	 (Figure	 6B,	 main	436	
panels)	and	for	the	difference	between	conditions	(Figure	6B,	insets).	The	standard	deviation	of	the	437	
difference	distributions	decreased	more	than	two-fold	(from	0.79	to	0.35)	as	a	result	of	denoising.			438	
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There	are	two	other	secondary	patterns	evident	in	these	distributions.	First,	the	mean	broadband	439	
power	of	both	 the	blank	and	stimulus	 condition	decreased	as	a	 result	of	denoising	 (for	 the	both-440	
hemifield	 condition,	 35.8	 versus	 26.1,	 prior	 to	 versus	 after	 denoising;	 for	 the	 blank,	 28.7	 versus	441	
21.4).	 This	 was	 expected	 because	 projecting	 out	 signal	 reduces	 power.	 Second,	 the	 contrast	442	
between	the	two	conditions	(difference	between	the	means)	reduced:	7.0	prior	to	denoising	versus	443	
4.8	after	denoising.	The	combination	of	these	two	effects	was	that	the	percent	difference	was	little	444	
changed,	with	 broadband	 power	 from	 the	 contrast-stimulus	 about	 25%	more	 than	 for	 the	 blank	445	
before	 and	 after	 denoising.	 Hence	 denoising	 did	 not	 increase	 the	 estimate	 of	 the	 percent	 signal	446	
change.		447	

It	 is	 important	 to	 consider	how	 these	 effects	 interact.	Because	 the	 reduction	 in	 variability	 across	448	
epochs	was	the	biggest	effect	of	denoising	(more	than	2-fold),	 there	was	more	than	a	doubling	of	449	
SNR,	computed	as	the	median	divided	by	the	variability	of	the	difference	distribution1.	In	sum,	the	450	
spectral	plots	show	that	the	variability	in	power	across	frequencies	was	little	affected	by	denoising	451	
(Figure	 6A),	 whereas	 the	 distribution	 plots	 show	 that	 the	 variability	 in	 total	 broadband	 power	452	
across	epochs	was	reduced	considerably	(Figure	6B).	453	

We	 now	 consider	 the	 effect	 of	 denoising	 across	 sensors,	 subjects,	 and	 stimulus	 conditions.	454	
Projecting	 out	 noise	 PCs	 substantially	 increased	 the	 signal-to-noise	 ratio	 of	 the	 broadband	455	
measurement	 in	 visually	 responsive	 sensors.	 For	 example,	 in	 the	 both-hemifield	 condition	 for	456	
subject	S1,	the	median	SNR	of	the	10	most	visually	responsive	sensors	increased	from	5	to	10	after	457	
denoising	(Figure	7A,	blue	solid	 line),	similar	to	the	example	sensor	shown	earlier	(Figure	6B).	 In	458	
contrast,	the	SNR	of	the	75	sensors	in	the	noise	pool	was	relatively	unaffected	by	denoising	(Figure	459	
7A,	 blue	 dashed	 line).	 This	 was	 expected	 because	 sensors	 in	 the	 noise	 pool	 were	 unlikely	 to	460	
distinguish	stimulus	from	blank.	 	Across	the	8	subjects	 in	the	both-hemifield	condition,	taking	the	461	
mean	of	 the	10	most	visually	responsive	sensors	 for	each	subject,	 the	SNR	increased	about	3-fold	462	
(from	1.6	to	5.0),	with	a	numerical	increase	in	every	subject	(Figure	7B).	Because	the	SNR	stabilized	463	
in	all	subjects	with	10	or	fewer	PCs	projected	out,	in	subsequent	analyses,	for	simplicity	we	report	464	
the	 effects	 of	 denoising	 with	 exactly	 10	 PCs.	 A	 comparison	 of	 the	 SNR	 before	 denoising	 (0	 PCs	465	
projected	 out)	 and	 after	 (10	 PCs	 projected	 out)	 summarized	 across	 all	 subjects	 and	 the	 three	466	
stimulus	 conditions	 shows	 increases	 in	 SNR	 for	 every	 subject	 in	 all	 conditions	 (Figure	 7C)	467	
(p=0.0001,	p=0.0007,	p=0.0022	for	two-tailed	t-tests,	0	v	10	PCs,	for	both-,	left-,	and	right-hemifield	468	
conditions,	respectively).		469	

	470	

																																								 																					
1 There are many ways to define ‘signal’, ‘noise’, and therefore the signal-to-noise-ratio (‘SNR’). Here we define signal as the 
difference in broadband power between a condition of interest and blank, and we define noise as the variability in the signal 
estimate when we bootstrap over epochs (half of the 68% confidence interval). According to these definitions, denoising caused the 
signal in the example sensor to go down, and the noise to go down even more, and hence the SNR went up. Alternatively, one 
could define signal as the percent increase over baseline. By this definition, signal was about 25% before and after denoising in the 
example sensor. One could also define the signal as the broadband power of a single condition without subtracting the baseline. By 
this definition, denoising caused the full-field stimulus signal to go down, and the blank stimulus signal to go down. By this alternate 
definition, denoising almost always causes a signal decrease, because denoising projects out regressors, which tends to remove 
power.  
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	471	
Figure	7.	Effect	of	denoising	on	broadband	SNR.	(A)	SNR	as	a	function	of	the	number	of	PCs	projected	out	in	subject	S1	472	
for	the	both-hemifield	stimulus.	Each	line	is	one	sensor.	The	heavy	blue	line	is	the	mean	of	the	10	sensors	with	the	highest	473	
SNR,	as	measured	either	before	or	after	denoising.	(B)	SNR	as	a	function	of	PCs	projected	out	in	each	of	8	subjects	for	the	474	
both-hemifield	stimulus.	Each	line	is	the	mean	across	the	10	sensors	with	the	highest	SNR	in	one	subject.	The	rightmost	475	
points	indicate	the	effect	of	projecting	out	all	75	PCs.	(C)	SNR	before	denoising	(0	PCs	projected	out)	and	after	denoising	476	
(10	PCs	projected	out)	for	each	stimulus	condition.	Each	line	is	the	mean	of	the	10	sensors	with	the	highest	SNR	for	one	477	
subject	 in	 one	 stimulus	 condition.	 Color	 saturation	 corresponds	 to	 the	 subject	 number	 (highest	 to	 lowest	 saturation,	478	
subjects	1-8,	respectively).	Made	with	dfdMakeFigure7.m.		479	

