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ABSTRACT 

Cellular protein levels are dictated by the 
balance between gene transcription, mRNA 
translation and protein degradation, among other 
factors. Cells must manage their proteomes during 
stress; one way in which they may do so, in 
principle, is by differential translation. We used 
ribosome profiling to directly monitor translation in 
E. coli at 30 °C and investigate how this changes 
after 10-20 minutes of heat shock at 42 °C. 
Translation is controlled by the interplay of several 
RNA hybridization processes, which are expected 
to be temperature sensitive. However, translation 
efficiencies are robustly maintained after thermal 
heat shock and after mimicking the heat shock 
response transcriptional program at 30 °C. Several 
gene-specific parameters correlated with translation 
efficiency, including predicted mRNA structure and 
whether a gene is cotranslationally translocated into 
the inner membrane. Genome-wide predictions of 
the temperature dependence of mRNA structure 
suggest that relatively few genes show a melting 
transition between 30 °C and 42 °C, consistent with 
our observations. A linear model with five 
parameters can predict 33% of the variation in 
translation efficiency between genes, which may be 
useful in interpreting transcriptome data.  

	INTRODUCTION 

The regulation of the rate of protein 
synthesis is not completely understood. Cells 
continuously alter protein levels and stoichiometry 
in order to maintain a correctly-balanced proteome. 
Chaperones, proteases and specialized folding 
factors ensure that proteins can reach their native 
state without becoming trapped in misfolded or 
aggregated states (1, 2). The rate of synthesis of 
proteins needs to be tuned so that the capacity of this 
“protein homeostasis network” is not exceeded (3). 
In this work, we aimed to determine how E. coli 
alter their translation in response to heat shock by 
using ribosome profiling (4, 5) to measure genome-
wide translation rates. These data represent an 
important step towards understanding how bacteria 
strike a balance between synthesis, folding and 
degradation of proteins, and will facilitate the 
development of computational models of the E. coli 
protein homeostasis network (3). 

An archetypal stress on proteomes is heat 
shock, abruptly raising cells’ temperature so that 
proteins unfold and aggregate. Rapid heating in 
bacteria triggers the heat shock response, a 
transcriptional program characterized by increased 
expression of chaperones and proteases to enhance 
protein folding and suppress aggregation. The 
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canonical heat shock genes are transcribed using the 
alternate RNA polymerase sigma factor, σH, 
encoded by the rpoH gene (6, 7). σH activity is 
tightly regulated at several levels, including 
enhanced translation at elevated temperatures, and 
binding by its primary downstream targets (8–10). 
Production of new, misfolding-prone proteins is a 
major source of protein aggregation and toxicity 
during heat shock, so we reasoned that differential 
translational control may be important in reducing 
the concentrations of heat-labile proteins. 

Control of translation plays an important 
role in the expression of many genes (5, 11–15), 
reviewed in (16). Over a population of cells, mRNA 
levels generally correlate with protein levels, but 
there are large differences between individual 
proteins (12, 14, 17). A clear example in 
prokaryotes is the differential translation of 
individual genes from polycistronic transcripts (12, 
15). Control of translation has been intensely 
studied, but there is little consensus on the relative 
roles of different factors, and no way to predict how 
well-translated a particular sequence will be (16). 
Translation rate is determined by a combination of 
initiation and elongation rates. Translational 
initiation is slower than elongation, so initiation is 
rate-limiting for the translation of most genes (18). 

Ribosome profiling by deep sequencing 
measures the distribution of translating ribosomes 
within a cell’s transcriptome, and hence determines 
how often a particular mRNA is translated (4, 5, 12). 
A key parameter is translational efficiency (TE), the 
rate of protein production per mRNA, which is 
equivalent to the number of ribosomes that translate 
a particular mRNA molecule. This is a more direct 
measurement of translation than is possible by 
measuring protein levels, and in combination with 
total mRNA measurements can assess genome-wide 
TE. Ribosome profiling can report on protein 
synthesis rates, which in turn correlate strongly with 
protein abundances in rapidly-dividing cells such as 
E. coli (12). Surprisingly, differences in TE 
measured by ribosome profiling correlate weakly, if 
at all, with sequence-specific factors that affect 
translation of individual genes, and the determinants 
of differential TE across transcriptomes remain 
unknown (12, 16, 19). Recent work suggests that 
ORF-wide mRNA structure is the primary 
determinant of TE differences in the E. coli genome 
(20).  

Here, we use ribosome profiling to directly 
quantify the relationship between mRNA 
abundance and ribosome occupancy at 30 °C and 
under heat shock conditions (42 °C) in the well-
studied model organism, E. coli K12 MG1655. We 
find that TE and patterns of ribosome footprints for 
all measured genes are very similar between 30 °C 
and after 10 or 20 minutes of heat shock at 42 °C 
despite widespread changes in transcription and 
translation levels. mRNA structure seems to play a 
significant role in determining TE. RNA stability 
predictions suggest that few mRNAs undergo 
structural transitions in the temperature range 
studied. Unrelated to our original hypothesis, we did 
observe one striking and unexpected correlation: A 
distinctly lower TE for inner membrane proteins 
under both normal and heat shock conditions, which 
we hypothesize is linked to cotranslational export 
from the cytosol. 

RESULTS 

Translation efficiency varies across the E. 
coli genome—We sequenced total RNA and 
ribosome footprints from replicate E. coli K12 
MG1655 cultures growing exponentially in rich 
defined media (Table 1). We tested the hypothesis 
that heat shock would alter translation by 
sequencing libraries from bacteria growing at 30 °C 
and after 10 and 20 minutes of growth at 42 °C. Any 
changes in translation that we observed could be 
directly caused by temperature-dependent RNA 
hybridization, or by downstream effects of genes 
expressed at high temperature. To differentiate 
between these possibilities, we also compared 
bacteria expressing either wild-type or I54N σH 
protein from a pBAD plasmid, which mimics the 
heat shock transcriptional program, to bacteria 
containing an empty pBAD vector at 30 °C (21). σH, 
encoded by the rpoH gene, is the RNA polymerase 
sigma factor responsible for the transcription of the 
canonical heat shock proteins such as the 
chaperones DnaK and GroEL. The activity of σH 
protein is repressed by factors including DnaK, but 
this repression is alleviated by the I54N mutation 
(10, 22).  

