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Abstract

The antisaccade task is a classic paradigm used to study the voluntary control of eye
movements. It requires participants to suppress a reactive eye movement to a visual
target and to concurrently initiate a saccade in the opposite direction. Although several
models have been proposed to explain error rates and reaction times in this task, no
formal model comparison has yet been performed. Here, we describe a Bayesian
modeling approach for the antisaccade task that allows us to formally compare different
models on the basis of their model evidence. First, we provide a formal likelihood function
of actions (prosaccades or antisaccades) and reactions times based on a recently
published model. Second, we introduce the Stochastic Early Reaction, Inhibition, and late
Action model (SERIA), a novel model that postulates two different types of mechanisms
that interact in the antisaccade task: a race-to-threshold decision process and a binary,
time-insensitive decision process. Third, we apply these models to a data set from an
experiment with three mixed blocks of pro- and antisaccade trials. Bayesian model
comparison demonstrates that the SERIA model explains the data better than competing
models that are based only on race-to-threshold processes. Moreover, we show that the
race-to-threshold decision processes postulated by the SERIA model are, to a large extent,
insensitive to the cue presented on a single trial. Finally, we use the same inversion
technique to infer upon model parameters and demonstrate that changes in reaction time
and error rate due to the probability of a trial type (prosaccade or antisaccade) are
explained mostly by faster or slower inhibition and the probability of generating late

voluntary prosaccades.
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Author summary

One widely replicated finding in schizophrenia research is that patients tend to make
more errors in the antisaccade task, a psychometric paradigm in which participants are
required to look in the opposite direction of a visual cue. This deficit has been suggested
to be an endophenotype of schizophrenia, as first order relatives of patients tend to show
similar but milder deficits. Currently, most statistical models applied to experimental
findings in this task are limited to fit average reaction times and error rates. Here, we
propose a novel statistical model that fits experimental data from the antisaccade task
beyond summary statistics. For this, we suggest that antisaccades are the result of several
competing decision processes that interact nonlinearly with one another. Applying this
model to a relatively large experimental data set, we show that mean reaction times and
error rates do not fully reflect the complexity of the processes that are likely to underlie
experimental findings. In the future, our model could help to understand the nature of the
deficits observed in schizophrenia by providing a statistical tool to study the biological

processes from which they arise.
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Introduction

In the antisaccade task ([1]; for reviews, see [2, 3]), participants are required to saccade
in the contralateral direction of a visual cue. This behavior is thought to require both the
inhibition of a prepotent saccadic response towards the cue and the initiation of a
voluntary eye movement in the opposite direction. A failure to inhibit the reflexive
response leads to an erroneous saccade towards the cue (i.e., a prosaccade), which is
often followed by a corrective eye movement in the opposite direction (i.e, an
antisaccade). As a probe of inhibitory capacity, the antisaccade task has been widely used
to study psychiatric and neurological diseases [3]. Notably, since the initial report [4],
studies have consistently found an increased number of errors in patients with
schizophrenia when compared to healthy controls, independent of medication and
clinical status [5,6,7,8]. Moreover, there is evidence that an increased error rate
constitutes an endophenotype of schizophrenia, as antisaccade deficits are also present
in non-affected first-degree relatives of diagnosed individuals (for example [5, 7]).

However, not all studies have reported positive evidence for this (for example [9,10]).

Unfortunately, the exact nature of the antisaccade deficits and their biological origin in
schizophrenia remain unclear. One approach to improve our understanding of
experimental findings is to develop generative models of their putative computational
and/or neurophysiological causes [11]. Generative models can reveal features of the data
that are not apparent when only considering summary statistics such as mean error rate
(ER) and reaction time (RT) [12]. Additionally, generative models can relate behavioral

findings in humans to their biological substrate.

Here, we apply a generative modelling approach to the antisaccade task. First, we
introduce a novel model of this paradigm based on previous race-to-threshold models
[13-16]. For this, we formalize the model introduced by Noorani and Carperter [15] and
extend it into what we refer to as the Stochastic Early Response, Inhibition and late Action
(SERIA) model. We then apply both models to an experimental data set of three mixed
blocks of pro- and antisaccades trials with different trial type probability using formal
Bayesian inference. More specifically, we compare several models using Bayesian model
comparison. Thirdly, we use the parameter estimates from the best model to investigate
the effects of our experimental manipulation. We found that there was positive evidence

in favor of the SERIA model when compared to our formalization of the model proposed
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in [15]. Moreover, the parameters estimated through model inversion revealed a complex
picture of the decision processes underlying the antisaccade task that is not obvious from

mean RT and ER.

This paper is organized as follows. First, we formalize the model developed in [15] and
introduce the SERIA model. Second, we present our experimental setup. Third, in the
results section, we present our behavioral findings in terms of summary statistics (mean
RT and ER), the comparison between different models, and the parameter estimates.
Finally, we review our findings, discuss other recent models, and potential future

developments and translational applications.
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98 Materials and methods

99  Ethics statement
100  All participants gave written informed consent before the study. All experimental
101  procedures were approved by the local ethics board (Kantonale Ethikkomission Ziirich,

102  KEK-ZH-Nr.2014-0246).

103  Race to threshold models for antisaccades
104  In this section, we derive a formal description of the models evaluated in this paper. We

105  start with a formalized version of the model in [15] and proceed to extend this approach.

106  The pro, stop, and antisaccade model (PROSA)

107  Following [15], we assume that the RT and the type of saccade generated in a given trial
108  is caused by the interaction of three competing race-to-threshold units. The first unit u,,
109 represents a command to perform a prosaccade, the second unit ug represents an
110  inhibitory command to stop a prosaccade, and the third unit u, represents a command to

111  perform an antisaccade. The time required for each unit to arrive to threshold is given by:
s; = nt, (1)

A=y, (2)

Ti

112  where r; represents the slope or increase rate of unit i, s; represents the height of the
113  threshold, and t represents time. We also assume that, on each trial, the increase rates

114  are stochastic and independent from each other.

115 The time and order in which the units reach their thresholds s; determines the action and
116 ~ RTinatrial. If the prosaccade unit u, reaches threshold before any other unit at time ¢, a
117  prosaccade is elicited at t. If the antisaccade unit arrives first, an antisaccade is elicited at
118 t. Finally, if the stop unit arrives before the prosaccade unit, an antisaccade is elicited at

119  the time when the antisaccade unit reaches threshold.

120  Formally (but in a slight abuse of language), the two random variables of interest, the
121  reaction time T € [0, o[ and the type of action performed A € {pro, anti}, depend on

122 three further random variables: the arrival times U,, U, U, € [0, oo[ of each of the units.
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123  The probability of performing a prosaccade at time t is given by the probability of the

124  prosaccade unit arriving at time t, and the stop and antisaccade unit arriving afterwards:
p(A=pro,T =1t) =pUp = )p(Us > Op(Us > D). (3)
125  The probability of performing an antisaccade at time t is given by

p(A =anti, T =t) = (4)
p(U, = t)p(Up > t)p(Us > t) +p(U, = t)j p(Us = T)p(Up > 1)dr.