In	principle,	the	SNR	increases	could	have	arisen	from	increased	signal,	decreased	noise,	or	both.	To	480	
distinguish	among	these	possibilities,	we	compared	the	signal	level	alone	and	the	noise	level	alone	481	
before	and	after	denoising.	As	in	prior	results,	the	signal	was	defined	as	the	difference	in	broadband	482	
power	between	the	contrast	pattern	and	the	blank	(median	across	bootstraps),	and	the	noise	was	483	
defined	 as	 the	 variability	 of	 this	 difference	 metric	 (half	 of	 the	 68%	 confidence	 interval	 across	484	
bootstraps).	For	all	three	stimulus	conditions	in	most	subjects,	the	signal	was	largely	unaffected	by	485	
denoising,	 staying	 at	 a	 similar	 level	 or	 decreasing	 slightly,	 while	 the	 noise	 level	 went	 down	486	
substantially	(Figure	8).	These	analyses	indicate	that	the	increase	in	SNR	from	denoising	(Figure	7)	487	
was	caused	by	a	reduction	in	epoch-to-epoch	variability	of	the	broadband	signal	level,	and	not	by	an	488	
increase	 in	 the	 signal	 level,	 consistent	 with	 the	 results	 of	 the	 single	 example	 sensor	 (Figure	 6).	489	
Expressed	 as	 a	 percentage	 increase	 over	baseline,	 the	broadband	 response	 to	 the	both-hemifield	490	
stimulus	after	denoising	was	~10.9±1.7%	averaged	across	the	top	10	sensors	in	each	subject	(mean	491	
±	sem	across	subject),	and	12.6%±1.6%	for	the	top	5	sensors.	This	contrasts	with	the	much	larger	492	
stimulus-locked	response,	which	was	a	nearly	8-fold	increase	over	baseline	even	prior	to	denoising	493	
(678%±226%	increase	over	baseline	for	the	top	5	sensors).		494	
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	495	
Figure	8.	Effect	of	denoising	on	 the	broadband	signal	and	noise.	Noise	(upper)	and	signal	(lower)	before	and	after	496	
denoising	in	each	of	three	stimulus	conditions.	Plotting	conventions	as	in	Figure	7c.		Made	with	dfdMakeFigure8.m.			497	

The	effect	of	denoising	the	broadband	signal	was	not	uniform	across	the	sensor	array.	 In	general,	498	
sensors	where	we	 expected	 visual	 activity	 (over	 the	 posterior,	 central	 part	 of	 the	 head)	 showed	499	
increased	SNR	following	denoising.	In	the	example	subject	S1	as	well	as	the	average	across	subjects,	500	
the	 denoised	 broadband	 response	 was	 observed	 in	 bilateral	 sensors	 for	 the	 both-hemifield	501	
condition,	and	with	a	contralateral	bias	 (relative	 to	 the	midline)	 in	 the	 two	 lateralized	conditions	502	
(Figure	9).	For	the	both-hemifield	stimulus,	broadband	responses	were	evident	in	sensors	over	the	503	
posterior,	middle	of	the	head	in	most	individual	subjects	(Figure	10).		504	
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	505	
Figure	9	Topographic	map	of	broadband	SNR	before	and	after	denoising.	 	Data	from	subject	S1	(left)	and	averaged	506	
across	subjects	S1-S8	by	sensor	(right).	The	top	3	rows	show	data	from	the	3	stimulus	conditions	(both-,	left-,	and	right-507	
hemifield)	and	the	fourth	row	shows	the	difference	between	the	left-only	and	right-only	conditions.	The	fourth	row	uses	a	508	
different	 scale	 bar	 from	 the	 other	 3	 rows.	 The	 columns	 show	 data	 before	 and	 after	 denoising.	 	 Made	 with	509	
dfdMakeFigure9.m.		510	

	511	

	512	
Figure	10	Topographic	maps	of	broadband	SNR	in	individual	subjects	after	denoising.	Head	plots	show	the	SNR	for	513	
the	both-hemifield	stimulus,	before	denoising	(above)	and	after	denoising	(below).	Made	with	dfdMakeFigure10.m.				514	
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	515	
Control	analyses	for	MEG	Denoise	algorithm	516	

To	 validate	 the	 assumptions	 in	 our	 denoising	 algorithm,	 we	 ran	 three	 control	 analyses.	 In	 one	517	
control	 analysis,	 we	 concatenated	 all	 epochs	 to	 derive	 noise	 regressors	 from	 the	 whole	518	
experimental	time	series	(Figure	11,	2nd	bar,	compared	to	using	the	default	of	1-s	epochs	to	derive	519	
noise	 regressors	 –	 1st	 bar).	 	 The	 elevation	 in	 broadband	 SNR	 was	 significantly	 less	 when	 we	520	
concatenated	all	epochs	(p	=	0.0016,	p	=	0.0023	and	p	=	0.0447,	for	the	three	stimulus	conditions	521	
respectively).	 In	 the	 second	control	 analysis,	 the	noise	pool	 included	all	 sensors	 rather	 than	only	522	
those	sensors	that	were	not	visually	responsive.	Here,	the	noise	regressors	included	some	signal	as	523	
well	as	noise,	and	hence	should	be	of	less	benefit.	This	expectation	was	confirmed,	in	that	there	was	524	
no	increase	in	SNR	when	the	algorithm	was	run	with	the	omission	of	the	noise-pool-selection	step	525	
(Figure	 11,	 3rd	 bar,	 p	 =	 0.0014,	 p	 =	 0.0015	 and	 p	 =	 0.0020	 for	 the	 three	 stimulus	 conditions	526	
respectively).	In	a	3rd	control	analysis,	we	phase-scrambled	each	of	the	epoch-by-epoch	noise	time	527	
series.	The	phase-scrambled	regressors	were	temporally	uncorrelated	with	the	actual	time	series	in	528	
the	 noise.	 As	 a	 result,	 we	 found	 no	 change	 in	 SNR	 levels	 (Figure	 11,	 fourth	 bar,	p	 =	 0.0001,	p	 =	529	
0.0003	and	p	=	0.0017).		530	