For each sample, mRNA and ribosome 
footprint cDNA libraries were prepared and 
sequenced. The number of reads per gene was 
calculated and normalized with EdgeR (23) to give 
mRNA and footprint counts per kilobase million 
(CPKM) for each gene. Footprint reads were 
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adjusted to remove the influence of the elevated 
ribosome density seen at the beginning of genes 
(12). We focus on protein coding genes without 
unusual translational events such as frameshifting. 
For each gene, and for each replicate, we calculated 
translation efficiency (TE), the ratio of footprint 
CPKM to mRNA CPKM. Homologous genes such 
as tufA and tufB, which encode elongation factor 
EF-Tu, were considered as a single gene and their 
counts summed. We included data from E. coli 
grown at 37 °C in similar rich defined media 
obtained by Li and co-workers (12) in our analysis 
for comparison. Normalized gene read counts for 
each library are shown in Table S1. The footprint 
reads from one replicate of the 20 minute heat shock 
condition differ substantially from those of the other 
replicates (Table S1), suggesting a problem with 
library construction, so those data were excluded 
from our analysis.  

Under all conditions, global transcription 
and translation patterns are similar, with CPKM 
values varying over 1000-fold between genes (Fig. 
1A and 1B). Footprint levels correlate well with 
mRNA levels (Fig. 1, R² = 0.80 for 30 °C log-
transformed data), indicating that transcript level is 
a primary determinant of translation rate. However, 
translation efficiency varies by more than 100-fold 
across the genome (Fig. 1C and 1D), even within 
individual operons. Data for an extreme example, 
the yobF-cspC operon, is highlighted in Fig. 1A. 
Translation levels for measurable proteins correlate 
with those observed previously (5, 12), and with 
proteomic abundance measurements (Fig. 1E and 
1F), (24, 25). 

Translation efficiency is maintained at 
elevated temperature—Because translation 
initiation is controlled by the interplay between 
different RNA hybridization events, we reasoned 
that temperature should differentially affect the TE 
of different genes. However, the measured TEs of 
genes do not significantly change between 30 °C 
and 42 °C (Fig. 2), despite changes in absolute 
translation levels between conditions (Fig. 3). We 
looked for altered ratios of footprint and mRNA 
counts using EdgeR (23) and anota (26); neither 
method identified genes with significantly altered 
TE (not shown). 

Fig. 3 shows plots of footprint versus 
mRNA counts for selected canonical heat shock 
genes under different conditions. The strong 
induction of genes such as the chaperonin subunit 

groL indicates that the cells are responding to heat 
stress by transcribing genes from the σH regulon. 
Since the data in each case have a strong tendency 
to fall on a line, it is clear that TE (the slopes of the 
lines) is maintained at different temperatures and 
widely varying expression levels. Individual genes 
within polycistronic operons often have differing 
ribosome densities, indicative of differential 
translation (5, 12, 15). The patterns of translation 
within individual operons, which here are very 
similar to those described previously (12), are also 
maintained at different temperatures, as exemplified 
by the rpsM and rpsP operons (Fig. 4). 

Ribosome footprint patterns are maintained 
at elevated temperature—Ribosomes are 
distributed unevenly across mRNA molecules, 
showing distinct patterns in different genes. 
Translation slows or pauses when ribosomes 
interact with sequences that resemble Shine-
Dalgarno motifs (27). Since this interaction is 
driven by RNA hybridization, we looked for 
changes in the patterns of ribosome footprints 
across the genome at different temperatures. Fig. 5A 
shows the ribosome profiles of the dnaJ gene, 
whose expression increases upon heat shock. The 
patterns of ribosomal density are very similar 
between conditions and replicates, indicating that 
ribosome pausing is not affected by heat shock. The 
similarity between profiles can be simply measured 
by correlation. The pairwise correlation coefficients 
for replicates of the same condition, and different 
conditions within the same replicate for dnaJ are 
shown in Fig. 5B. There is a stronger correlation 
between data measured at different temperatures 
than between replicates of the same temperature. 
This observation is likely due to the replicates 
having been grown on different days, whereas the 
six samples for each replicate (mRNA and 
footprints for 30 °C and for 10 and 20 minutes at 
42 °C) were processed and sequenced together. This 
pattern is repeated across the genome for genes that 
are well expressed in all samples (Fig. 5C).  

Activation of σH is controlled post-
translationally—The heat shock sigma factor, σH, is 
regulated at several levels: translation of its mRNA 
is limited by secondary structure, and the protein is 
rapidly bound by DnaK and the signal recognition 
particle (SRP) and delivered to the membrane to be 
degraded by the FtsH protease (8, 10, 28, 29). As 
the downstream targets of σH are produced, they 
compete with RNA polymerase apoenzyme for 
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binding to σH, which turns off the transcriptional 
response. We use transcription of σH regulon genes 
as a measure of σH activity, and thereby distinguish 
between translational and post-translational 
regulation. Fig. 6 shows σH activity — measured by 
transcription of the groL and dnaK genes, which 
encode two major heat shock chaperones — as a 
function of its translation. At 30 °C, the activity of 
wild-type σH is only weakly dependent on its 
translation level, either from the chromosome or a 
plasmid. Translation of rpoH mRNA is similar at 
30 °C and after 10 minutes at 42 °C. However, 
transcription of both groL and dnaK increases 
(hollow circles in Fig. 6) to a much greater extent 
than is seen following the overexpression of wild-
type σH at 30 °C (solid circles in Fig. 6). After 20 
minutes at 42 °C, translation of rpoH remains at a 
similar level, but σH protein activity decreases 
(hollow triangles in Fig. 6). Finally, direct 
overexpression of I54N σH results in a large 
transcriptional activity (solid triangles in Fig. 6). 
This pattern is consistent with post-translational 
repression of σH by DnaK and SRP being the 
primary means of control at ambient or mild heat 
shock conditions.  