126  The first term on the right side of Eq. 4 corresponds to the unlikely case that the
127  antisaccade unit arrives before the prosaccade and the stop unit. The second term
128  describes trials in which the stop unit arrives before the prosaccade unit. It can be
129  decomposed into two terms:

t 5
pW.=0) [ p W, = (W, > D )

=pU, =t) <p(US < t)p(Up > t) +j p (Us =Dp(r < U, < t)d‘r)

=p(U, =1t) <p(US < t)p(Up >t)+ j p(Us < T)p(Up = T)d‘[). (6)

130 The term p(U, =t) fotp(US < 1)p(U, = 1)dt describes the condition in which the

131  prosaccade unit is inhibited by the stop unit allowing for an antisaccade. Note that if the
132  prosaccade unit arrives later than the antisaccade unit, the arrival time of the stop unit is

133  irrelevant. That means that we can simplify Eq. 4 to
— C gy — — t — (7)
p(A=anti,T =t) =p(U, =t) (p(Up >t)+ fop(Us <7DpU, = T)d‘[).

134  Eq.3and 7 constitute the likelihood function of a single trial, defining the joint probability
135 of an action and the corresponding RT. We refer to this likelihood function as the PRO-
136  Stop-Antisaccade (PROSA) model. This model shares the central assumptions of [15]: (i)
137  the time to reach threshold of each of the units is assumed to depend linearly on the rate

138  r, (ii) itincludes a stop unit whose function is to inhibit prosaccades and (iii) both models
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139  assume no lateral inhibition between the different units. Finally, (iv) the reaction times
140  are assumed to be equal to the reach-to-threshold times. Note that the RT distributions
141  are different from the arrival-time distributions because of the interactions between the
142  units described above. The main difference of this model compared to [15] is that we do
143  not exclude a priori the possibility of the antisaccade unit arriving earlier than the other

144  units. Otherwise, both models are conceptually equivalent.

145 The Stochastic Early Reaction, Inhibition, and Late Action Model (SERIA)

146  The PROSA model is characterized by a strict association between units and action types.
147  In other words, the unit u, leads unequivocally to a prosaccade, whereas the unit u,
148  always triggers an antisaccade. This implies that if the distribution of the arrival times of
149  the units is unimodal and strictly positive, the PROSA model cannot predict voluntary
150 slow prosaccades with a late peak. Hence, the PROSA model cannot account for slow,
151  voluntary prosaccades that have been postulated in the antisaccade task [17]. Similarly,
152 it has been argued that prosaccade RT can be described by the mixture of two
153  distributions [18]. To account for this, we introduce the Stochastic Early Reaction,

154  Inhibition and Late Action model (SERIA).

155  According to this model, and in analogy to the PROSA model, an early reaction takes place
156 at time t if the early unit u, arrives before the late and inhibitory units, u; and u;,
157  respectively. If the inhibitory or late unit arrives before the early unit, a late response is
158  triggered at the time the late unit reaches threshold. Crucially, both early and late
159 responses can trigger pro- and antisaccades with a certain probability. Thus, in parallel
160  to the race-to-threshold processes which determines RTs, an independent, secondary
161  decision process is responsible for which reaction is generated. Fig. 1 shows the structure

162 of the SERIA model.
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Fig 1. Layout of the SERIA model.

The presentation of a visual cue (a green bar) triggers the race of three
independent units. The inhibitory unit can stop an early response. Importantly,
both early and late responses can trigger pro- and antisaccades. Note that the
PROSA model is a special case of the SERIA model in which 7, = 1 and ; = 0, i.e.
all early responses are prosaccades, whereas all late responses are antisaccades.

163  To formalize the concept of early and late responses, we introduce a new unobservable
164  random variable that represents the type of response R € {early, late}. The distribution
165  of the RTs is analogous to the PROSA-model, such that e.g. the probability of an early

166  response at time t is given by
p(R = early,T = t) = p(U, = )p(U; > )p(U, > t) 8)

167  where U,, U; and U, represent the arrival times of the early, inhibitory, and late units
168  respectively. The fundamental assumption of the SERIA model is that the action type
169 (pro- or antisaccade) is conditionally independent of the RT given the response type
170  (early or late). Hence, the distribution of RTs is not a priori coupled to the saccade type
171 anymore; RT distributions for both pro- and antisaccades could in principle be bimodal,
172  consisting of both fast reactive and slow voluntary saccades. Formally, the conditional

173  independency assumption can be written down as

p(A, TIR) = p(A|R)p(T|R), (9)

p(A, TIR)p(R) = p(AIR)p(T|R)p(R), (10)
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p(A,T,R) = p(AIR)p(T,R). (11)

174  The term p(A|R) is simply the probability of an action, given a response type. We denote
175 itas

p(A = pro|R = early) = n, € [0,1], (12)
p(A = anti|R = early) =1 —m,, (13)
p(A = pro|R = late) = m; € [0,1], (14)

p(A = anti|R = late) = 1 — m;. (15)

176  Since the type of response R is not observable, it is necessary to marginalize it out in Eq.

177  [11] to obtain the likelihood of the SERIA model:
p(A,T) =p(4A,T,R =early) +p(A,T,R = late). (16)
178  The complete likelihood of the model is given by substituting the terms in Eq. [16]:

p(A=pro, T =1t) =m.pU, =)p(U; > t)p(U; > t) + (17)

mp(U; = 6) (pUe > 1) + (U, = Dp(U; < D)dr),

pA=anti,T=t) =1 —n,)pU, = t)p(U; > t)p(U;, > t) + (18)

(1 - mpWU; =) (pUe > ) + [ [ p(U. = Dp(U; < T)dr).

179  Itis worth noting here that the PROSA model is a special case of the SERIA model, namely,
180 it corresponds to the assumption that 7, = 1 and m; = 0. The SERIA model allows for
181 bimodal distributions, as both early and late responses can be pro- and antisaccades.
182 Importantly, one prediction of the model is that late prosaccades have the same

183  distribution as late antisaccades.

184 Non-decision time
185 The models above can be further finessed to account for non-decision times § by
186  transforming the reaction timesttots = t — §. The delay § might be caused, for example,

187 by conductance delays from the retina to the cortex. In addition, the antisaccade (or

10
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188  “late”) unit might include a constant delay §,, which is often referred to as the antisaccade
189  cost [1]. Note that the model is highly sensitive to § since any RT lower than § has zero
190  probability. In order to relax this condition and to account for early outliers, we assumed
191 that saccades could be generated before § at a rate n € [0,1] such that the marginal
192  likelihood of an outlier is

p(T <8) =p(Ts <0) =n. (19)

193  For simplicity, we assume that outliers are generated with uniform probability in the

194 interval [0, §]:
p(T =t) =% ift < &. (20)

195  Furthermore, we assume that the probability of an early outlier being a pro- or
196 antisaccade is equal. Because of the new parameter 7, the distribution of saccades with
197  RT larger than § needs to be renormalized by the factor 1 — 5. In the case of the PROSA
198 model for example this means that now the joint distribution of action and reaction time

199 is given by the conditional probability

p(A=pro, T =ts|ts > 0) = pU, = ts)p(Ug > ts — 6,)p(Us > t5), (21)
p(U, <0) =0, (22)
p(A = anti, T = t(glté* > O) = (23)

pWUa = ts = 8,) (P, > t) + [ °p(U, = Dp(Us < )dr).

200 A similar expression holds for the SERIA model. However, in the PROSA model a unit-
201  specific delay is equal to an action-specific delay. By contrast, in the SERIA model both
202  early and late responses can generate pro- and antisaccades. Thus, in the case of the
203  SERIA model, 6§, represents a delay of the late unit that affects both late pro- and

204  antisaccades.