	531	
Figure	11.	Comparison	of	MEG	Denoise	 to	control	analyses.	When	the	denoising	algorithm	derives	noise	regressors	532	
from	the	whole	experimental	time	series	(‘Concatenate	epochs	for	denoising’),	the	amount	of	SNR	gain	is	significantly	less	533	
than	 the	 standard	MEG	 Denoise	 (regressors	 derived	 separately	 from	 each	 1-s	 epoch).	When	 the	 noise	 regressors	 are	534	
derived	from	all	sensors	(‘All	sensors	in	noisepool’),	or	when	the	time	series	of	the	regressors	are	phase-scrambled,	there	535	
is	 little	 or	 no	 change	 in	 SNR	 for	 all	 three	 stimulus	 conditions.	 Statistical	 significance	 is	 computed	 by	 a	 2-tailed	 t-test,	536	
paired	by	subject,	between	denoising	analyses.	Statistical	significance	is	indicated	by	*	=	p	<	0.05,	**	=	p	<	0.01,	***	=	p	<	537	
0.001	between	the	MEG	Denoise	algorithm	and	each	of	the	other	controls.	Made	with	dfdMakeFigure11.m.			538	

Other	denoising	algorithms	539	

To	 assess	 how	other	 existing	denoising	 algorithms	 affect	 our	measurement	 of	 broadband	power,	540	
and	 how	 they	 interact	 with	 our	 new	 denoising	 algorithm,	 we	 ran	 two	 different	 denoising	541	
algorithms,	either	alone	or	in	combination	with	MEG	Denoise.	The	two	algorithms	we	tested	were	542	
CALM,	or	continuously	adjusted	least-square	method	(Adachi	et	al.,	2001)	and	TSPCA,	or	time-shift	543	
principal	component	analysis	(de	Cheveigne	and	Simon,	2007).	Both	of	these	make	use	of	reference	544	
MEG	sensors	which	face	away	from	the	head	and	measure	environmental	rather	than	physiological	545	
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fields.	 By	 design,	 these	 algorithms	 project	 out	 time	 series	 from	 the	 subspace	 spanned	 by	 the	546	
reference	 sensors,	 thereby	 reducing	 environmental	 noise,	 but	 not	 physiological	 noise.	 Applying	547	
either	one	of	these	two	algorithms	alone	to	the	8	data	sets	reported	above	increased	the	broadband	548	
signal-to-noise	ratio,	evident	 in	 the	group-averaged	sensor	plots	(Figure	12A,	columns	3-4	versus	549	
column	2),	and	the	 increased	SNR	in	the	10	most	responsive	sensors	(Figure	12B,	2nd	and	3rd	bar	550	
versus	1st	bar	in	each	plot).		551	

In	 planned	 comparisons,	 we	 evaluated	 the	 SNR	 increase	 of	 each	 algorithm	 or	 combination	 of	552	
algorithms	 to	 the	 increase	 from	 MEG	 Denoise	 alone.	 The	 increase	 from	 each	 of	 the	 two	553	
environmental	 algorithms	 alone	 was	 significantly	 less	 than	 that	 from	 our	 new	 MEG	 Denoise	554	
algorithm	 (Figure	 12A,	 column	 5	 versus	 columns	 3-4;	 Figure	 12B,	 4th	 bar	 versus	 2nd	 and	 3rd).	555	
Applying	two	algorithms	 in	sequence,	 first	either	CALM	or	TSPCA,	 followed	by	MEG	Denoise,	also	556	
resulted	in	a	large	increase	in	broadband	SNR	(Figure	12A,	columns	6	and	7).	For	all	three	stimulus	557	
conditions,	 the	 combination	 of	 MEG	 Denoise	 and	 CALM	 resulted	 in	 the	 largest	 gain	 in	 SNR,	558	
significantly	 larger	 than	MEG	Denoise	 alone	 for	 two	 out	 of	 the	 three	 conditions	 (Figure	 12B,	 5th	559	
versus	 4th	 bars).	 This	 indicates	 that	 the	MEG	Denoise	 algorithm	and	 an	 environmental	 algorithm	560	
captured	some	independent	noise.		561	

	562	
Figure	12.	Comparison	of	different	denoising	algorithms	on	NYU	datasets	 (averaged	across	subjects	S1-S8).	(A)	563	
The	 columns	 represent	 SNR	 values	 for	 the	 stimulus	 locked	 signal	 (column	 1),	 broadband	 signal	 without	 denoising	564	
(column	2),	and	broadband	signal	with	one	or	more	denoising	algorithms.	One	scale	bar	 is	used	for	all	stimulus	 locked	565	
plots	(column	1).	A	second	scale	bar	is	used	for	all	broadband	plots	(columns	2-7)	except	for	the	Left	minus	Right	plots	566	
(row	4,	columns	2-7).	Other	details	as	in	Figure	5.	(B)	Broadband	SNR	using	different	algorithms	for	both-hemifield	(left),	567	
left-hemifield	(center)	and	right-hemifield	(right)	stimuli.	Each	bar	is	the	change	in	SNR	from	baseline	(column	2	in	panel	568	
A),	averaged	across	the	top	10	sensors	per	subject		(mean	+/-	SEM	across	subjects).	Top	sensors	were	defined	as	the	10	569	
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sensors	 from	 each	 subject	 with	 the	 highest	 SNR	 across	 any	 of	 the	 3	 stimulus	 conditions	 and	 any	 of	 the	 denoising	570	
algorithms	(columns	2-7).	Statistical	significance	computed	and	indicated	as	in	Figure	11.	Made	with	dfdMakeFigure12.m.	571	

Effect	of	denoising	on	stimulus	locked	SNR		572	

In	 a	 separate	 analysis,	 we	 ran	 the	MEG	 Denoise	 algorithm	 to	 evaluate	 its	 effect	 on	 the	 stimulus	573	
locked	signal.	The	methods	were	identical	to	those	used	to	denoise	the	broadband	signal	except	for	574	
the	 omission	 of	 one	 step,	 the	 step	 in	 which	 we	 filtered	 the	 time	 series	 to	 remove	 temporal	575	
components	 that	 do	 not	 contribute	 to	 the	 broadband	 signal.	 Denoising	 modestly	 increased	 the	576	
stimulus-locked	 SNR	 for	 all	 stimulus	 conditions	 for	 most	 subjects	 (Figure	 13,	 top).	 The	 SNR	577	
increased	numerically	in	all	subjects	(n=8)	and	in	all	stimulus	conditions,	although	the	percentage	578	
increases	were	smaller	than	those	for	denoising	the	broadband	signal,	~20%	increase	compared	to	579	
two-fold.	As	in	the	case	of	denoising	the	broadband	signals,	the	main	contribution	to	the	increase	in	580	
SNR	for	the	stimulus-locked	signal	was	a	decrease	in	variability	across	epochs	(Figure	13,	bottom),	581	
rather	than	an	increase	in	the	signal	level	(Figure	13,	middle).		582	

