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Abstract

Several recent studies have shown that neural activity in vivo tends to be constrained to
a low-dimensional manifold. Such activity does not arise in simulated neural networks
with homogeneous connectivity and it has been suggested that it is indicative of some
other connectivity pattern in neuronal networks. Surprisingly, the structure of the
intrinsic manifold of the network activity puts constraints on learning. For instance,
animals find it difficult to perform tasks that may require a change in the intrinsic
manifold. Here, we demonstrate that the Neural Engineering Framework (NEF) can be
adapted to design a biologically plausible spiking neuronal network that exhibit low
dimensional activity. Consistent with experimental observations, the resulting synaptic
weight distribution is heavy-tailed (log-normal). In our model, a change in the intrinsic
manifold of the network activity requires rewiring of the whole network, which may be
either not possible or a very slow process. This observation provides an explanation of
why learning is easier when it does not require the neural activity to leave its intrinsic
manifold.

Significance statement

A network in the brain consists of thousands of neurons. A priori, we expect that the
network will have as many degrees of freedom as its number of neurons. Surprisingly,
experimental evidence suggests that local brain activity is confined to a space spanned
by 10 variables. Here, we describe an approach to construct spiking neuronal networks
that exhibit low-dimensional activity and address the question: how the intrinsic
dimensionality of the network activity restricts the learning as suggested by recent
experiments? Specifically, we show that tasks that requires animals to change the
network activity outside the intrinsic space would entail large changes in the neuronal
connectivity, and therefore, animals are either slow or not able to acquire such tasks.

Introduction 1

The availability of novel experimental methods allows for simultaneous recording of tens 2

to hundreds of neurons and has made it possible to observe the fine structure of 3

temporal evolution of task-related neuronal activity in vivo. The multi-unit neuronal 4

activity can be described in terms of an N dimensional neural state-space where each 5

axis (typically) corresponds to the firing rate of each neuron. The activity at a 6

particular time corresponds to a point in this space, and the temporal evolution of the 7
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neuronal activity constitutes a trajectory. Analysis of such trajectories has revealed that 8

across different brain regions and in different behavioral conditions the neural activity 9

remains low dimensional (Mazor and Laurent, 2005; Ganguli et al., 2008; Cunningham 10

and Yu, 2014; Sadtler et al., 2014; Mazzucato et al., 2016; Williamson et al., 2016; 11

Murray et al., 2016). That is, the trajectories corresponding to the task-related activity 12

tend to be constrained to a hyperplane (“intrinsic manifold”) in the state space rather 13

than moving freely in all directions. 14

Treating the brain as a dynamical system, the structure of the activity trajectories 15

in the neural space determines the function of the neuronal network. This was best 16

illustrated by an experiment involving brain-computer-interface (BCI) learning in 17

monkeys. Sadtler et al. (2014) showed that animals were able to quickly learn the BCI 18

task when the neural activity mapping was confined to the intrinsic manifold of the 19

activity. By contrast, BCI learning was slow when the neural activity mapping for the 20

BCI task was outside of the intrinsic manifold Sadtler et al. (2014). These observations 21

raise two pertinent questions: (1) what is the origin of low-dimensional activity in 22

spiking neuronal networks and (2) why is it difficult to learn outside manifold mapping 23

or to alter the structure of the intrinsic dynamics? 24

A homogeneous balanced random recurrent network which have been very successful 25

in modeling the statistics of spiking activity and pairwise correlations in vivo (Brunel, 26

2000; Kumar et al., 2008) cannot generate low-dimensional activity (Mazzucato et al., 27

2016; Williamson et al., 2016) because the balance of excitation and inhibition actively 28

decorrelates the population activity (Renart et al., 2010; Tetzlaff et al., 2012). 29

Therefore, clustered architecture has been proposed, in which the dimensionality of 30

activity is defined by the cluster count (Mazzucato et al., 2016; Williamson et al., 2016). 31

However, there is no direct evidence of clustered architecture in the neocortex (Boucsein 32

et al., 2011; Schnepel et al., 2015; Perin et al., 2011; Jiang et al., 2015). In fact, even at 33

the functional level neurons cannot be separated among distinct clusters (Williamson et 34

al., 2016). Finally, even though the cluster-based network architecture explains how the 35

dimensionality of the activity may depend on the size of the neuron population, it does 36

not explain why it should be difficult to change the dynamics outside the intrinsic 37

manifold. Thus, it remains an open question to identify underlying mechanisms that 38

can generate low-dimensional activity. 39

Here, we show that it is possible to design non-clustered spiking neuronal networks 40

that can generate low-dimensional activity. We found in such a network neurons receive 41

balanced excitation and inhibition, and synaptic weights show a heavy-tailed 42

distribution. This model suggests that small changes in the weight matrix are sufficient 43

to generate a new activity that lies within the intrinsic manifold, whereas nearly all the 44

synapses have to be altered to generate activity that lies outsides the intrinsic manifold. 45