205 Parametric distributions of the increase rate
206  The models discussed in the previous sections can be defined independently of the

207  distribution of the rate of each of the units. In order to fit experimental data, we

11
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considered four parametric distributions with positive support for the rates: gamma,
inverse gamma, lognormal [19] and the truncated normal distribution (similar to [18]).
Table 1 and Fig. 2 summarize these distributions, their parameters, and the
corresponding arrival time densities. We considered five different configurations: 1) all
units were assigned inverse gamma distributed rates, 2) all units were assigned gamma
distributed rates, 3) the increase rate of the pro and stop unit (or early and the inhibitory
unit) were gamma distributed but the antisaccade (late) unit’s increase rate was inverse
gamma distributed, 4) all the units were assigned lognormal distributed rates or 5) all

units were assigned truncated normal distributed rates.

12
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Table 1: Parametric density functions of the increase rates.

Name Parameters Rate p.d.f. Arrival time
p-d.f.
-k k
Gamma k,0 0 o—7/0 k-1 0 o6/t —k-1
r(k) (k)
k —k
Inv. gamma k,6 0 Ry — 0 p-t/6 (k-1
r(k) (k)
Log normal 0 1(Inr—p)? 1(In t+p)?
8 U 1 e_Z(—cr ) 1 e_Z(—a )
V2mor V2ot
2 1/r—u\2 —-1_ 2
T. normal U, le_f(¥) ie_%(t ;u)
Z 2
Zt

N2
Z is the appropriate normalization constant, i.e., Z = fooo exp (— (rzT'uZ)) dr.

Rates pdf Norm. percent. - rates Arrival time pdf
le-2
2.0 -
99 - e
C) i
o 90- ® 1.5
= ®
g 70 - —
o 50 - 'f X 1.0-
Y 30- &
g )
10 - .. 05 -
1 -ee®
I I | | 0.0 |
05 10 15 20 0 100 200 300
r r ms

Fig 2. Illustration of probability distributions used to model increase rates.

Left: Distribution of the rates based on different probability density functions:
Normal (red), gamma (blue), inverse gamma (green) log-normal (cyan). All
distributions were matched to have equal mean and variance. Middle: Probit plots
of the same distributions. While the gamma and lognormal distributions are very
close to the straight line induced by the normal distribution, the inverse gamma
distribution diverges slightly more from linearity. Right: Arrival times distribution
(scaled to ms).

All the parametric distributions considered here can be fully characterized by two
parameters which we generically refer as k and 6. Hence, the PROSA model is
characterized by the parameters for each unit k,, kg, ks, 8,, 6,, 65. The SERIA model can
be characterized by analogous parameters k., k;, k;, 8., 8;, 8; and the probabilities of early

and late prosaccades 7, and ;. In addition to the unit parameters, both models included

13
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222  the non-decision time &, the antisaccade (or late unit) cost §,, and the marginal rate of

223  early outliers 7.

224

14
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225 Experimental procedures
226  In this section, we describe the experimental procedures, statistical methods, and
227  inference scheme used to invert the models above. The data is from the placebo condition

228  ofalarger pharmacological study that will be reported elsewhere.

229  Participants

230  Fifty-two healthy adult males naive to the antisaccade task were invited to a screening
231  session through the recruitment system of the Laboratory of Social and Neural System
232 Research of the University of Zurich. During screening, and after being debriefed about
233  theexperiment, subjects underwent an electrocardiogram, a health survey, a visual acuity
234  test, and a color blindness test. Subjects were excluded if any of the following criteria
235  were met: age below 18 or above 40 years, regular smoking, alcohol consumption the day
236  before the experiment, any possible interaction between current medication and
237  levodopa or benserazide, pulse outside the range 55-100bpm, recreational drug intake in
238  the past 6 months, history of serious mental or neurological illness, or if the medical
239  doctor supervising the experiment deemed the participant not apt. All subjects gave their
240  written informed consent to participate in the study and received monetary

241  compensation.

242 Procedure

243  Each subject was invited to two sessions. During both visits, the same experimental
244  protocol was followed. After arrival, placebo or levodopa (Madopar® DR 250, 200mg of
245  levopa + 50 mg benserazide) was orally administered in the form of shape- and color-
246  matched capsules. The present study is restricted to data from the session in which
247  subjects received placebo. Participants and experimenters were not informed about the
248  identity of the substance. Immediately afterwards subjects were introduced to the
249  experimental setup and to the task through a written document. This was followed by a

250  short training block (see below).

251  The experiment started 70 minutes after substance administration. Subjects participated
252  inthree blocks of 192 randomly interleaved pro- and antisaccade trials. The percentages
253  of prosaccade trials in the three blocks were 20%, 50%, or 80%. This yielded three
254  prosaccade probability (PP) conditions: PP20, PP50, and PP80. Thus, in the PP20 block,
255  subjects were presented a prosaccade cue in 38 trials, while in all other trials (154)

256  subjects were shown an antisaccade cue. The order of trials was randomized in each

15
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257  Dblock, but the same order was used in all subjects and sessions. The order of the

258  conditions was counterbalanced across subjects.

259  Stimulus and apparatus

260  During the experiment, subjects sat in front of a CRT monitor (Philipps 20B40, distance
261  eye-screen: ~60cm, refresh rate: 75Hz). The screen subtended a horizontal visual angle
262  of 38 degrees of visual angle (dva). Eye movements were recorded using a remote
263  infrared camera (Eyelink II, SR-Research, Canada). Participants’ head was stabilized with

264  achinrest. Data were stored at a sampling rate of 500 Hz.

265  During the task, two red dots (0.25dva), which constituted the saccadic targets, were
266  constantly displayed at an eccentricity of +12dva. Displaying the saccadic target before
267  theexecution of an antisaccade has been reported to affect saccadic velocity and accuracy,
268  butnotRTs[20], and arguably decreases the need for sensorimotor transformations [21].
269 At the beginning of each trial, a gray fixation cross (0.6x0.6 dva) was displayed at the
270  center of the screen. After a random fixation interval (500 to 1000 ms), the cross
271 disappeared, and the cue instructing either a pro- or an antisaccade trial (see below) was
272  shown centered on either of the red dots. As mentioned above, in each block, subjects
273  were presented with a prosaccade cue in either 20, 50, or 80 percent of the trials. The
274  order of the presentation of the cues was randomized. The cue was a green rectangle
275 (3.48x0.8dva) displayed for 500ms in either horizontal (prosaccade) or vertical
276  orientation (antisaccade). Once the cue was removed and after 1000ms, the next trial

277  started.

278  Subjects were instructed to saccade in the direction of the cue when a horizontal bar was
279  presented (prosaccade trial) and to saccade in the opposite direction when a vertical bar

280  was displayed (antisaccade trial, see Fig. 3). See [22, 23] for similar task designs.
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Fig 3. Task design.

After a variable fixation period of 500-1000ms (top) the cue (green rectangle)
appeared on the screen for 500 ms. The orientation of the cue (horizontal or
vertical) indicated the required response (prosaccade or antisaccade).

281  Prior to the main experiment, participants were trained on the task in a block of 50
282  prosaccade trials, immediately followed by 50 antisaccade trials. During the training,
283  subjects were automatically informed after each trial whether their response had been
284  correct or not (see below), or whether they had failed to produce a saccade within 500ms
285  after cue presentation (CP). Please note that no feedback was given during the main

286  experimental blocks.

287  Data preparation

288 Data were parsed and preprocessed using the Python programming language (2.7).
289  Saccades were detected using the algorithm provided by the eyetracker manufacturer
290 (SR Research), which uses a velocity and acceleration threshold of 22dva/s and
291  3800dva/s? [24]. We only considered saccades with a magnitude larger than 2dva. RT
292  was defined as the time between CP and the first saccade larger than 2dva. A prosaccade
293  trial was considered correct if the end position of the saccade was ipsilateral to the cue
294  and, conversely, an antisaccade trial was considered correct if the end position of the

295  saccade was contralateral to the cue.