	583	
Figure	13.	Denoising	the	stimulus-locked	signal.	The	MEG	Denoise	algorithm	results	in	a	modest	increase	in	SNR	for	584	
most	subjects	 in	all	 three	stimulus	conditions	(top	row).	This	benefit	 is	 largely	due	to	 the	 fact	 that	 the	noise	 level	goes	585	
down	from	denoising	(middle	bottom)	rather	than	the	signal	increasing	(middle	row).	Plotting	conventions	as	in	Figure	7c	586	
and	Figure	8.	Made	with	dfdMakeFigure13.m.			587	

Broadband	fields	measured	with	Elekta	360	Neuromag		588	

To	 test	 whether	 the	 findings	 reported	 above	 generalize	 to	 other	 instruments	 and	 experimental	589	
environments,	we	conducted	the	same	experiment	using	a	different	type	of	MEG	system,	an	Elekta	590	
360	Neuromag	at	CiNet.	The	CiNet	system	contains	paired	planar	gradiometers,	 in	contrast	to	the	591	
axial	 gradiometers	 used	 in	 the	 Yokogawa	MEG	 at	NYU,	 and	 the	 scanner	 is	 situated	 in	 a	 different	592	
physical	 environment,	 with	 potentially	 very	 different	 sources	 of	 environmental	 noise.	 The	 pre-593	
processing	 pipeline	 at	 this	 imaging	 center	 often	 includes	 a	 denoising	 step	 based	 on	 temporally	594	
extended	 signal	 source	 separation	 (tSSS)	 (Taulu	 and	 Simola,	 2006;	 Taulu	 and	 Hari,	 2009).	 This	595	
additional	experiment	gave	us	 the	opportunity	 to	ask	several	questions:	 (1)	Are	broadband	 fields	596	
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observed	with	a	different	MEG	sensor	type	and	different	physical	environment?	(2)	Does	the	tSSS	597	
algorithm	increase	the	broadband	SNR?	(3)	Does	our	new	MEG	Denoise	algorithm	increase	the	SNR	598	
of	data	that	have	already	been	denoised	with	the	tSSS	algorithm?	599	

The	 identical	 experiments	 were	 conducted	 with	 4	 new	 subjects.	 As	 expected,	 all	 three	 stimulus	600	
types	 led	 to	 a	 large	 stimulus-locked	 response	 in	 the	 posterior	 sensors,	with	 a	 peak	 SNR	of	more	601	
than	10	in	the	group	averaged	data	(Figure	14A,	column	1).	A	modest,	spatially	specific	broadband	602	
signal	was	measured	from	the	undenoised	data	for	each	stimulus	type	(Figure	14A	column	2),	with	603	
a	peak	SNR	of	1-2	 in	 the	group-average	data	 for	all	 three	 conditions.	Unlike	 the	NYU	data,	 in	 the	604	
CiNet	data	the	MEG	Denoise	algorithm	on	the	raw	data	did	not	generally	result	in	an	increase	in	the	605	
broadband	SNR	(group	data,	Figure	14A,	columns	2	and	3;	individual	subjects,	Figure	14B,	left	side	606	
of	each	subplot).		However,	when	the	raw	data	were	pre-processed	with	the	tSSS	algorithm	(Figure	607	
14A,	column	4),	application	of	MEG	Denoise	increased	the	SNR	in	all	3	stimulus	conditions	for	3	out	608	
of	4	subjects,	and	in	2	out	of	3	stimulus	conditions	for	the	4th	subject.	Together,	the	MEG	Denoise	609	
algorithm	 increased	 the	SNR	by	2-3	 fold,	 similar	 to	 the	NYU	data	 (both-hemifield:	2.8	 to	5.6;	 left-610	
hemifield:	0.8	to	2.4;	right-hemifield:	2.01	to	4.4;	means	across	subjects	1-4,	top	10	sensors	each,	for	611	
the	tSSS	data	and	the	MEG	Denoised	tSSS	data).	Just	as	with	the	NYU	MEG	data	set,	the	combination	612	
of	an	algorithm	tailored	to	 find	environmental	noise	(tSSS)	and	our	algorithm	produced	the	most	613	
robust	results,	indicating	that	MEG-denoise	and	the	environmental	denoising	algorithm	removed	at	614	
least	some	independent	sources	of	noise.	615	
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	616	
Figure	14.	MEG	data	from	CiNet	Neuromag.	(A)	All	plots	show	data	averaged	across	new	4	subjects	(S9-S13)	in	sensor	617	
space	(sensor-wise	mean	of	the	subject	SNR).	The	columns	represent	SNR	values	for	the	stimulus	locked	signal	(column	618	
1),	broadband	signal	without	denoising	 (column	2),	and	broadband	signal	with	one	or	more	denoising	algorithms.	The	619	
same	 scale	 bar	 is	 used	 for	 all	 broadband	data	 (columns	3	 -	 5).	 Other	 details	 as	 in	 Figure	 5.	 (B)	Broadband	 SNR	using	620	
different	 algorithms	 for	 both-hemifield	 (left),	 left-hemifield	 (center)	 and	 right-hemifield	 (right)	 stimuli.	 Each	 line	 is	621	
average	broadband	SNR	across	the	top	10	sensors	for	one	individual.	Top	sensors	were	defined	as	the	10	sensors	from	622	
each	subject	with	the	highest	SNR	across	any	of	the	3	stimulus	conditions	and	any	of	the	denoising	algorithms	(columns	2-623	
6).	Made	with	dfdMakeFigure14.m.			624	
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Saccadic	eye	movements	during	MEG	experiments	625	