E. coli has two other known RNA 
thermometers. Similarly to rpoH, the translation of 
the small heat shock protein IbpA is known to be 
controlled by RNA secondary structure that 
occludes its ribosome binding site at low 
temperature (30). We do not observe enough reads 
for ibpA to be able to reliably assess its translation, 
but its low expression in itself suggests that its 
translation is not activated. The cold shock protein 
CspA’s mRNA contains a motif that activates its 
translation at low temperature (31). However, cspA 
is strongly translated (TE of 4.6 ± 1.1 at 30 °C and 
4.5 ± 0.77 after 10 minutes at 42 °C), suggesting that 
this mechanism does not prevent translation under 
these conditions. 

Translation from the open reading frame of 
ssrA increases during heat shock—E. coli have 
several mechanisms to rescue ribosomes that have 
stalled on an mRNA molecule, the best-understood 
of which is the tmRNA/ssrA system (32, 33). The 
tmRNA molecule, encoded by the ssrA gene, binds 
to ribosomes with a stalled nascent peptide, which 
may be caused by an mRNA lacking a stop codon. 
The tmRNA molecule releases the ribosome from 
the mRNA and encodes for the translation of a short 
peptide tag which directs the resulting peptide for 

degradation by the ClpXP protease. FP counts from 
the ORF portion of the ssrA gene increase following 
heat shock (Fig. 7). This indicates an increase in 
ribosome stalling during heat shock, possibly 
caused by an increased frequency of mRNA 
fragmentation or translational frameshifting. 

Translation efficiency differences between 
genes are partly determined by ORF-wide mRNA 
structure—Since TE does not change significantly 
between conditions, but varies widely between 
genes (Figs. 1 and 2), it must be regulated by the 
cell. There are several known gene-specific factors 
that can influence translation in E. coli. Translation 
initiation is thought to be rate limiting in most cases, 
and this is controlled by a combination of ribosome 
binding to mRNA, mRNA secondary structure and 
codon use. We therefore examined the relationship 
between these metrics and TE, expecting that 
factors known to influence translation rate would 
correlate with differences in TE. We describe the 
results for the 30 °C dataset, but other conditions 
have similar patterns.  

Recent work suggests that E. coli mRNA 
molecules are organized into ORF-wide structures, 
and that the extent of these structures determines TE 
(20). In agreement with this, we found a negative 
correlation between TE and the predicted stability 
of an ORF’s mRNA sequence, corrected for gene 
length (Fig. 8A, R2 = 0.15). A weaker correlation 
exists between TE and the tRNA adaptation index 
(34), a measure of codon use (Fig. 8B, R2 = 0.14). 
However, factors that influence translation 
initiation are less well correlated with TE. Similarly 
to previous studies, we see no correlation between 
calculated ribosome binding site strength and TE. 
The effect of a gene’s start codon is smaller than we 
expected. Fig. 8C shows the distribution of 
translation efficiencies for genes as a function of 
their start codon. While genes with non-AUG start 
codons are, on average, less well-translated than 
those with AUG start codons, the effect on TE is 
small (mean TEs of 1.31 for AUG vs 0.988 for non-
AUG, p < 10-10, Welch’s t-test) and there is no 
significant difference in TE between UUG and 
GUG codons. 

Inner membrane proteins are significantly 
less well translated than other classes of proteins—
All E. coli proteins are translated in the cytosol but 
many are co- or post-translationally exported to the 
periplasm, inner or outer membranes, or secreted 
from the cell (35). Distributions of translational 
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efficiency as a function of protein location, taken 
from the consensus locations defined in Diaz-Mejia 
et al (36), are shown in Fig. 8D. Inner membrane 
proteins have significantly lower TE than proteins 
destined for any other cellular compartment (mean 
TEs of 0.801 for inner membrane proteins and 1.40 
for others, p<10-15, Welch’s t-test). Notably, outer 
membrane proteins and periplasmic proteins, which 
are also exported from the cytosol, have very similar 
patterns of translational efficiency to cytosolic 
proteins. The TE of a protein could be influenced by 
its mode of translocation. Most inner membrane 
proteins are cotranslationally translocated into the 
membrane via the SecYEG or YidC translocons, in 
a process dependent on SRP (35, 37). SRP clients 
have been identified using selective ribosomal 
profiling and are predominantly inner membrane 
proteins (37). The TE of SRP clients is significantly 
lower than that of non-clients, supporting the 
hypothesis that some feature of SRP-dependent 
synthesis affects translational efficiency (Fig. 8E). 
We analyzed ribosomal profiling data on the Gram 
negative bacteria Caulobacter crescentus (38) and 
found a similar reduction in TE for inner membrane 
proteins to that seen in E. coli (Fig. 8F), suggesting 
that this feature is conserved at least in these 
closely-related bacteria. 

Temperature-dependent mRNA structural 
transitions are infrequent between 30 °C and 
42 °C—The correlation between ORF structure and 
TE raises the question of whether general thermal 
unfolding of mRNA structures might be expected to 
increase TE. Our data suggest that this is not a major 
effect at the temperatures studied here. To further 
investigate this, we calculated the temperature 
dependence of mRNA stability for all protein 
coding genes using the RNAheat program from the 
Vienna package (39). The resulting melting curves 
(also known as thermograms) show peaks at 
temperatures where unfolding events occur. 
Example melting curves are shown in Fig. 9A. The 
midpoint temperatures of these events (11,399 in all 
genes, 5,104 in genes with temperature-dependent 
TE data) are shown as a histogram in Fig 9B. Most 
genes have similar predicted melting curves, with a 
large transition around 90 °C. Only a minority of 
transitions occur between 30 °C and 42 °C, and 
many of these transitions have small enthalpies 
compared to the total folding free energy of the 
gene’s mRNA. The 241 genes with transitions 
having excess heat capacities estimated to be > 0.01 

kcal/mol/nucleotide in the 30 °C to 42 °C range are 
highlighted in Fig. 9C. Only 95 of 1813 genes with 
measured TEs at 30 °C and 42 °C are both weakly 
translated at 30 °C (TE < 1) and are predicted to 
have a structural transition between 30 °C and 
42 °C. This is in broad agreement with the 
maintenance of TE for the majority of genes at these 
temperatures. This relative lack of thermal 
transitions suggests that mRNA structure is 
generally selected to be insensitive to temperature 
changes in this range, and that TE is therefore 
buffered against temperature change by mRNA 
structure. However, the RNA structure calculations 
are not well constrained for such long molecules, 
and these results may not be representative of the 
mRNA structural ensembles in living cells. 