296  Trials were excluded from further analysis if a) data were missing, b) a blink occurred
297  between CP and the main saccade, c) the trial was aborted by the experimenter, d)
298  subjects failed to fixate in the interval between fixation detection and CP, e) if a saccade
299  was detected only later than 800ms after CP, f) if the RT was below 50ms, and in the case

300 ofanantisaccadeifit was below 110ms. Corrective antisaccades were defined as saccades
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301 thata) followed a prosaccade error, b) occurred no later than 900ms after CP, and c) had

302 less than 3dwva horizontal error from the red circle contralateral to the cue.

303 Besides the fitted non-decision time § we assumed a fixed non-decision time of 50ms for
304  all participants [15]. This was implemented by subtracting 50ms of all saccades before
305 being entered into the model. In order to avoid numerical instabilities, RT were rescaled
306 from millisecond to tenths of a second during all numerical analysis. All results are

307 presented in ms.

308 Classical statistics

309 Frequentist analyses of RT and ER were performed using a mixed effects generalized
310 linear model with independent variables subject (SUBJECT), prosaccade probability (PP)
311  with levels PP20, PP50 and PP80, and when pro- and antisaccade trials were analyzed
312  together, trial type (TT). The factor SUBJECT was always entered as a random effect,
313  whereas PP and TT were treated as categorical fixed effects. In the case of ER, we used

314  the probit function as link function.

315 Analyses were conducted with the function fitgIme.m in MATLAB 9.0. The significance
316 threshold a was set to 0.05.

317 Modeling

318 We aimed to answer three questions with the models analyzed here. First, we
319 investigated which of the models proposed here (i.e. PROSA or SERIA) explained the
320 experimental data better, and whether all important qualitative features of the data were
321 captured by the models. We did not have a strong hypothesis regarding the parametric
322  distribution of the data. Hence, comparisons of parametric distributions were only of
323 secondary interest in our analysis. Second, we investigated whether reduced models that
324  Kkept certain parameters fixed across trial types were sufficient to model the data. Third,
325 we investigated how the probability of a trial type in a block affected the parameters of
326  the model.

327  Model space

328 Initially, we defined ten different models as shown in Table 2. Each model was fitted
329 independently for each subject and condition. Since our experimental design included
330 mixed blocks, we allowed for different parameters in pro- and antisaccade trials, i.e.,

331 different increase-rate distributions depending on the TT. Under this hypothesis, the
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332 PROSA model had 12 free parameters (6 for each trial type), whereas the SERIA model
333  required 4 further parameters (7, and m; in pro- and antisaccade trials). Regarding the
334 non-decision time §, antisaccade cost §,, and rate of outliers 7, we assumed equal
335 parameters in both TT. Consequently, the full PROSA model had 15 free parameters
336  whereas the full SERIA model had 19 free parameters.

Table 2. Model families with the respective increase-rate distributions.

PROSA
Model Prosaccade/ Antisaccade unit # Param.
Stop units full/const.

my/mg Inv. gamma Inv. gamma 15/13
m,/ms§ Gamma Gamma 15/13
ms/m§ Gamma Inv. gamma 15/13
m,/mg Lognorm. Lognorm. 15/13
ms/me T. norm. T. norm. 15/13

SERIA

Early/Stop units Late unit

me/mg Inv. gamma Inv. gamma 19/13
m,/ms5 Gamma Gamma 19/13
mg/mg Gamma Inv. gamma 19/13
me/mg Lognorm. Lognorm. 19/13
myo/mi, T. norm. T. norm. 19/13

Models with parameters constrained to be equal across trial types are referred
through the superscript €.

337 In addition to the full models, we evaluated restricted versions of each model by
338 constraining parameters to be shared across TT. In the case of the SERIA model, we
339  hypothesized that the parameters of all units were equal irrespective of TT, i.e., that the
340 rate of the units was not affected by the cue presented in a trial. However, we assumed
341 that the probability that an early or late response was a prosaccade was different in pro
342  and antisaccade trials. Therefore, instead of 12 unit parameters (6 per TT), the restricted
343  SERIA model had only 6 parameters for the units’ rates. The parameters 7, and m; were
344  allowed to differ in pro and antisaccade trials. In the case of the PROSA model, similar to
345 [15],itis possible to assume that the parameters of the prosaccade unit remain constant
346  across TT, and that parameters of the stop and antisaccade unit depend on TT, yielding

347 10 unit parameters.
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348  Prior distributions for model parameters

349 To complete the definition of our generative models, a prior distribution of the
350 parameters was specified. This distribution reflects beliefs that are independent of the
351 data and provides a form of regularization when inverting a model. In order to avoid any
352 undesired bias regarding the parametric distributions considered here, we
353  reparametrize all but the truncated normal distribution in terms of their mean and
354  variance. We then assumed that the log of the mean and variance of the rate of the units
355  were equally normal distributed (see Table 3). Therefore, the parametric distributions
356  hadthe same prior in terms of their first two central moments. In the case of the truncated
357 normal distribution, instead of an analytical transformation between its first two
358 moments and its natural parameters u and o2, we defined the prior distribution as a
359 density of u and In 6. To warrant that the u was positive with high likelihood (96%) we
360 assumed that u ~N(0.55,0.09). The variance term was distributed as displayed in Table
361 3. Asafurther constraint, we restricted the parameter space to enforce that the first two

362 moments of the distributions of rates and RTs existed.

Table 3. Prior probability density functions.

Parameter Probability density function Expected value Variance

i, N(Iny, ; —1.08,0.97) 0.55 0.5
o2 N(Ino?; —2.64,0.69) 0.1 0.01
) N(nd;—1.58,1.79) 0.5 1.25
5, N(Iné,;—0.87,1.17) 0.75 1.25
Te U 0.5 0.08
m U 0.5 0.08
n Beta(n; 1,6) 1/7 0.01

363  For the non-decision time § and the antisaccade cost §,, the prior was a lognormal
364  distribution equal across all models. Note that the scale of the parameters § and §, in
365 Table 3 is tenths of a second. The distribution of the fraction of early outliers n was

366 assumed to be a Beta distribution with parameters 1 and 6 or equivalently

p(n) o (1 —1n)°. (24)
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367 Finally, we assumed that the parameters 7., m; were uniformly distributed in the interval

368 [0,1]. Table 3 displays the parameters used for the prior distributions.

369 Bayesian inference

370 Inference on the model parameters was performed using the Metropolis-Hasting
371  algorithm [25]. To increase the efficiency of this sampling scheme, we iteratively modified
372  the proposal distribution during an initial ‘burn-in’ phase as proposed by [26]. Moreover,
373  we extended this method by drawing from a set of chains at different temperatures and
374 swapping samples across chains. This method, called population MCMC or parallel
375 tempering, increases the statistical efficiency of the Metropolis-Hasting algorithm [27]
376 and has been used in similar contexts before [28]. We simulated 16 chains with a 5-th
377  order temperature schedule [29], drawing a total of 2x10* samples per chain, from which

378  the first half was discarded as part of the burn-in phase.