Learning such large-scale changes in the weight matrix are likely to be slow, and, 46

therefore, animals may find it difficult to learn tasks that involve generation of activity 47

outside the intrinsic manifold. 48

Methods 49

Dynamical system specification 50

The core of our approach to design spiking neuronal networks whose activity is confined 51

specific intrinsic manifold involves mapping the spiking activity to a prescribed 52

dynamical system. To this end we used the Neural Engineering Framework 53

(NEF) (Eliasmith and Anderson, 2003) to design a spiking neuronal network with 54

approximately four dimensional dynamics. The approach is general and can be used to 55

design a network with any arbitrary dimensional dynamical system. The NEF, like 56
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many of the similar models (e.g. Boerlin et al., 2013), requires a dynamical system to 57

describe the evolution of the fictive currents (see Eq. 7), or encoded values. One popular 58

choice is to use a straight-forward integrator (see e.g. Eliasmith, 2005; Boerlin et al., 59

2013; Hoerzer et al., 2012). In the absence of input, such a network will retain whatever 60

spiking rates it is set at. Such a network would contradict experimental evidence (Shafi 61

et al., 2007), and stationary firing rates would by definition have no variance and hence 62

be zero-dimensional. Therefore, we designed our dynamics following the perhaps 63

secondly most popular choice, namely, an oscillating system (similar dynamics have also 64

been used by e.g. Eliasmith, 2005; Denève and Machens, 2016). 65

Furthermore, in order to demonstrate the possibility of creating a network with low 66

dimensionality as clearly as possible, we wanted the fictive currents (see Eq. 7) each to 67

have approximately equal variance. Had the variance of the underlying dynamical 68

system been unequally distributed among its variables, the four dimensions found by 69

the PCA would most likely also have had unequal variance. For the same reason, we 70

wanted all the fictive currents to be uncorrelated. To comply with these requirements, 71

we designed the dynamics so that the first two encoded values would be the leading and 72

lagging components of a 2 Hz oscillator and the last two would similarly be the lead and 73

lag of a 4 Hz oscillator. Additionally, we added a non-linear term causing the amplitude 74

to converge to the normalized value 1. With these terms combined, the differential 75

equations for the dynamical system become: 76

˙̂
J1 = ωĴ2 + α

(
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2
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4

)
Ĵ4

(1)

We used α = 0.2 which is enough to help stabilize the dynamics. An advantage of 77

having the regularization term is also that the network neither requires a particular 78

starting state nor any particular external input. This helps support the claim that the 79

network is truly autonomously generating low dimensional activity. However, this can 80

be altered and it is possible to adapt the network such that a specific input drives the 81

network to the specific manifold. 82

We chose to encode an oscillator as the underlying dynamical system for its 83

computational simplicity and any other dynamics can also be used without affecting the 84

main results. Indeed, having the fictive currents endlessly stuck in a simple limit cycle is 85

rather uninteresting from the perspective of using them to encode behaviorally relevant 86

variables. However, Churchland et al. (2012) investigated the dynamics in the activity 87

of the primate motor cortex, and found a strong oscillatory component when the 88

activity was projected down on the first few principal components. Therefore, there is 89

some tentative support for believing our choice of fictive currents dynamics to be 90

reasonably representative of actual dynamics. Furthermore, note that oscillator here 91

refers to oscillations of the encoded values, not of the neural activity directly. 92

Estimation of network connectivity 93

To create the network structure, we used the NEF as implemented in the simulator 94

package Nengo (Bekolay et al., 2014) (version 2.2.1). Following the specification of a 95

dynamical system, Nengo creates a set of representative samples of the spike trains. In 96
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Nengo these samples are called evaluation points, and each sample corresponds to one 97

instance of a set filtered spike trains uj(t) at a particular point in time. In our network, 98

the number of such samples was 10,000. For each of these samples, the corresponding 99

set of desired currents can be derived from the provided dynamical system. In other 100

words, this is a set of relationships of the type when the filtered incoming spike trains 101

are like this, the input currents should be like that, if the encoded values are to evolve as 102

prescribed. To fit the weights, in its default state, Nengo performs an ordinary linear 103

least squares optimization. However, as described in the Results, we modified this 104

procedure so that biological constraints could be imposed on W . Technically, we 105

implemented our modification as a subclass of the Solver class in Nengo. Our subclass 106

takes as input a connectivity matrix where the elements are 1, -1 or 0, representing 107

excitatory, inhibitory and absent synapses respectively. When called from Nengo, it used 108

the scipy.optimize routine nnls to find a weight matrix minimizing the L2 decoding 109

error while conforming with the connectivity matrix. Note that for creating Fig. 7B, the 110

same connectivity matrix was used across all the simulations. Additionally, for Fig. 7B, 111

the number of evaluation points was increased to 40,000 to decrease the variance. 112