A minimal linear model can predict trends 
in translation efficiency—Although no one factor 
can reliably predict translation efficiency, it is 
possible that similar combinations of sequence- or 
gene-specific factors control TE of subsets of genes 
(14). We used parameters derived from gene’s 
sequences and their consensus locations to fit the 
30 °C log-transformed TE data to a linear model. 
The parameters used were the gene’s start codon; 
GC content; protein location; coding sequence 
length; genome position; predicted RBS binding 
strength; folding free energy of the 5’ UTR, 5’ end 
of the ORF and the combination of those regions; 
folding free energy divided by length of the whole 
ORF; and the calculated CAI and tAI for the full 
protein and its N-terminal 40 residues. Parameters 
and errors for the model are in Table S2. The 
model’s predictions correlate with the input data 
with an adjusted R² of 0.38, much better than the 
best individual parameter, CAI. However, relatively 
few parameters have a significant impact on the 
performance of the model, and a simpler model that 
includes only GC content, tAI, the predicted mRNA 
folding free energy per nucleotide, the presence of 
an ATG start codon and whether a protein is 
predicted to localize to the inner membrane, 
correlated with its input data with an adjusted R² of 
0.33. FP levels predicted by the model from the 
measured mRNA levels correlated with measured 
FP levels with an R2 of 0.88, an improvement on the 
correlation between measured mRNA and FP levels 
(R2 = 0.81). Parameters for the model are in Table 
2. Fig. 10 shows predicted versus measured TE 
values and the distributions of residuals of a 
prediction of footprint levels from the model, 
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compared to that from the mRNA correlation. These 
parameters can all be calculated or predicted from 
an organism’s genome sequence. Therefore, this 
model may have some utility in predicting TE — 
and therefore predicting protein levels from 
transcriptome data — in other organisms with 
similar transcription machinery to E. coli. 
DISCUSSION 

We have used ribosome profiling to 
measure transcription and translation in E. coli at 
30 °C and after 10 and 20 minutes of heat shock at 
42 °C. Translation rates are strongly dependent on 
mRNA levels, but the ratio of footprint to mRNA 
reads, TE, varies by over 100-fold across the 
genome (Fig. 1). Since translation initiation is 
thought to be governed by RNA hybridization, we 
expected to observe widespread changes in TE at 
different temperatures. However, both the overall 
TE (Fig. 2) and the patterns of ribosomal footprints 
(Fig. 5) were correlated at 30 °C and 42 °C, despite 
large changes in mRNA levels between conditions 
(Fig. 3 and 4). A gene’s TE is correlated with the 
overall structure of its mRNA (Fig. 8), which for 
most genes is predicted to be maintained over the 
temperature range investigated here (Fig. 9). Inner 
membrane proteins tend to be translated at a lower 
rate than other proteins (Fig. 8). A simple linear 
model can predict a third of the variation between 
genes’ translation (Fig. 10). This information is 
needed to incorporate heat shock into computational 
models of protein homeostasis such as FoldEco (3), 
and may be of use in predicting protein levels in 
other organisms. 

This work uses a mild heat shock protocol, 
which is insufficient to activate E. coli’s known 
RNA thermometers, although it does result in 
increased transcription of σH regulon genes (Figs. 3 
and 6) and increased translation of the ssrA ORF 
(Fig. 7). It is possible that transient changes in 
translation occur before the 10 minute time point 
measured here, since the transcriptional effects of 
the heat shock response peak around 5 minutes after 
a temperature shift (9). It is likely that higher 
temperatures cause greater changes in translation. 
However, translation efficiency appears to be very 
robust to the temperature changes used here. Recent 
observations by Bartholomäus and coworkers 
shows that E. coli subjected to a temperature jump 
from 37 °C to 47 °C do show translational changes 
in 129 genes, including members of the σH regulon 

(40). Genes whose translation increased upon heat 
shock had weak mRNA secondary structure content 
in their 5’ regions, suggesting that melting of these 
structures at high temperature may contribute to 
increased translation. TE of ibpA increased at 47 °C 
but TE of rpoH did not (40), supporting our 
observation that activation of σH is driven by 
transcriptional and post-translational mechanisms. 
Our RNA melting calculations (Fig. 9B) do not 
show widespread changes in structure in this 
temperature range. Translational changes are 
observed in heat-stressed mammalian cells over 
long time periods (41, 42), and several stress 
responses lead to translational attenuation mediated 
by eIF-2α phosphorylation (43). However, the acute 
effects of heat shock, mediated by RNA 
thermometers (44), are apparently not widespread in 
E. coli.  

Translation of inner membrane proteins—
The observation that inner membrane proteins and 
SRP client proteins (Fig. 8) are translated less 
efficiently than other proteins may be due to the 
effects of cotranslational translocation into the inner 
membrane via the SRP pathway. Translocation is 
faster than translation, and therefore unlikely to be 
rate-limiting (45), although footprint counts show 
that at least 10 times more ribosomes than SecYEG 
translocons are synthesized under these conditions. 
The geometry and steric constraints of the inner 
membrane may place a limit on the number of 
ribosomes that can simultaneously translate a 
particular gene. Polysomes in solution adopt a 
helical conformation that minimizes the space 
between ribosomes while maximizing the 
separation between emerging nascent chains (46). 
On a planar membrane surface, however, the 
density of ribosomes on an mRNA molecule may be 
limited by the packing of translocons and the 
requirement that the nascent chains are oriented in 
the same direction. Whatever the mechanism, it 
makes intuitive sense that nascent membrane 
proteins are kept away from each other to avoid 
their aggregation. E. coli mRNA molecules which 
encode membrane proteins have been shown to 
segregate to the membrane independently of 
translation (47), and the (as yet undetermined) 
factors responsible for this could also be involved in 
reducing ribosome density at the membrane.  