379  Models were scored using their log marginal likelihood or log model evidence (LME). This
380 is defined as the log probability of the data given a model after marginalizing out all its
381  parameters. When comparing different models, the LME corresponds to the log posterior
382  probability of a model under a uniform prior on model identity. Thus, for a single subject

383  with data y, the posterior probability of model k, given models 1 to n is

pGlmp(my) _ pOlmy) (25)
LipImy) p(m;) ?=1P(Y|mi).

p(mily) =

384 Importantly, this method takes into account not only the accuracy of the model but also
385 its complexity, such that overparameterized models are penalized [30]. Widely used
386 approximations to the LME include the Akaike Information Criterion (AIC) and the
387 Bayesian Information Criterion (BIC); these are easy to compute but have a limited
388  concept of complexity (for discussion, see [31]). Here, we computed the LME through
389 sampling using thermodynamic integration [27, 29]. This method provides robust

390 estimates and can be easily computed using samples obtained through population MCMC.

391 Besides comparing the evidence of each model, we also performed a hierarchical or
392 random effects analysis described in [31, 32]. This method can be understood as a form
393  of soft clustering in which each subject is assigned to a model using the LME as
394  assignment criterion. Here, we report the expected probability of the model r;, which

395 represents the percentage of subjects that are assigned to the cluster representing model
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i. This hierarchical approach is robust to population heterogeneity and outliers, and
complements reporting the group-level LME. Finally, we compared families of models

[33] based on the evidence of each model for each subject summed across conditions.

Implementation

All likelihood functions were implemented in the C programming language using the GSL
numerical package (v. 1.13). Integrals without an analytical form or well-known
approximations were computed through numerical integration using the Gauss-Kronrod-
Patterson algorithm [34] implemented in the function gsl_integration_qng. The sampling
routine was implemented in MATLAB (v. 8.1) and is available as a module of the open

source software package TAPAS (www.translationalneuromodeling.org/tapas).
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Results

Behavior
Forty-seven subjects (age: 23.8 + 2.9) completed all blocks and were included in further
analyses. A total of 27072 trials were recorded, from which 569 trials (2%) were excluded

(see Table 4).

Table 4. Summary of trials.

Valid Blink Missing Aborted FE LateS. EarlyS. Total

Total 26503 188 60 42 249 0 30 27072
Mean 5639 4.0 1.3 0.9 5.3 0.0 0.6 576
Std. 9.9 5.1 2.5 1.5 5.0 0.0 1.3 -
Min. 536 0 0 0 0 0 0 -
Max. 576 22 15 6 19 0 8 -

FE: Fixation errors. Late saccades are saccades elicited after 800ms. Early saccades
are prosaccades elicited before 50ms after CP or antisaccades elicited before
110ms after CP.

Both ER, and RT showed a strong dependence on PP (Fig 4 and Table 5). The mean RT of
correct prosaccade and antisaccade trials were analyzed independently with two ANOVA
tests with factors SUBJECT and PP. We found that, in both prosaccade (F, 135 = 46.9,p <
107°) and antisaccade trials (F,;35 = 37.3,p < 107°) the effect of PP was significant.
With increasing PP, prosaccade RT diminished, whereas the RT of correct antisaccades
increased. Similarly, there was significant effect of PP on ER (ANOVA with factors
SUBJECT and PP) in both prosaccade (F; 135 = 376.1,p < 107°) as well as in antisaccade
(Fy 138 = 347.0,p < 107°) trials.

23


https://doi.org/10.1101/109090

420

421

422
423
424
425
426
427
428

bioRxiv preprint doi: https://doi.org/10.1101/109090; this version posted February 17, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Error rate Reaction time
0.6 - 420 -
0.5 -
380 -
0.4 -
1o n
4@ 0.3 - S 340 -
0.2 -
300 -
0.1-
0 0 - I I I 260 - 1 1 I
20 50 80 20 50 80
PP PP
— pro. — anti.

Fig 4. Error rate and reaction times as a function of prosaccade trial
probability (PP).

Left panel: Mean error rates for prosaccade and antisaccade. Right panel: Mean RT
in ms. Error bars indicate standard errors of the mean.

Table 5. Summary of mean RTs and ERs.

Reaction times (ms)

PP 20 PP 50 PP80
Pro. 330(72) 319(67) 284(59)
Pro.error 326(68) 329(46) 336(57)
Anti. 354(60) 378(57) 389(61)

Anti. error 234(50) 231(47) 225(31)

Error rates %

Pro. 26(15)  11(8)  4(4)

Anti. 23(17) 35(21) 51(20)

Standard deviations are shown in brackets.

Modeling

Model comparison results

In a first step, we considered the models outlined in Table 2. The LME over all participants
(fixed effects analysis) and the posterior probability of all models and all subjects are
presented in Fig 5. Independently of the particular parametric distribution of the units,
the SERIA model showed higher evidence compared to the PROSA model. A random
effects family-wise model comparison [33] resulted in an expected frequency of r = 98%

for the SERIA model family (r = 2% for PROSA). In addition, constraining the parameters
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429  tobeequal across trial types increased the model evidence irrespective of the parametric
430  distribution assigned to the units (Fig 5). Here, the family-wise model comparison
431  showed that models with constrained parameters had an expected frequency of r = 93%.
432  Over all 20 models, m§ showed the highest LME with a difference of ALME > 78.2
433 compared to all other models. Following [35], a difference in LME larger than 3

434  corresponds to strong evidence, roughly equivalent to a p-value of 0.05.

Relative summed LME

5000 - :

4000 -

| |
| |
| |
| |
< 3000 - | |
- | |
| |
| |

S e

m1 m2 m5 m6 m7 m8 m9 m10

Model Probablllty

—l 1

Fig 5. Summary of model comparison.

Top: Summed LME across all subjects for all 20 models. White bars show models
with all parameters free, grey bars models with restricted parameters. LMEs are
normalized by subtracting the lowest LME (m, ). Model m§ clearly exceeds all
other models (ALME>78.3). Bottom: Illustration of model probability for all
individual subjects. The posterior model probabilities for all subjects are shown as
black dots for all models individually. In white shading are models with all
parameters free, grey bars models with restricted parameters. Note that nearly all
subjects show high model probabilities for SERIA models with restricted
parameters.

435 In addition to the initially hypothesized models, we performed an additional unplanned,
436  posthocanalysis on a refinement of the constrained SERIA family of models, in which we
437  fixed the probability of an early antisaccade to a small number (7, =1 —0.005 = 1 —
438  e~°). Hence, this family of models had 11 free parameters. The relative LME is displayed
439 in Fig 6. We found that the most restrictive model was favored (r = 88%) when
440  compared to the original (r = 5%) and constrained models (r = 7%). When restricted to

441  the models evaluated post hoc, there was very strong evidence in favor of m§ with
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fixed m, as compared to other models (ALME>133). If not otherwise stated, in the

following we restrict the analysis to this model, which we denote as 7ig.

Relative summed LME

I

Model probability

4000
3000 -

2000 -

1000 ‘
0

Figure 6: Post hoc model comparison between SERIA models.

Top: LME over all participants for the 5 SERIA models. White bars show models
with all parameters free, light grey bars models with restricted parameters, and
dark gray bars models with fixed prosaccade probability for early responses. LMEs
are normalized by subtracting the lowest LME (m;,). Model m§ with fixed
prosaccade probability for early responses clearly exceeds all other models
(ALME>133). Bottom: Illustration of the subject wise model probability. The
posterior model probability for all subjects are shown as black dots for all models
individually. White shaded areas contain models with all parameters free, light
grey areas models with restricted parameters and dark grey areas models with
fixed early prosaccade probability. Note that nearly all subject show high model
probabilities for SERIA models with restricted parameters.