Saccadic	eye	movements	are	known	to	have	a	large	influence	on	MEG	and	EEG	measurements.	This	626	
influence	can	be	especially	pernicious	when	measuring	high	frequency	broadband	signals,	because	627	
the	spike	field	(MEG)	or	spike	potential	(EEG)	arising	from	extraocular	muscle	contraction	can	be	628	
spectrally	 broadband	 and	 can	 co-vary	 with	 task	 design;	 hence,	 it	 can	 easily	 be	 confused	 with	629	
broadband	signals	arising	 from	brain	activity	 (Yuval-Greenberg	et	al.,	2008;	Yuval-Greenberg	and	630	
Deouell,	2009).	For	visual	experiments,	the	spike	potential	in	EEG	is	especially	problematic	because	631	
it	tends	to	affect	sensors	which	are	also	visually	sensitive	(posterior	middle).	In	contrast,	the	MEG	632	
spike	field	is	lateral,	potentially	influencing	temporal	and	frontal	sensors,	with	little	to	no	effect	on	633	
posterior	 sensors	 (Carl	 et	 al.,	 2012).	 Hence	 spike	 field	 artifacts	 are	 unlikely	 to	 contaminate	 our	634	
visually	elicited	broadband	signals,	which	are	most	clearly	evident	in	the	central	posterior	sensors.	635	

Nonetheless,	 for	 a	 subset	 of	 subjects	 (S6-S8),	 we	 measured	 eye	 movements	 during	 the	 MEG	636	
experiments	and	quantified	 the	 frequency	of	microsaccades,	and	the	distribution	of	microsaccade	637	
direction,	 for	 each	 stimulus	 condition.	 Each	 of	 these	 3	 subjects	 showed	 broadband	 responses	 in	638	
their	denoised	data	(Figure	10).	All	three	subjects	showed	a	higher	rate	of	horizontal	than	vertical	639	
microsaccades	 in	 every	 stimulus	 condition	 (Figure	 15),	 consistent	 with	 prior	 observations	640	
(Engbert,	2006),	but	there	was	no	systematic	pattern	in	saccade	frequency	as	a	function	of	stimulus	641	
condition;	 for	 example,	 the	 stimulus	 condition	with	 the	most	 and	with	 the	 fewest	microsaccades	642	
differed	across	the	3	subjects.	Moreover,	the	subject	with	the	highest	broadband	SNR	among	these	643	
3	(S6)	had	the	lowest	rate	of	microsaccades	(~0.5	microsaccades	/	second).	To	test	more	directly	644	
whether	 microsaccades	 contributed	 to	 the	 measured	 broadband	 fields,	 we	 re-analyzed	 the	 data	645	
from	these	3	subjects	in	two	ways,	either	limited	to	only	those	epochs	with	microsaccades	or	only	646	
those	epochs	without	microsaccades	(Figure	15b).	The	broadband	responses	were	evident	in	each	647	
subject	in	the	epochs	without	microsaccades,	indicating	that	this	response	is	not	entirely	an	artifact	648	
of	microsaccades.		649	
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	650	
Figure	 15.	 Microsaccades	 during	 experimental	 conditions.	 (A)	 The	 circular	 histograms	 show	 the	 frequency	 of	651	
microsaccades	per	1-s	epoch,	binned	by	direction,	 for	each	of	 the	4	stimulus	conditions	(columns	1-4).	The	rows	show	652	
data	for	3	subjects.	The	last	column	shows	the	rate	of	microsaccades	(per	1-s	epoch)	irrespective	of	direction,	for	each	of	653	
the	4	stimulus	conditions,	bootstrapped	100	times	over	epochs.	Arrows	indicate	the	median	rate	for	each	condition.	(B)	654	
Both-hemifield	 minus	 blank	 broadband	 SNR	 meshes	 limited	 to	 only	 those	 epochs	 with	 microsaccades	 (top	 row)	 or	655	
without	microsaccades	(bottom	row).	Made	with	dfdMakeFigure15.m.		656	

  657	
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Discussion 658	

Summary	659	

We	 separated	 the	MEG	 signal	 into	 two	 components,	 one	 time-locked	and	one	asynchronous	with	660	
the	stimulus.	The	stimulus-locked	component,	quantified	by	the	amplitude	at	the	contrast	reversal	661	
frequency	 (12	 Hz),	 was	 clearly	 visible	 in	 all	 subjects	 with	 minimal	 preprocessing.	 The	 signal	662	
showed	 spatial	 specificity,	 in	 that	 it	 was	 observed	 in	 occipital	 sensors,	 with	 higher	 SNR	663	
contralateral	to	the	lateralized	stimuli.	These	results	are	consistent	with	a	long	literature	of	steady	664	
state	evoked	potentials	and	fields,	measured	extracranially	(Adrian	and	Matthews,	1934a;	Norcia	et	665	
al.,	2015)	and	intracranially	(Winawer	et	al.,	2013).		666	

The	asynchronous	signal,	spanning	a	broad	range	of	frequencies	(60-150	Hz),	was	visible	with	little	667	
preprocessing	in	some	subjects	and	in	the	mean	across	subjects.	However,	this	broadband	response	668	
had	 low	 SNR	 compared	 to	 the	 stimulus-locked	 component.	 With	 our	 new	 automated	 denoising	669	
algorithm,	 the	 broadband	 SNR	 increased	 more	 than	 2-fold,	 such	 that	 we	 could	 obtain	 reliable,	670	
spatially	specific	broadband	signals	 in	all	 individual	observers.	We	showed	in	a	subset	of	subjects	671	
that	the	broadband	signals	could	not	be	explained	by	systematic	biases	in	the	pattern	of	fixational	672	
eye	movements,	supporting	the	interpretation	that	the	broadband	fields	arise	from	neural	activity	673	
and	not	from	artifacts	associated	with	eye	movements.	Finally,	we	showed	that	we	obtained	similar	674	
results	using	two	different	MEG	instruments,	a	Yokogawa	MEG	with	157	axial	gradiometers	(NYU),	675	
and	an	Elekta	360	with	204	paired	planar	gradiometers	(CiNet).		676	

These	results	are	qualitatively	consistent	with	intracranial	measurements	in	human	using	a	similar	677	
stimulus	paradigm	(Winawer	et	al.,	2013).	However,	it	has	proven	much	more	difficult	in	the	past	to	678	
measure	 extracranial	 broadband	 signals	 arising	 from	 neural	 activity,	 in	 part	 because	 the	679	
extracranial	 signals	 are	 small.	 Below,	 we	 discuss	 the	 significance	 of	 broadband	 responses,	680	
challenges	in	measuring	them	extracranially,	and	the	generalizability	of	our	denoising	algorithm.	681	