Predicting translation from sequence—The 
coding and non-coding regions of mRNA can affect 
translation by several known mechanisms. mRNA 
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structure and complementarity to the ribosome anti-
Shine-Dalgarno sequence can affect both translation 
initiation and elongation (27, 48). The genetic code 
is degenerate — most amino acids are encoded by 
several codons, but organisms use them selectively 
(34, 49). Codon use can alter the translational 
elongation rate as ribosomes wait for more or less 
abundant aminoacyl tRNAs (34, 49–51), but 
different mRNA sequences also have different 
structural propensities which influence TE (50, 52–
54). The 5’ end of open reading frames seems to be 
particularly important in determining how a gene is 
translated (50, 55, 56). The relative contribution of 
these effects is the subject of much research and 
debate (16, 57). Natural genomes have evolved 
under constraints that are not fully understood, and 
there may be as-yet unidentified mechanisms that 
control TE. Perhaps the roles of RNA binding 
proteins and chaperones, or ribosomal protein S1 
(58) in E. coli are more significant than is currently 
appreciated. From the point of view of synthetic 
biology, technology may have overtaken theory: 
Kosuri et al. suggest that screening large libraries of 
synthetic constructs may be a more effective 
method than rational design for finding genes with 
the desired expression properties (59). However, 
optimization of RBS sequences is an effective way 
to modulate the expression of a particular gene (60). 

Ribosome profiling approaches have shown 
a clear correlation between ORF-wide mRNA 
structure and TE across the E. coli genome (20), but 
not with other sequence-dependent parameters (12, 
14). Our analysis supports this, suggesting that 
factors affecting elongation rather than initiation — 
ORF-wide structure (Fig. 8A), tAI (Fig. 8B) and 
cotranslational translocation (Fig. 8E) — determine 
TE. This is despite the “snapshot” nature of a 
ribosome profiling measurement: an increased 
elongation rate would reduce the time a ribosome 
spends on an mRNA molecule, thereby reducing 
apparent ribosome density. The work presented here 
shows that control of TE is robustly maintained 
against temperature changes that might be expected 
to differentially alter RNA:RNA interactions. 
Prediction of the temperature dependence of mRNA 
structure indicates that there are relatively few 
structural transitions in the 30 °C to 42 °C range (Fig 
9), which supports the hypothesis that E. coli has 
evolved to minimize temperature-dependent 
translational changes. Prediction of long RNA 
structures is challenging. The simple approach 

taken here has less predictive ability than the 
measurement of RNA structures in vivo. Recent 
technical advances in such measurements (20, 61) 
should lead to better structure prediction algorithms. 
However, the ability of the model presented here to 
predict TE from sequence-dependent parameters 
could be useful for interpreting existing or new 
transcriptome data, whether from E. coli, other 
bacteria or metagenomics studies. Because the 
necessary parameters are easily calculated or 
predicted from sequences, this approach suggests a 
way to refine estimates of protein levels from only 
a genome sequence. It remains to be seen how 
widespread these patterns of translational control 
are, both within E. coli strains and in other 
organisms. 

EXPERIMENTAL PROCEDURES 

The procedure for ribosome footprinting 
and cDNA library preparation was modified slightly 
from that published in Oh et al. (5). A detailed 
protocol is given in (62). 

Growth conditions—E. coli K12 MG1655 
cells were grown in 200 ml cultures of EZ MOPS 
defined rich media (Teknova) at 30 °C, 200 rpm. A 
total of 18 cultures were grown in the batches shown 
in Table 1, starting from fresh overnight cultures of 
the same glycerol stocks of bacteria. For the 
temperature shift experiments, cultures of 
untransformed cells were grown to OD600 of 1 in 
media without antibiotic at 30 °C, then diluted 
3-fold into fresh media at either 30 °C or 42 °C, 
grown for 10 or 20 minutes then harvested at an 
OD600 of between 0.4 and 0.5. We used shaking 
waterbaths to stabilize the media temperature. For 
σH expression, cultures were transformed with a 
pBAD vector containing either wild-type or I54N 
σH, or with an empty pBAD vector. Cultures were 
grown in media containing 0.1 mg/ml ampicillin to 
an OD600 of 0.2, induced with 0.2% arabinose, 
grown for a further 20 minutes and then harvested 
at an OD600 of between 0.4 and 0.5. 

Harvesting and lysis—Cells were harvested 
by rapid vacuum filtration through a 90 mm 
diameter 0.2 µm pore filter, scraped off the filter 
with a scoopula then immediately plunged into a 50 
ml tube full of liquid nitrogen. Harvesting time from 
decanting to freezing was between 90 and 120 s. 
The frozen cells were scraped off the scoopula into 
the bottom of the tube. Nitrogen was allowed to 
evaporate at -80 °C and cell pellets were stored 
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frozen at -80 °C until lysis, typically overnight. 
Frozen cell pellets were lysed at liquid nitrogen 
temperatures using a bead beater with steel tubes, 
silicone caps and a single 5 mm steel ball (BioSpec). 
Frozen cell pellets were decanted into pre-cooled 
tubes containing 600 µl of frozen lysis buffer (100 
mM NH4Cl, 10 mM MgCl2, 5 mM CaCl2, 20 mM 
Tris-Cl pH 8, 0.1% NP-40, 0.4% Triton X-100, 50 
µg/ml chloramphenicol, 100U/ml DNase I). All 
components were RNase-free. Chloramphenicol in 
the lysis buffer stalled the ribosomes on mRNA to 
allow for analysis of ribosomal pausing patterns. A 
pre-cooled ball was added, the tubes were capped, 
and shaken at full speed on a Mini-Beadbeater-1 for 
6 cycles of 10 seconds, and were re-cooled in liquid 
nitrogen for 45s – 1 min between cycles. This 
treatment gave satisfactory lysis of the cells without 
apparent thawing; increasing the number of cycles 
ran the risk of splitting the silicone caps. 