Fits of four subjects using the maximum a posteriori (MAP) parameter estimates of the
best PROSA model m, and the highest scoring model 7ig (SERIA) are depicted in Fig 7
and Fig 8, respectively. Although model m, was the best model in the PROSA family, it
clearly did not explain the apparent bimodality of the prosaccade RT distributions.
Instead, RTs were explained through wider distributions. We further examined the model
fits in Fig 9 by plotting the weighted fits collapsed across subjects. The histogram of RTs
clearly shows a large number of late prosaccades whose distribution is similar to the
distribution of the antisaccade RTs. Model #ig captures well the shape of these

distributions
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Fig 7. Fits of best PROSA model m,.

Columns display the normalized histogram of the RTs of pro- (red) and
antisaccades (blue) in each of the conditions. Rows correspond to individual
subjects (named S1 to S4 for display purpose). Prosaccade trials are displayed on
the upper plane, whereas antisaccade trials are displayed in the bottom plane.
Thus, blue bars in the upper plane and red bars in the bottom plane indicate errors.
The RT distributions based on the MAP estimates are displayed in red
(prosaccades) and blue (antisaccades) lines.
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Fig 8. Fits of best SERIA model (fig).

Fits of four subjects (same as in Fig. 7) using the best scoring model of the SERIA
family (m§), in which the parameters were fixed across trial types and the
probability of early antisaccades was fixed to a small number. Fits are displayed
for the three PP conditions. For more details see Fig 7.
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Fig 9. Fits using MAP estimates of the best model (ing).

The fits and RT histograms for each condition are collapsed over subjects. For more

details see Fig. 7.
455  Corrective antisaccades
456 The RTs of antisaccades that follow an error prosaccade were not directly modeled.
457 However, we hypothesized that corrective antisaccades are delayed late responses. A
458  total of 2989 corrective antisaccades were included in the analysis. The mean (*std) end
459 time of the erroneous prosaccades was 268(£63)ms. The mean RT of corrective
460 antisaccades was 447(+103)ms, and the weighted mean arrival time of the late unit was
461 361ms. Fig 10 displays the histogram of the end time of all prosaccade errors, the RT of
462  all corrective antisaccades and the time shifted (+86ms) predicted arrival times of the
463 late unit. Since we did not have a strong hypothesis regarding the magnitude of the delay
464  ofthe corrective antisaccades, we selected the time shift to be the difference between the
465 empirical and predicted mean arrival time of the late unit. Visual inspection strongly
466  suggests that the distribution of corrective antisaccade RTs is well approximated by the
467  distribution of the late responses. Since the difference between corrective antisaccades’
468 RT and the expected arrival time of the late is relatively short (86ms), this suggests that
469 the plan for a corrective antisaccade was started before the initial incorrect prosaccade

470  has finished.
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Fig 10. Empirical and predicted RT of corrective antisaccades.
Left: End time of erroneous prosaccades, corrective antisaccades RTs, and time
shifted predicted arrival times distribution of the late unit. The time shift was
selected to match the empirical and predicted mean RT. Right: Quantile-quantile
plot of the empirical distribution of corrective antisaccades, predicted distribution,
and a linear fit to the central 95% quantiles. There is a large deviation only at the
tail of the distribution.
471  Effects of prosaccade probability on model parameters
472  The effect of PP on the parameters of the model was investigated by examining the MAP
473  estimates of the best scoring model 7i§. Initially, we considered the question of whether
474  the mean arrival time of each of the units changed as a function of PP. This corresponds

475 to
E[U;lkliap, Orrap] + Slap (26)

476  whereiisanindex over the units and &,,4p is the estimated delay. Note that for model 7§
477  this value can be analytically computed and is equal in pro- and antisaccade trials. Fig 11
478  left displays the mean arrival times of each of the units. The expected arrival times were
479  submitted to three separate ANOVA tests, which revealed that PP had a significant effect
480 on the late (F,,35 = 13.3,p < 107°), the inhibition (F, 35 = 33.3,p < 107°), and the
481  early unit (F,3g = 3.1,p = 0.047), although the effect on this unit was relatively weak.
482  We then considered the differences across conditions through planned post hoc tests on
483  each condition for each of the units (see Table 7). The arrival times of the early unit did
484  not change significantly between condition PP20 and PP50, but decreased significantly in
485 the PP80 condition as compared to the first two. The arrival times of the late unit

486 increased significantly between the PP50 as compared to all other conditions, but there
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487  was no significant difference in the PP20 and PP80 conditions. Regarding the inhibitory

488 unit, we found that it significantly changed across all conditions.

489
200 . Mean arrival time Prob. late antisaccade
350 - —_ 10~
0.8 -au :
" 300 = $ 0.6 - g : i
£ )50 — 04- 2 *
02- % 3
200 - 0.0 - H : .
150 - | | | | | 1
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PP PP
— early — late — inhib. — pro. trial =— anti. trial
Fig 11. Model parameters.
Left: Mean arrival time and standard error of the late, early, and inhibition units.
Right: Probability of a late antisaccade 1 — m; in prosaccade (red) and antisaccade
(blue) trials in each condition.
490

Table 6. Post hoc comparison of the effect of PP.

Early unit Late unit Inhib. unit

Contrast mean ty33 P  mean tysg p mean ty3g p

PP80 -PP50 -174 -2.0 0.04 -16 -39 <0.01 302 3.6 <0.01
PP80 -PP20 -19.6 -22 0.02 40 096 0.33 67.2 81 <0.01

PP50 -PP20 -0.2 -0.2 0.79 201 475 <0.01 369 44 <0.01

Effect of PP on the mean arrival time for each of the units in ms.

491  The arrival times of the late unit showed a peak at PP50 condition suggesting an effect of
492  the uncertainty associated with it. The uncertainty about trial type is highest in the PP50
493  condition, but equal in the two other conditions. To test this, we performed an unplanned
494  analysis in which we entered PP as a linearly increasing regressor and included the
495  Shannon entropy or uncertainty associated with each block as a further factor. The

496  Shannon entropy is defined as

H = —PPxInPP — (1 — PP)xIn(1 — PP). (27)
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497  Since in our initial analysis PP was entered as a categorical variable, this corresponds to
498 a nested model with one fewer degree of freedom. Results are summarized in Table 8.
499  While there was a significant effect of PP (but not UNCERTAINTY) on the early and
500 inhibitory unit, there was a significant effect of UNCERTAINTY (but not PP) on the late
501  unit.

Table 7. Effect of PP and UNCERTAINTY on the units’ arrival time.

Early unit  Late unit Inhib. unit
Contrast DF1 DF2 F p F p F p
PP 1 138 5.2 0.02 09 033 66.6 <0.01

UNCERTAINTY 1 138 1.0 0.31 258 <0.01 0.2 0.63

502  Finally, we examined how the probability of a late antisaccade 1 — m; (Fig 11, right)
503 depended on PP and TT. The estimated parameters for both pro- and antisaccade trials
504 were analyzed with a model with factors SUBJECT, TT, PP and the interaction between
505 TT and PP. An ANOVA test demonstrated that both PP (F,;,6 = 33.6,p < 10™*) and TT
506 (Fy,76 = 658.7,p < 107°) had a significant effect, but there was no evidence for an
507 interaction between the two factors (F;,;¢ = 0.8,p = 0.44), suggesting that PP affected

508 the probability of a late antisaccade similarly in pro- and antisaccade trials.