Significance	of	broadband	responses		682	

In	the	1920s	and	30s,	Hans	Berger	and	others	described	oscillatory	signals	in	surface	EEG	between	683	
10	and	25	Hz	(Berger,	1929;	Adrian	and	Matthews,	1934b).	Narrow	peaks	in	EEG	and	MEG	spectra	684	
have	 served	 as	 useful	 indices	 of	 cognitive,	 motor,	 and	 sensory	 engagement,	 and	 have	 been	685	
interpreted	 as	 a	 measure	 of	 coherence	 within	 a	 neuronal	 population.	 More	 recently,	 using	686	
intracranial	recordings	from	patients,	Crone	and	colleagues	(1998)	described	an	increase	in	power	687	
in	 higher	 frequencies	 (75-100	 Hz)	 associated	 with	 motor	 movements.	 Subsequently,	 this	 high	688	
frequency	 power	 elevation	 was	 interpreted	 as	 a	 broadband	 (not	 oscillatory)	 signal,	 thought	 to	689	
reflect	an	increased	level	of	activity	within	individual	neurons,	rather	than	an	increase	in	neuronal	690	
synchrony	 (Miller	 et	 al.,	 2007;	 Miller	 et	 al.,	 2009b;	 Miller	 et	 al.,	 2009c).	 In	 support	 of	 this	691	
interpretation,	 it	 has	 been	 found	 that	 the	 level	 of	 the	 broadband	 signal	 correlates	 with	 single	692	
(Manning	et	al.,	2009)	and	multiunit	spike	rates	(Ray	and	Maunsell,	2011).	Under	some	conditions,	693	
it	 is	 also	correlated	with	 the	 fMRI	BOLD	signal	 (Hermes	et	al.,	2012b;	Winawer	et	al.,	2013).	The	694	
BOLD	 signal,	 however,	 is	 influenced	 by	 processes	 other	 than	 spiking	 (Mathiesen	 et	 al.,	 1998;	695	
Logothetis	 and	 Wandell,	 2004;	 Sirotin	 and	 Das,	 2009);	 hence	 quantifying	 broadband	 responses	696	
from	 the	 same	 stimuli	 or	 conditions	 studied	 with	 fMRI	 can	 help	 disentangle	 the	 relative	697	
contribution	 of	 spiking	 versus	 other,	 non-spiking	 neural	 activity,	 to	 an	 observed	BOLD	 response.	698	
Moreover,	 ECoG	 studies	 in	 many	 different	 parts	 of	 the	 brain	 have	 measured	 broadband	 power	699	
elevations	 associated	 with	 perception,	 movement,	 language,	 and	 cognition	 (Crone	 et	 al.,	 2006;	700	
Miller	 et	 al.,	 2009a;	 Hermes	 et	 al.,	 2012a;	Miller	 et	 al.,	 2014)	 (Figure	 16).	 Being	 able	 to	 reliably	701	
measure	 the	broadband	signal	 extracranially	offers	 the	opportunity	 to	 infer	 the	 level	of	neuronal	702	
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responses	noninvasively	and	at	a	sub-second	scale,	complementing	fMRI,	as	well	as	the	oscillatory	703	
and	time-locked	(evoked)	signals	more	commonly	made	with	MEG	and	EEG.		704	

	705	
Figure	16.	Broadband	signals	around	the	brain.	Examples	of	broadband	field	potentials	from	single	ECoG	electrodes	in	706	
motor	cortex	(top),	ventral	temporal	cortex	(middle),	and	primary	visual	cortex	(bottom).	The	power	increases	relative	to	707	
baseline	span	at	least	50	to	200	Hz.	Adapted	from	(A)	(Miller	et	al.,	2012);	(B)	(Miller	et	al.,	2014);	(C)	(Hermes	et	al.,	708	
2015).		709	

Relation	to	prior	measures	of	extracranial	broadband	and	gamma	band	responses		710	

Broadband	vs.	narrowband	gamma.	Several	groups	have	distinguished	between	broadband	power	711	
increases	and	narrowband	gamma	oscillations	(Henrie	and	Shapley,	2005;	Ray	and	Maunsell,	2011;	712	
Miller	et	al.,	2014).	The	narrowband	oscillation	is	reliably	observed	in	visual	cortex	for	some	stimuli	713	
(e.g.,	 high	 contrast	 bars	 and	 gratings)	 (Kayser	 et	 al.,	 2003;	 Jia	 et	 al.,	 2011;	Miller	 et	 al.,	 2014).	 It	714	
typically	 has	 a	 peak	 frequency	 between	 30	 and	 100	 Hz	 and	 a	 bandwidth	 of	 ~10-20	 Hz.	 The	715	
broadband	response,	 in	contrast,	 is	 found	in	many	brain	areas	and	for	many	types	of	stimuli,	and	716	
spans	at	least	50-150	Hz,	but	can	also	extend	to	lower	and	higher	frequencies	(Miller	et	al.,	2009c;	717	
Winawer	et	al.,	2013).	Robust	narrowband	gamma	oscillations	have	been	measured	using	MEG.	For	718	
example,	Hoogenboom	et	al	(2006),	using	grating	stimuli,	measured	a	large	signal	peaked	between	719	
60	and	80	Hz	with	a	bandwidth	of	 about	10	Hz.	 Similar	 responses	have	been	measured	by	other	720	
groups,	 most	 often	 with	 MEG	 but	 also	 with	 EEG	 (Muthukumaraswamy	 and	 Singh,	 2013).	 These	721	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2017. ; https://doi.org/10.1101/108993doi: bioRxiv preprint 

https://doi.org/10.1101/108993
http://creativecommons.org/licenses/by-nc-nd/4.0/


27	

narrowband	 oscillations	 are	 quite	 different	 from	 the	 broadband	 fields	we	measured	 here,	which	722	
span	a	much	wider	frequency	range,	have	a	lower	amplitude,	and	likely	reflect	asynchronous	neural	723	
activity	rather	than	oscillations.	724	