Ribosome footprinting and polysome 
profiling—Cell lysate was thawed in the steel tubes 
at 30 °C, incubated on ice for 10 minutes, then 
transferred into 1.7 ml Eppendorf LoBind DNA 
tubes and centrifuged at 14,000 rpm in a microfuge 
for 10 minutes at 4 °C. The supernatant was 
removed and a 30 µl aliquot was snap frozen and 
stored at -80 °C; this sample was used for total 
cellular RNA. Two 180 µl aliquots of the remaining 
lysate were used for polysome profiling and 
ribosome footprinting. One aliquot was incubated 
with streptococcal nuclease S7 (Roche) for one hour 
at 25 °C to produce ribosome-protected footprints; 
the other was incubated without the nuclease as a 
control to confirm that cells were translating and 
that the nuclease treatment had digested the mRNA 
to leave monosomes. The nuclease digestion was 
quenched with EDTA and the lysates cooled on ice. 
The lysates were immediately loaded onto a 10-40% 
sucrose gradient (in buffer containing 100 mM 
NH4Cl, 10 mM MgCl2, 5 mM CaCl2, 20 mM Tris-
Cl pH 8, 100 mM chloramphenicol and 2 mM 
dithiothreitol) in Beckman centrifuge tubes and 
centrifuged at 35,000 rpm for 2.5 hours in a 
Beckman SW-41 rotor. Polysome profiles were 
measured by pushing the gradients out of the tube 
with 60% sucrose solution and monitoring RNA 
absorbance at 260 nm. The fractions corresponding 
to the center of the monosome peak were collected 
for the nuclease-digested samples, pooled and 
frozen at -80 °C. 

RNA extraction—RNA was extracted from 
the total RNA and monosome fractions by the hot 
acid phenol chloroform method. RNA was 
precipitated with isopropanol after adding sodium 
acetate and GlycoBlue (Thermo Fisher) as a 
coprecipitant. Total RNA was enriched for mRNA 
by purification with MegaClear and RiboMinus kits 
to remove small RNAs and rRNA respectively, 
following the kit manufacturer’s instructions. The 
remaining RNA was fragmented by incubation at 95 
°C, pH 9.3 in sodium carbonate buffer for 40 
minutes. Monosome fractions and fragmented 
mRNA were loaded onto a 15% polyacrylamide 
TBE-urea gel (Thermo Fisher) and run at 200V for 
1 hour. Gels were stained with SYBR-Gold 
(Thermo Fisher) and the band corresponding to 
footprint-sized oligonucleotides was excised. RNA 
was extracted from the gel by crushing the gel slice 
and shaking at 70 °C for 10 minutes. Gel fragments 
were removed by filtration and the RNA was and 
precipitated as above. 

cDNA sequencing library preparation—
The extracted RNA footprints and fragments were 
dephosphorylated by incubating with T4 
polynucleotide kinase (NEB) without ATP. RNA 
was ligated to a 13-nucleotide adaptor 
(CTGTAGGCACCATCAAT) (IDT) using 
truncated T4 RNA ligase. The ligated products were 
purified using a Zymo RNA cleanup column which 
removed unligated adaptor and concentrated the 
RNA. Ligated RNA was reverse transcribed by 
Superscript III (Thermo Fisher) using a primer 
complementary to the adaptor sequence, which also 
contained the sequences necessary for PCR 
amplification separated by a peptide spacer 
(5Phos/GATCGTCGGACTGTAGAACTCTGAA
CCTGTCGGTGGTCGCCGTATCATT/iSp18/CA
CTCA/iSp18/CAAGCAGAAGACGGCATACGA
ATTGATGGTGCCTACAG where iSp18 is the 
peptide spacer). Full-length cDNA was gel-purified 
as before from a 10% polyacrylamide TBE-urea gel. 
RNA was hydrolysed at pH 14, 95 °C for 40 
minutes, leaving single-stranded cDNA. cDNA was 
circularised using CircLigase (Epicentre) to 
produce single-stranded, circular DNA molecules 
which included the two complementary sequences 
for PCR amplification needed to make Illumina 
sequencing libraries. Footprint libraries tend to be 
contaminated with specific rRNA sequences, which 
were removed by hybridization with specific 
biotinylated oligonucleotides (IDT) followed by 
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capture on streptavidin magnetic beads (Thermo 
Fisher). Circular cDNA libraries were amplified by 
8-12 cycles of PCR with Phusion polymerase 
(NEB). Primers encoded an Illumina TruSeq 
barcode sequence at the 5’ end of the insert to allow 
for multiplexing. Amplified libraries were gel-
purified on 8% polyacrylamide TBE gels; the 
sample that had experienced the largest number of 
cycles without showing large overamplification 
products was excised from the gel and extracted 
overnight at 20 °C.  

Sequencing and alignment—Libraries were 
quantified by Agilent BioAnalyzer, and pooled to 
give a final sequencing library containing 12 
barcoded samples. Libraries were sequenced on an 
Illumina HiSeq 2500 at the TSRI sequencing core 
facility. Each barcoded sample typically gave 10-20 
million single-end, 100bp reads. Base calling and 
demultiplexing were done with Illumina’s Casava 
software. Adaptor sequences were removed from 
reads using the fastx_clipper application 
http://cancan.cshl.edu/labmembers/gordon/fastx_to
olkit/ to leave footprint or fragment sequences. 
These were aligned to the E. coli K12 MG1655 
genome (NC_000913) using Bowtie (63). Most 
samples resulted in between one and three million 
mapped reads; the unmapped reads were mostly due 
to contaminating rRNA, which was not removed 
from our libraries as successfully as was reported 
previously. The number of reads mapped to a 
particular nucleotide was counted using an in-house 
Python script (modified from that used in Oh et al. 
(5)) that averaged each read over the central 
nucleotides in the sequence. Since footprint read 
lengths are non-uniform in bacteria, the exact 
position of the ribosome peptidyl transferase site on 
each read cannot be precisely determined. The 
resulting .wig files were processed with in-house R 
scripts using a variety of analysis packages as 
described below. 