Simulation parameters 113

Neurons were modeled as Leaky-Integrate-and-Fire (LIF) units with somatic time 114

constant 20 ms and an absolute refractory time of 2 ms. The post-synaptic currents 115

were modeled as exponentially decaying with time constant 10 ms for both excitatory 116

and inhibitory synapses. 117

The NEF and its implementation in Nengo require the specification of a few more 118

parameters. One such parameter is the encoder matrix K (see Eq. 6). Following the 119

default setting in Nengo, we chose this matrix randomly, such that the preferred 120

direction of each neuron, as specified by the corresponding row of K, was drawn from a 121

uniform distribution. Each row was however scaled (the scaling factor is called gain in 122

Nengo) so that the maximal firing rates of the neurons are between 80 Hz and 120 Hz. 123

Each neuron was also given an independent static bias current. These were randomly 124

drawn from a distribution defined so that the so called intercepts become uniformly 125

distributed. Intercepts can be understood as the smallest synaptic currents required for 126

the neuron to spike. The bias currents cause the network to be spontaneously active, 127

which removes the need for an external drive. 128

Dimensionality estimation 129

The literature on low dimensional neural activity is mostly split between using PCA 130

(e.g. Hoerzer et al., 2012; Churchland et al., 2010; Mazzucato et al., 2016; Murray et al., 131

2016) and Factor Analysis (FA, e.g. Sadtler et al., 2014; Williamson et al., 2016). As 132

described by Cunningham and Yu (2014), there are only a few differences between the 133

two methods. Most prominently, FA assumes that the variance of each neuron consists 134

of one individual component and one shared. Hence, fluctuations originating from 135

internal noise can be separated from the actual population signal. However, one crucial 136

restriction with FA is that the dimensionality needs to be assumed a priori. Although 137

an estimation can be obtained for example by cross-validation, it anyhow impedes the 138

possibility of showing an unbiased distribution of the variance across the principal 139

components. For this reason, we have only used PCA in this work. 140

4

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2017. ; https://doi.org/10.1101/109900doi: bioRxiv preprint 

https://doi.org/10.1101/109900
http://creativecommons.org/licenses/by-nc/4.0/


Results 141

There are two natural candidate mechanisms that may lead to a low-dimensional 142

activity in a recurrent network. First, the network is driven by a low-dimensional 143

external input. Second, the activity may reflect the intrinsic structure of the behavioral 144

tasks that the network has learned, that is, the recurrent inputs are themselves 145

low-dimensional. For instance, given the muscle synergies and laws of motion, most 146

motor actions are intrinsically low-dimensional (Ingram et al., 2008; Thakur et al., 147

2008). Here, we explore the second possibility and provide an explanation of why it may 148

be difficult to learn outside-manifold mappings in a BCI task. To this end we first 149

provide a systematic approach to construct a spiking neuronal network with a 150

prescribed dimensionality and dynamical system. 151

Neuron transfer function does not increase the dimensionality 152

of the output 153

When discussing dimensionality of neural activity, there are several physical quantities 154

that could be assigned to the abstract concept of “activity”. Three reasonable choices 155

are (a) firing rate, (b) sub-threshold membrane voltage and (c) total synaptic activity 156

or, equivalently, total input current to a neuron. Given that neurons can be non-linear 157

systems, it is necessary to establish how the dimensionality of one of these measures of 158

neural activity translates to the dimensionality of others. Specifically, if we can 159

establish that the dimensionality of the input current (or sub-threshold membrane 160

potential) leads to the same or lower dimensionality in the spiking activity, it would 161

make it easier to design a network with a low-dimensional activity. 162

To develop an intuition about this issue, we stimulated an ensemble of 1000 LIF 163

neurons with a two dimensional input current and measured the response in spiking 164

rates. We omitted any recurrent connections among the neurons in order to isolate the 165

effect of the neuron transfer function from any transformation resulting from the 166

network structure (Fig. 1A). The neurons were realized as firing rate units or with the 167

spiking leaky-integrate-and-fire (LIF) model. For the firing rate model, to map the 168

input current to output firing rate we considered four different transfer functions (linear, 169

threshold linear, logistic function and step function, see Fig. 1B, top). All neurons in 170

the ensemble had identical transfer functions. The LIF-neuron explicitly generates 171

spikes upon reaching a spike threshold. Therefore, to estimate the firing rate, we 172

counted spikes from each neuron in 40 ms time bins. To make the rate models 173

comparable we averaged the rate models over 40 ms intervals. 174

The neuron ensemble received a two-dimensional input composed of two orthogonal 175

time varying signals Ĵ1(t) and Ĵ2(t), and each neuron sampled the two components with 176

synaptic weights κi1 and κi2. That is, each neuron i received an external current 177