Multiple	gamma	peaks.	Some	extracranial	studies	have	reported	multiple	distinct	signals	within	the	725	
gamma	band	in	a	single	experiment.	For	example,	Wyart	and	Tallon-Baudry	(2008)	and	Vidal	et.	al.	726	
(2006)	 measured	 MEG	 responses	 to	 gratings	 and	 bars,	 respectively.	 They	 reported	 increases	 in	727	
power	spanning	40-120	Hz,	and	interpreted	this	as	two	narrowband	peaks,	one	between	45	and	65	728	
Hz	and	the	other	between	75	and	120	Hz.	Both	components	were	interpreted	as	oscillations	arising	729	
from	 synchronous	 neural	 activity,	 and	 are	 likely	 different	 from	 the	 broadband	 signals	we	 report	730	
here.	731	

Group	averaged	broadband.	Two	MEG	studies	reported	increases	in	high	gamma	power	(60-140	Hz)	732	
during	recall	of	visual	stimuli	 (Nieuwenhuis	et	al.,	2008;	Nieuwenhuis	et	al.,	2012).	These	studies	733	
showed	the	average	across	subjects	(22	or	24),	so	that	it	is	not	known	whether	there	were	reliable	734	
responses	in	each	separate	subject.		735	

Motor	cortex.	High	frequency	spectral	power	elevation	(~65-100	Hz)	has	been	shown	from	motor	736	
cortex	measured	extracranially	(Ball	et	al.,	2008;	Darvas	et	al.,	2010).	This	signal	was	most	evident	737	
in	group-averaged	data	and	some	but	not	all	 individuals,	and	were	most	reliable	within	a	relative	738	
narrow	band	 (~20-30	Hz	wide).	 Ball	et	al.	 (2008)	noted	 that	 better	methods	 for	measuring	high	739	
frequency	broadband	extracranially	would	help	resolve	whether	individual	differences	were	due	to	740	
measurement	limitations	or	to	the	lack	of	high	frequency	brain	signals	in	some	subjects.		Cheyne	et	741	
al.	 (2008)	measured	high	 gamma	 (65-80	Hz)	with	MEG	over	motor	 cortex	 in	 individual	 subjects,	742	
and	speculated	that	these	signals	reflect	cortico-basal	ganglia	loops,	as	the	subthalamic	nucleus	in	743	
the	basal	ganglia	is	known	to	have	narrowband	oscillations	peaked	at	70-80	Hz.		744	

Challenges	in	measuring	extracranial	broadband	responses		745	

Extracranial	broadband	signal	strength	is	low.	Although	having	a	high	SNR	after	denoising,	the	MEG	746	
broadband	signal	was	nonetheless	small	relative	to	baseline	–	about	a	13%	increase.	Using	nearly	747	
the	identical	stimulus,	the	broadband	signal	measured	by	ECoG	was	about	15	times	larger	(2.9	fold,	748	
or	a	~190%	increase	over	baseline)	(Winawer	et	al.,	2013).	In	contrast,	the	discrepancy	was	much	749	
smaller	for	the	stimulus	locked	signal	(an	almost	8-fold	increase	over	baseline	measured	with	MEG,	750	
and	21-fold	with	ECoG).	Why	 are	 the	MEG	broadband	 signals	 small?	 First,	 the	MEG	 sensors	pool	751	
over	 a	 large	 area,	 so	 that	 the	 baseline	 power	 reflects	 activity	 from	 a	 large	 fraction	 of	 the	 brain,	752	
whereas	the	visually	driven	broadband	response	likely	comes	from	a	much	smaller	region	of	cortex	753	
(Krusienski	 et	 al.,	 2011).	 In	 contrast,	 both	 the	baseline	 and	visually	driven	 responses	 in	 an	ECoG	754	
electrode	on	visual	cortex	arise	 from	the	same	patch	of	brain	tissue.	Second,	 the	signal	amplitude	755	
depends	not	only	on	the	pooling	area,	but	also	the	phase	coherence.	If	the	broadband	signal	arises	756	
from	incoherent	neural	activity,	and	the	stimulus	locked	signal	arises	from	coherent	(synchronous)	757	
neural	activity,	 then	the	 former	will	grow	with	the	square	root	of	 the	number	of	 the	sources,	and	758	
the	 latter	with	 the	number	of	 sources.	 Since	MEG	pools	over	a	much	 larger	 region	of	 cortex	 than	759	
ECoG,	the	ratio	of	incoherent	signal	strength	(e.g.	broadband)	to	coherent	(e.g.	stimulus-locked)	will	760	
be	much	 lower.	 This	 logic	 is	 supported	 by	modeling	 studies	 (Linden	 et	 al.,	 2011)	 and	 empirical	761	
studies	 with	 intra-	 and	 extracranial	 measures,	 which	 found	 that	 the	 signals	 which	 were	 more	762	
coherent	intracranially	had	the	highest	efficiency	in	transmission	to	outside	the	head	(Pfurtscheller	763	
and	Cooper,	1975;	Dalal	et	al.,	2009).		764	

Extracranial	 measurements	 contain	 multiple	 noise	 sources.	 Because	 the	 extracranial	 broadband	765	
power	 is	 low,	 noise	 becomes	 a	 potentially	major	 impediment.	 Fixational	 eye	movements	 (Yuval-766	
Greenberg	et	al.,	2008),	head	muscle	contraction	(Muthukumaraswamy,	2013),	and	environmental	767	
perturbations	 (Hämäläinen	 et	 al.,	 1993),	 produce	 noise	 picked	 up	 by	 MEG	 and	 EEG	 sensors,	 in	768	
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addition	 to	 the	 intrinsic	 noise	 from	 the	 brain	 (Gonen-Yaacovi	 et	 al.,	 2016).	 Many	 of	 these	 noise	769	
sources	 are	 spectrally	 broad	 and	 hence	 particularly	 problematic	 when	 investigating	 neural	770	
broadband	signals.	771	

Although	 spike	 fields	 generated	 from	 eye	 movements	 can	 be	 mistaken	 for	 broadband	 neural	772	
activity	(sometimes	called	a	“gamma	imposter”;	(Yuval-Greenberg	and	Deouell,	2009)),	it	is	unlikely	773	
that	our	spatially-specific	broadband	measures	were	substantially	contaminated	by	eye	movement	774	
artifacts.	This	was	confirmed	by	our	analyses	of	eye	movement	data	in	a	subset	of	subjects,	and	by	775	
the	fact	that	the	middle	posterior	sensors	where	we	observed	broadband	are	not	usually	associated	776	
with	 MEG	 spike	 field	 artifacts	 (Carl	 et	 al.,	 2012).	 A	 second	 confound	 from	 eye	 movements,	 the	777	
electromagnetic	fields	arising	from	movement	of	the	retina-to-cornea	dipole,	causes	low	frequency	778	
artifacts	 (4-20	 Hz;	 (Keren	 et	 al.,	 2010),	 table	 1)	 and	 therefore	 is	 unlikely	 to	 have	 affected	 our	779	
broadband	measures	(60-150	Hz).			780	