Calculation of per-gene CPKM values and 
translational efficiencies—Reads were mapped to a 
list of protein-coding gene positions taken from 
EcoCyc (64). RNA genes, pseudogenes and phage 
Ins elements were excluded from the list. Reads 
mapping to pairs of genes with similar sequences 
(tufA and tufB; gadA and gadB; ynaE and ydfK; ldrA 
and ldrC; ybfD and yhhI; tfaR and tfaQ; rzoD and 
rzoR; and pinR and pinQ) were aligned randomly to 
one homolog and the total counts used for 
determining mRNA and footprint levels, but were 

excluded from further analysis. A meta-analysis of 
reads mapped to well-translated genes (those with at 
least 128 footprint counts) showed a similar 
enrichment of ribosome density at the 5’ end of 
genes. For each footprint dataset, we corrected for 
this bias by dividing the read count at each codon 
within a gene by the normalized average ribosome 
density at that position from well-expressed genes 
(12). Read counts per gene were calculated from 
either the raw reads (for mRNA counts) or 
normalized reads (for footprints). We calculated 
counts per kilobase million (CPKM) for each gene 
in each experiment using the EdgeR package (23), 
which normalizes the counts per gene by the total 
number of aligned reads, then corrected for gene 
length. These CPKM values are the basic 
measurement of a gene’s mRNA level and ribosome 
density, and can be directly compared between 
datasets. Translation efficiency (footprint CPKM to 
mRNA CPKM) ratios were calculated pairwise for 
each gene in each experiment where that gene had 
at least 64 raw (unnormalized) counts for both 
mRNA and footprints. The mean TE for each 
condition was used to assess the influence of gene-
specific parameters on TE.  

Gene-specific parameters—Sequences and 
locations were taken from EcoCyc (64). We 
consider only protein-coding genes in this analysis, 
excluding genes with close homologs as above, 
selenoproteins, and proteins with frameshifts or 
stalling sites (fdhF, fdoG, fdnG, prfB, dnaX, secM, 
and tnaC). RNA secondary structures were 
calculated with Vienna RNA (39). We used the 
RNAfold program to determine minimal free energy 
values for every protein coding ORF, and the 
RNAheat program to calculate melting curves. GC 
content, codon adaptation index and tRNA 
adaptation index scores for each gene were 
calculated with the cai function from the seqinr R 
package (65) using data from (49) and (34). Protein 
locations were taken from the consensus data in 
Diaz-Mejia et al (36). Ribosome binding site 
calculations at different temperatures were 
calculated using the RBS Calculator software (66).  

Linear modeling—Linear models for 
translation efficiency were calculated using 
Wolfram Mathematica. Mean translation efficiency 
was fitted to a model incorporating all of the 
parameters calculated for each gene (Table S2). A 
second model was calculated using only five 
parameters which contributed most to the fit of the 
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first model (Table 2). We used the model to predict 
the ribosome footprint CPKMs for each gene given 
that gene’s mRNA CPKM. The correlation between 
the predicted and measured footprint CPKMs is 
reported. To visualize the increased information 
content of the model, we compared the distribution 
of residuals from the fit of the model to the footprint 
counts with the residuals calculated from a simple 
linear regression of the mRNA and footprint 
CPKMs. 

Caulobacter crescentus data—Data for C. 
crescentus in rich (PYE) media was taken from 
Schrader et al. (38). Homologous genes were 
identified using the EcoCyc database. Protein 
localizations were from annotations in the BioCyc 
C. crescentus NA1000 database. The inner 
membrane class in Fig. 8F is a combination of the 
single- and multi-pass membrane proteins defined 
by BioCyc; peripheral membrane proteins were 
assigned to the cytosol 
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TABLES 

Table 1: Ribosome profiling experiments. See also Table S1. 

 

Strain/plasmid Condition Replicates 

K12 MG1655 30 °C 3 

K12 MG1655 42 °C, 10 minutes 3 

K12 MG1655 42 °C, 20 minutes 3 (1 excluded) 

K12 MG1655/Empty pBAD 30 °C, 0.2% arabinose, 20 minutes induction 4 

K12 MG1655/pBAD-rpoH wildtype 30 °C, 0.2% arabinose, 20 minutes induction 3 

K12 MG1655/pBAD-rpoH I54N 30 °C, 0.2% arabinose, 20 minutes induction 2 

 

Table 2: Parameters for reduced linear model. GC, G/C content (%); tAI, tRNA adaptation index; 

locIM, inner membrane localization (logical); startATG, presence of an ATG start codon (logical); 

mfePerNuc, RNA stability per nucleotide for entire ORF (kcal/mol/nuc). 

 

Parameter Estimate Standard 
error 

Mean square 
error 

F-statistic P-value 
log10 

P-value 

Offset ‐0.852 0.162 
 

GC 5.49 0.505 63.0 213 5.44 × 10‐47 ‐46.3 

tAI 7.21 0.402 249 840 5.97 × 10‐168 ‐167.2 

locIM ‐0.307 0.0243 89.0 301 5.17 × 10‐65 ‐64.3 

startATG 0.192 0.0283 19.1 64.6 1.18 × 10‐15 ‐14.9 

mfePerNuc 10.9 0.461 167 563 1.15 × 10‐116 ‐115.9 
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FIGURE LEGENDS 

Fig. 1: Translation varies across the genome, and within operons. Ribosome footprint levels are strongly 

correlated with mRNA levels at both 30 °C (A) and after 10 minutes heat shock at 42 °C (B). Each point 

represents a gene. The blue lines show linear regression fits to the log-transformed data, while the red lines 

are 1:1 ratios. Although mRNA level is the primary determinant of translation level, the ratio of footprint 

to mRNA reads varies by over 100-fold across the genome, as illustrated by the yobF-cspC operon, 

highlighted in A. Histograms of translation efficiencies at 30 °C (C) and after 10 minutes heat shock at 

42 °C (D) show similar distributions of translation. (E) Ribosome footprints at 30°C correlate with absolute 

protein abundance measurements by mass spectrometry (25) (F) Ribosome footprints at 30 °C correlate 

with protein abundance measurements by mass spectrometry (24). CPKM = counts per kilobase million. 