509
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510 Discussion

511 Inthis study, we provided a formal treatment of error rates (ER) and reaction times (RT)
512 inthe antisaccade task using a probabilistic model. We applied the model to the data from
513 an experiment with 3 mixed blocks with different probabilities of pro- and antisaccades
514  trials. Model comparison showed that a novel model that allows for late pro- and
515 antisaccades, explains our experimental findings better than a model in which all late
516 responses are assumed to be antisaccades. The parameter estimates of the hidden units
517  of the model showed that changes in the inhibition unit and changes in the probability of
518 late prosaccades (m;) explained most of the overt changes in behavior caused by our
519 experimental manipulation, i.e., differences in PP. Moreover, we found that while
520 inhibition was highly sensitive to the PP in a block, late responses were sensitive to the

521 uncertainty associated with that block.

522 Influence of trial probability on reaction times and error rates

523  Our results show that both RT and ER depend on PP. While this was a highly significant
524  factor in our study, there are mixed findings in previous reports. ER in antisaccade trials
525 was found to be correlated with trial type probability in several studies [23,36,37].
526  However, this effect might depend on the exact implementation of the task [37,38].
527  Changes in prosaccade ER similar to our study have been reported by [23] and [39].
528 Studies in which the type of saccade was signaled at fixation prior to the presentation of
529  the peripheral cue do not always show this effect [37]. The results on RTs are less
530 consistent in the literature. Our findings of increased anti- and decreased prosaccade RTs
531  with higher prosaccade trial probability are in line with the overall trend in [23] and with
532  studies in which the cue was presented centrally [23,37]. Often, there is an additional
533 increase in RT in the PP50 condition [23,37,1], which was visible in our data as a slight
534  increase in RT in the PP50 condition on top of the linear effect of PP. Overall, RTs in our
535 study were relatively slow compared to studies with the task cue separated from the
536  spatial cue [36, 37, 39]. However, a study with a similar design and added visual search

537  reported even slower RTs in both pro- and antisaccades [23].

538 Interpretation of model comparison results
539 The formal comparison of generative models can offer insight into the mechanisms

540 underlying eye movement behavior [11] and might be relevant in translational
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541 neuromodeling applications, such as computational psychiatry [41-45]. Here, we have
542  presented what is to our knowledge the first formal statistical comparison of models of
543  the antisaccade task. For this, we formalized the model introduced in [15] and proceeded
544  to develop a novel model that relaxes the one-to-one association of early and late
545  responses with pro- and antisaccades, respectively. All models and estimation techniques
546  presented here are openly available under the GPLv3.0 license as part of the open source

547  TAPAS package (www.translationalneuromodeling.org/tapas).

548 Bayesian model comparison yielded three conclusions at the family level. First, the SERIA
549  models were clearly favored when compared to the PROSA models. Second, models in
550  which race-to-threshold parameters were constrained to be equal across trial types had
551  ahigher LME than models in which all parameters were free. Hence, the effect of the cue
552  in a single trial was limited to the probability of making a late prosaccade, and did not
553  directly affect the race-to-threshold process. Third, early responses were nearly always
554  prosaccades. Crucially, these three conclusions hold in a family comparison across all

555  parametric distribution of the increase rate of the units.

556  One less obvious but important consequence of our modeling findings is that the decision
557  to make a late pro- or antisaccade was not ruled by the same race process that governed
558 RTs. This follows from the main postulate of the SERIA model, namely, the conditional
559 independence of actions and RTs given response type (early or late). Thus, two
560 independent and qualitatively different decision processes lead to an antisaccade: the
561 race-to-threshold process between early and late responses, and the independent
562  decision process that generates different late responses (pro- vs antisaccades). A similar
563 separation of eye movement processes into a ‘where’ and ‘when’ component has been

564  proposed by [46], although mainly in conceptual terms.

565  Parametric distribution of reaction times

566  The parametric distribution of oculomotor RTs has been discussed in great detail in the
567 literature (e.g., [47,48]). Here, we did not aim at determining the most suitable
568 distribution, but rather opted for a practical approach by evaluating different models
569  with a reduced number of parametric distributions and based our conclusions on the
570 model with the highest LME. Nevertheless, one can consider the relationship of the
571 models presented here with other families of parametric distributions. In particular, the

572  linear relationship
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i (28)

573 seems to be inconsistent with the observation that RT are likely to be explained by
574  stochastic accumulation processes (see for example [49, 50]). However, it can be shown

575  thatif RTs follow a generalized inverse normal distribution (GIN) of the form

W/mr (29)

—t
2K, ()

576  where 4 <0, and K, is a modified Bessel function of the second kind, there exists a

GIN(t; A, k, ) = exp (—%(Kt_l + Yt) )

577  continuous diffusion process whose first hit distribution (FHD) follows the GIN [51]. A
578  particular case of this distribution is the Wald distribution for which 4 = —%, k =0.Itis

579  the FHD of the Brownian diffusion process with drift

580  where W, denotes a Wiener process, x, > 0, and the absorbing boundary a is zero. More
581 relevant here, when ) = 0 the distribution reduces to an inverse gamma distribution, the

582  FHD of the process
X, =VoRA-1Dt 1+ oW, (31)

583  with x4 > 0 and boundary a = 0 (for a detailed mathematical treatment see [51]). Thus,
584 if the rates of a ballistic, linear process are assumed to be gamma distributed, the RTs
585 follow a distribution that is formally equivalent to a first hit model with stochastic
586 updates and fixed rates. While the model presented here is a ballistic accumulation
587 model, this equivalence suggests that it is compatible with a diffusion process with

588 infinitesimal mean change proportional to ¢t 1.

589  Other antisaccade models

590 Inbroad terms, three families of antisaccade models can be distinguished. The first set of
591 models is based on a race-to-threshold mechanism with independent saccadic and stop
592  units. These models build on the seminal work by [13] on the stop-signal paradigm.
593  According to these authors, a ‘go’ signal triggers a stochastic ‘race’ process that generates

594  aresponse once it reaches threshold. Critically, a stop signal triggers a second process
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595 thatinhibits the first ‘go’ response if it is the first to reach threshold. Importantly, the pace
596  of both units is mutually independent. This model was further extended by [15], who
597 included a third unit such that an antisaccade is generated when a reflexive prosaccade
598 isinhibited by an endogenously triggered stop process. Note that the original ‘horse-race’
599  model has also been modified [14] to account for different competing response actions,
600 similarly as in the antisaccade task. The SERIA model proposed here belongs to this
601 family.

602 A second type of model relies on lateral or mutual inhibition of competing pro- and
603  antisaccade units. In this direction, Cutsuridis and colleagues [52] proposed that lateral
604 inhibition is implement by inhibitory connections in the intermediate layers of the
605  superior colliculus. Thus, saccades are the result of accumulation processes, but these are
606 notindependent of each other. Crucially, no veto-like stop signal is required. Although no
607 formal model fitting has been proposed for this model, qualitative agreement with data
608  suggests that it might capture behavioral patterns relevant in translational applications
609 [53, 54]. Since no probabilistic version of this model is available, it is currently not
610 possible to decide on the grounds of model comparison whether mutually dependent or

611 independent race processes best explain behavioral findings.

612  Finally, several models that incorporate detailed physiological mechanisms have been
613 proposed [17, 55-57]. These models cannot easily be assigned to one of the above
614 categories, as they often employ both an inhibitory mechanism that stops or withholds
615 the reactive responses as well as competition between actions. In addition, while more
616 realistic models possess a more fine-grained representation of the underlying
617 neurobiology, they rely on a large number of parameters and it is difficult to fit them to

618 behavioral data (for discussion, see [11]).