Head	muscles,	 like	 extraocular	muscles,	 can	 also	 give	 rise	 to	 spectrally	 broadband	 contaminants	781	
(Muthukumaraswamy,	 2013),	 as	 can	 many	 sources	 of	 noise	 outside	 the	 subject,	 from	 nearby	782	
subways	 to	 MRI	 centers	 to	 electrical	 equipment.	 Many	 of	 these	 sources	 could	 cause	 broadband	783	
signals.	However,	all	of	these	noise	sources	are	unlikely	to	be	confined	to	occipital	sensors	and	to	784	
co-vary	with	stimulus	condition,	and	hence	do	not	explain	our	broadband	observations.	Moreover,	785	
it	 is	 likely	 that	 these	 noise	 sources,	 if	 present,	 were	 included	 in	 our	 noise	 pool,	 and	 hence	MEG	786	
Denoise	would	have	reduced	the	effect	of	these	large-scale	noise	artifacts.	787	

MEG	Denoise	and	other	denoising	algorithm		788	

The	MEG	Denoise	algorithm	we	present	uses	principal	component	analysis	on	a	subset	of	sensors	to	789	
remove	 noise.	 In	 principle,	 it	 can	 capture	 any	 noise	 source	 that	 contributes	 to	 the	 noise	 pool,	790	
including	 environmental,	 oculomotor,	muscular,	 and	 neural.	 This	 differs	 from	 algorithms	 such	 as	791	
CALM,	TSPCA,	and	tSSS,	which	are	explicitly	designed	to	remove	environmental	noise.	Hence	MEG	792	
Denoise	 is	 complementary	 to	 these	methods.	We	 found	 that	 the	most	 effective	analysis	 sequence	793	
was	 either	 to	 use	 MEG	 Denoise	 alone	 on	 the	 minimally	 pre-processed	 data,	 or	 to	 use	 an	794	
environmental	 denoising	 algorithm	 as	 a	 pre-processing	 step	 prior	 to	 running	MEG	 Denoise.	 The	795	
algorithm	 has	 much	 in	 common	 with	 ICA	 denoising	 (Vigario,	 1997),	 with	 a	 few	 important	796	
differences.	 First,	 PCA,	 unlike	 ICA,	 ranks	 the	 components	 by	 variance	 explained.	 Second,	 MEG	797	
Denoise	 explicitly	 separates	 the	 sensors	 into	 a	 noise	 pool	 and	 a	 potential	 signal	 pool.	 The	798	
combination	of	these	features	makes	it	easy	to	automate	which	components	to	project	out.	A	benefit	799	
of	automaticity	 is	 that	 it	 is	 easy	 to	perform	PCA,	and	hence	denoise	 the	data,	 at	 the	 time	scale	of	800	
individual	events	(e.g.,	>1,000	one-second	epochs	here).	 If	 the	spatial	pattern	(the	weights)	of	the	801	
PCs	vary	over	time,	then	deriving	the	components	independently	within	short	epochs	may	be	more	802	
effective,	as	demonstrated	here	(Figure	11,	bars	1	versus	2).		803	

To	 use	 MEG	 Denoise	 for	 other	 experimental	 designs,	 analyses,	 or	 scanners,	 one	 would	 need	 to	804	
change	some	of	the	 input	parameters.	 In	particular,	 in	addition	to	the	experimental	design	matrix	805	
and	data,	there	are	two	required	inputs.	These	are	the	experiment-specific	functions	to	summarize	806	
the	MEG	responses.	In	our	experiments,	one	function	computed	the	stimulus-locked	signal	and	was	807	
used	to	define	the	noise	pool.	For	most	of	our	analyses,	the	other	function	computed	the	broadband	808	
power,	 which	was	 the	 dependent	measure.	 In	 principle,	 one	 could	 use	 a	 single	 function	 to	 both	809	
define	the	noise	pool	and	evaluate	the	data,	and	in	fact	this	is	what	we	did	when	we	denoised	the	810	
stimulus-locked	 signal.	 For	 other	 experiments,	 one	 might	 use	 a	 function	 that	 computes	 the	811	
amplitude	or	latency	of	an	evoked	response,	or	the	power	in	a	limited	temporal	frequency	band,	or	812	
any	 measure	 relevant	 to	 the	 experiment.	 Alternatively,	 one	 could	 run	 a	 separate	 localizer	813	
experiment	to	identify	a	pool	of	potential	sensors	of	interest	and	a	pool	of	noise	sensors,	and	then	814	
manually	 enter	 the	 list	 of	 noise	 sensors	 to	 denoise	 the	main	 experiment.	 There	 are	 a	 number	 of	815	
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other	optional	inputs,	such	as	the	method	to	identify	the	noise	pool,	the	accuracy	metric	(SNR	/	R2).	816	
For	this	paper,	we	used	the	defaults	for	all	optional	inputs.		817	

Conclusion		818	

We	 designed	 an	 experiment	 to	 elicit	 spatially	 specific	 patterns	 of	MEG	 sensor	 responses	 and	we	819	
developed	 a	 new	 denoising	 algorithm	 for	 MEG	 data.	 The	 results	 show	 that	 stimulus-driven	820	
broadband	brain	responses	can	be	quantitatively	characterized	in	individual	subjects	using	a	non-821	
invasive	method.	 Because	we	 obtain	 high	 SNR	measures	 from	 short	 experiments,	 the	 broadband	822	
signal	can	be	used	to	address	a	wide	range	of	scientific	questions.	Having	access	to	this	signal	opens	823	
a	window	for	neuroscientists	to	study	signals	associated	with	neuronal	spike	rates	non-invasively	824	
at	a	high	temporal	resolution	in	the	living	human	brain.	825	

Notes		826	

Supplementary	material	 for	 this	 article	will	 be	made	available	online.	This	material	has	not	been	827	
peer	reviewed.	828	

	 	829	
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