 

Fig. 2: Translational efficiency is maintained during heat shock. Plots of translational efficiency per gene 

at 30 °C versus (A) after 10 minutes at 42 °C; (B) after 20 minutes at 42 °C; (C) with an empty pBAD 

plasmid; and (D) compared to data at 37 °C from Li et al. (12). 

 

Fig. 3: Translational efficiency of genes is independent of heat shock and expression level. Footprint versus 

mRNA levels are shown for several well-characterized genes whose expression changes upon heat shock, 

under different conditions. Shapes represent different conditions, and colors represent biological replicates 

grown on separate days. Linear fits are shown in gray. The ratio of footprint to mRNA reads is similar under 

all conditions tested, independent of the expression level of the gene. Data from Li et al. (12) at 37 °C is 

included for comparison. 

 

Fig. 4: Differential translation within the ribosomal operons rpsM (A) and rpsP (B) is maintained at 

different temperatures and mRNA levels. The non-ribosomal genes rpoA, rimM and trmD have been shown 

to be differentially translated from the ribosomal proteins on these polycistronic operons. Data from Li et 

al. (12) at 37 °C is included for comparison. 

 

Fig. 5: Patterns of footprints do not change between conditions. (A) Distribution of normalized footprint 

reads across the dnaJ gene for the three biological replicates. Colors represent different conditions. (B) 

Pairwise correlations between conditions for each replicate, and between replicates within each condition 

of footprint distributions for the dnaJ gene. (C) Mean pairwise correlations as for panel B for 939 genes 

with at least 64 footprint reads in each dataset. The red line shows a 1:1 correspondence. 
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Fig. 6: Activity of σH is primarily controlled post-translationally. The σH sigma factor, encoded by the rpoH 

gene, is not translationally upregulated by the heat shock treatment (footprint CPKMs of 456 ± 86 at 30 °C 

and 518 ± 7.4 at 42 °C after 10 minutes). However, its transcriptional targets, represented by the canonical 

heat shock proteins GroEL (A) and DnaK (B) are upregulated by heat. Overexpression of mutant, but not 

wild-type σH results in increased target transcription. These observations are consistent with the release of 

σH from post-translational control by DnaK/DnaJ and SRP upon heat shock. 

 

Fig. 7: Translation from the coding region of the ssrA gene increases during heat shock. Both mRNA and 

footprint levels increase after 10 minutes of heat shock and remain elevated after 20 minutes of heat shock. 

Colored lines represent replicate cultures. 

 

Fig. 8: ORF structure, tRNA availability, start codon identity and cellular location affect translation 

efficiency. (A) Correlation between tRNA adaptation index and TE. (B) Correlation between ORF mRNA 

secondary structure stability (normalized for gene length) and TE. (C) Non-AUG start codons are 

disfavored in but not excluded from highly translated genes. Smoothed density histogram of translation 

efficiencies for the three most highly-represented start codons. Curves are scaled so that their integrals are 

equal. (D) Inner membrane proteins are less highly translated than other proteins. Density histogram of 

translation efficiency for genes identified as either residing in the cytosol, inner membrane, periplasm, outer 

membrane, or secreted from the cell. (E) Clients of the SRP pathway are less efficiently translated than 

other proteins. Density histogram of translation efficiency for genes identified as SRP clients by Schibich 

and coworkers (37). (F) Caulobacter crescentus inner membrane proteins are less translated than proteins 

in other subcellular locations. Ribosome profiling data on proteins with known localization in C. crescentus 

was taken from Schrader and coworkers (38). Gene translation efficiencies were calculated for C. 

crescentus growing in rich media. 

 

Fig. 9:  Few mRNAs have large predicted thermal melting transitions in the 30 °C to 42 °C range. (A) 

Example melting curves for genes with and without apparent transitions between 30 °C to 42 °C, calculated 

using the RNAheat program (solid lines). The average melting curve for all E. coli protein coding genes is 

shown for comparison (dashed lines). (B) Distribution of melting transition midpoint temperatures 

predicted by RNAheat. Transitions in genes for which TE data is available are shown in orange, others are 

shown in blue. (C) Correlation between TE and ORF-wide secondary structure (as in Fig 8B). Genes whose 

mRNAs have a large transition between 30 °C and 42 °C are highlighted in red. 

 

Fig. 10: A linear model with five gene-specific parameters can explain 33% of the variation in translation 
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efficiency. Translation data from three replicates at 30 °C was used to create a linear model to predict 

translational efficiency from gene sequence-specific data. (A) Predicted versus measured TE values. Each 

point represents a single measurement for a gene. The red line shows a linear regression fit of the data. (B) 

The fold-difference between the predicted and measured footprint CPKM values are plotted as smoothed 

density histograms. For comparison, the residuals for predicted footprint levels based on a linear fit to the 

mRNA levels are shown in red. Curves are scaled so that their integrals are equal. The narrower distribution 

of the linear model curve represents a better fit to the measured data. 
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Figure 1 
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Figure 2 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/109264doi: bioRxiv preprint 

https://doi.org/10.1101/109264
http://creativecommons.org/licenses/by-nc/4.0/


20 
 

Figure 3 
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Figure 4 
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Figure 5 

Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 

 

Figure 10 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/109264doi: bioRxiv preprint 

https://doi.org/10.1101/109264
http://creativecommons.org/licenses/by-nc/4.0/


26 
 

SUPPLEMENTAL TABLE LEGENDS 

Table S1: Excel spreadsheet of raw reads and EdgeR-calculated CPKM values for all genes under 
all conditions. Gene data is taken from the EcoCy database (64). Only protein coding genes are included in 
the CPKM analysis. Data for homologous genes was summed and is labeled as “geneA.geneB” in the 
CPKM data. One replicate of the 42 °C, 20 minute time point had anomalous data and was excluded from 
further analysis. A plot of mRNA CPKM vs footprint CPKM for the three replicates of this condition shows 
the similarity of two (red and blue) datasets compared to the other (green). 

 
Table S2: A linear model using 25 gene-specific parameters was used to predict TE values for 

genes. Parameter estimates and goodness-of-fit information is shown for comparison to the minimal linear 
model described in Table 2. 
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