619 Regarding neurobiologically realistic models, the model proposed by [17] is the most
620 similar to the SERIA model. It posits two different mechanisms that interact in the
621 generation of antisaccades: an action selection module and a remapping module that
622  controls the cue-action mapping. As a consequence, this model allows for the generation
623  oflate errors that follow a similar RT distribution as correct antisaccades. Consistent with
624  this observation, the SERIA model can quantitatively distinguish between inhibition and
625 decision (cue-action mapping) errors (Fig 12, left panel). A less obvious similarity

626  between the SERIA model and [17] is that different cues do not lead directly to different
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627  dynamics in the action module, but only in the so-called ‘remapping’ module. Similarly,
628 our model comparison results show that different cues (i.e., trial types) do not affect the
629  race process but only the late cue-action mapping expressed in the parameter ;.

055 Anti. error rate 200 - Anti. RT and late unit

0.50 - =1 decision error — anti.

inhibition error 390 - = = late unit
0.45 -
— error rate

n 0.40 - 380 -
o 0
© €
© 0.35 - 370

0.30 -

360 -
025-
0.20 - ! | | 350 -
20 50 80 20 50 80
PP PP

Fig 12. Error sources and late unit arrival time against antisaccade RT.

Left: Error rate (black line) split into the two causes predicted by the model.
Inhibition errors are early actions that always trigger prosaccades. Similarly as
described by [17], decision errors occur when a late response leads to a
prosaccade. Right: Mean late unit arrival time and mean antisaccade RTs. Although
mean RT increases with antisaccade probability this is due to slower inhibition, not
to slower late responses. On the contrary, as uncertainty decreases, late responses
are faster.

630 Parameter changes across trial types

631  One of the most salient results presented here is that models in which the parameters of
632  the units were constrained to be equal across trial types had a larger LME than models in
633  which all the parameters were free, suggesting that the race units were not affected by
634  the cue presented on a single trial. However, while visual inspection of the predicted
635 likelihood under the MAP parameters showed that most of the prominent characteristics
636  of the data were explained correctly, some more subtle effects were not captured
637  accurately by the model, for example, the distribution of late prosaccades in prosaccade
638 trials in the PP20 and PP50 conditions. One possible explanation is that restricting the
639  parameters across trial types made the model too rigid to capture this effect. Fig 13
640 compares the fitted RT distributions for models mg and 7i§. Although removing the
641 constraint on the parameters did improve the fit, the differences are marginal and, thus,
642  did not justify the additional model complexity. One might suspect that the distribution
643  of late prosaccades was influenced by factors not included in the model such as
644  unidirectional switch costs [58] that would be more prominent in the PP20 and PP50

645 conditions. Nevertheless, the differences in LME strongly suggest that the cue presented
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646  on a given trial had only a marginal effect on the putative race processes that generates
647  early and late responses. In fact, this example illustrates the protection against overfitting
648 provided by the LME, as this is a case in which simpler models were preferred over more

649 complex models despite of slightly less accurate fits.

PP20 PP50 PP80
10 .le-3 2.0 le-3 4.0 L3
3.5 -
0.5 - = 15 - ol
0.0 - 1.0 - 25
o -0.5 - 0.5 - 20 -
8 -1.0 - 0.0 — 15 -
e _15- / 0.5 - 1.0 -
0.5 -
—204 ~1.0- 0.0 -
-2.5- -1.5- 05 -
_30 A I I | I _20 A | I | I _10 A | I | I
0 200 400 600 800 0 200 400 600 800 0 200 400 600 80
ms - = pro.m§ =— pro.mg == anti.mg — anti.mg

Fig 13: Comparison between constrained and unconstrained models.

Comparison between models mg (solid lines; all unit parameters are free) and m§
(broken lines; unit parameters are equal across trial types). Only minor differences
were observed, mainly in the PP20 condition.

650 The effect of trial type probability

651 Itis far from obvious why TT probability affects RT and ER in the antisaccade task. One
652  possible explanation is that increased probability leads to higher preparedness for either
653  pro- or antisaccades. Such a theory posits an intrinsic trade-off between preparations for
654  one of the two action types that leads to higher RTs and ERs in low probability trials.
655  Thus, a trade-off theory predicts that the arrival times of early and late responses should
656  be anticorrelated. Although this hypothesis can explain our behavioral findings in terms

657  of summary statistics, our model suggests a more complicated picture.

658  The main explanation of our results is the effect of TT probability on the inhibitory unit
659  and the probability of a late prosaccade. A higher probability of antisaccade trials leaded
660 to faster inhibition and to a higher number of late prosaccades. This resulted in higher
661 mean RT in prosaccade trials when PP is low. In the case of antisaccades, although the
662  mean arrival times of the late unit increased in the conditions with highest uncertainty
663  (Fig 12 right panel), the increased arrival time of the inhibitory unit on the PP80 condition
664  skewed the antisaccade distribution towards higher RTs.

665 Regarding possible neural correlates of the effect of uncertainty in the responses of the

666 late unit, a recent study [39] investigated the changes in BOLD signal in a task design
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667  similar to ours, in which subjects performed pro- and antisaccades in mixed blocks with
668 PP of either 25, 50, or 75 percent. When examining the interaction between the TT and
669 PP factors, four clusters showed a significant activation: precuneus/right middle occipital
670  gyrus, medial superior frontal gyrus, fusiform gyrus, and right inferior/middle frontal
671  gyrus. Post hoc analysis revealed that in the prosaccade trials, these areas showed an
672  increased activation with prosaccade probability, while there were no significant changes
673 inantisaccade trials. Visual inspection ([39], Fig. 4) suggests that the pattern of activation
674  change in the antisaccade trials resembled the uncertainty function that characterizes the
675 arrival time of the late responses in our data. Unfortunately, the authors did not test for
676  the effect of uncertainty, and thus, we can only speculate that these areas might be

677  involved in the generation of late responses.

678 Corrective antisaccades

679  Although not a primary goal of our model, we considered the question of predicting
680  corrective antisaccades. This problem has received some attention recently [16], as more
681  sophisticated models of the antisaccade task have been developed. A natural hypothesis
682 is that the distribution of these RTs should be similar to the distribution of the late
683  responses. We speculated that these are generated by the very same mechanism that
684  triggers late responses. Our results strongly suggest that this is the case, as suggested by
685  visual examination (see Fig 10). The time delay of the corrective antisaccades indicates
686  that, on average, corrective antisaccades are not the result of the late unit being restarted
687  at the end time of the erroneous prosaccade, as this would lead to much higher RTs.
688  Rather, the planning of a corrective antisaccade might be started much before the end of

689  the execution of an erroneous prosaccade.

690 Summary

691 Here we have presented a novel model of the antisaccade task. While the basic structure
692  of the model follows the layout of a previous model [15,16], we have introduced two
693  crucial advancements. First, we postulated that late responses can trigger both pro- and
694  antisaccades, which are selected by an independent decision process. Interestingly, a
695 recent neural network model [17] introduced a comparable solution based on attractor
696 network dynamics that can yield late erroneous prosaccades. Second, the generative
697  nature of our model allows for Bayesian model inversion, which enables the comparison

698 of different models and families of models on formal grounds. To our knowledge this has
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not been done for any of the previous models of the antisaccade task. This is of relevance
for translational applications that aim at better understanding psychiatric diseases by

means of computational modeling.

The application of the model to a large data set yielded several novel results. First, the
race process triggered by different cues is almost identical. Moreover, different PP had
very different effects on the individual units, which was not obvious from the linear
analysis of the mean RT and ER. In particular, late responses are mostly affected by
uncertainty but not by PP. Crucially, our modeling allowed us to look at a mechanistic
explanation or the effects of PP by examining the individual race units. In future work we
aim to disentangle the mechanisms of behavioral differences caused by different drugs

and psychiatric illnesses using formal Bayesian inference.
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