J i
ext(t) = κi1Ĵ1(t) + κi2Ĵ2(t) (2)

The scalar coefficients κi1 and κi2 were drawn from a normal distribution independently 178

for each neuron. We considered two different temporal dynamics for Ĵ1(t) and Ĵ2. First, 179

we let Ĵ1(t) = cos(2πft) and Ĵ2(t) = sin(2πft) with f = 1 Hz or 80 Hz. Second, we let 180

both Ĵ1(t) and Ĵ2(t) to be Gaussian white noise and their respective value at each time 181

was drawn from two independent normal distributions with zero mean. 182

We used Principal Component Analysis (PCA) to determine the effective 183

dimensionality of the ensemble output firing rate for each input. The PCA suggested 184

that there are clearly two prominent dimensions for all combinations of Ĵ(t) and neuron 185

models tested (Fig. 1B). Although the non-linearities in the neuron transfer-function 186

tended to distort the dimensionality of the neuron ensemble as expected, the 187

5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2017. ; https://doi.org/10.1101/109900doi: bioRxiv preprint 

https://doi.org/10.1101/109900
http://creativecommons.org/licenses/by-nc/4.0/


N  = 1000D  = 2
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Fig 1. The resulting dimensionality after applying somatic transfer
functions. (A) Schematic representation showing the sampling of a 2-dimensional
input by an ensemble of unconnected neurons (see Eq. 2). (B) The output firing rates
were analyzed using PCA. Each bar describes the distribution of the variance along the
principal components for the respective combination of firing rate model (show on top)
and input current shape (shown at the bottom). Each color in a bar shows the
proportion of variance explained by the respective principal component. As is evident in
every case only two principal components are sufficient to explain most of the variance.

contribution of the additional dimensions remained very small. Notably, even when we 188

explicitly modeled the spiking behavior the dimensionality of the input currents was 189

preserved both in the mean driven (sinusoidal input) and the fluctuation driven (white 190

noise input) regime. These results also show that the spectrum of the input does not 191

play a prominent role in the transfer of dimensionality as both narrow-band sinusoidal 192

inputs and broad band white noise resulted in similar dimensionality in the output. 193
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These results clearly suggest that a spiking neuronal network, in which the total (i.e. 194

external and synaptic) input to neurons is low dimensional, will also have a low 195

dimensional spiking or firing rate pattern, for different types of biologically plausible 196

neuron transfer functions. The task of synthesizing a network with low dimensional 197

activity can therefore be reduced to the problem of how to constrain the input currents 198

to a low dimensional manifold. 199

Generation of low dimensional input currents 200

The synaptic input current to neuron i can be written as 201

J i
syn(t) =

N∑
j=1

wijuj(t) (3)

where wij is the synaptic weight between the post-synaptic neuron i and a pre-synaptic 202

neuron j, and uj(t) is the filtered version of the spike train originating from neuron j: 203

uj(t) =

M∑
m=1

h(t) ∗ δ(t− tjm) (4)

where h(t) is the synaptic kernel and δ(t− tjm) represents a spike at time tm from 204

neuron j. For the immediate discussion, we remain agnostic about the exact shape of 205

synaptic kernel h(t) (in our simulations described below, we used exponential kernels 206

with time constant 10 ms). In matrix notation, Eq. 3 can be written as 207

Jsyn(t) = Wu(t) (5)

If W has rank r, Jsyn(t) will be constrained to a subspace with dimensionality at most r 208

— in particular, the subspace spanned by the columns of W . If W is heavily degenerate 209

so that r � N , the input currents will be low dimensional. However, W having low 210

rank does not in itself enable control over the shape of the input currents. Additionally, 211

having a degenerate weight matrix is a synthetic global property which may be hard to 212

enforce locally by individual synapses. In the following sections, we describe how to 213

create and control low dimensional currents, first with W having low rank but then also 214

how to relax that requirement. 215

Controlling the dynamics of synaptic inputs in a recurrent network 216

Assuming Jsyn(t) has dimension D, its components can by definition be written as 217

J i
syn(t) = κi1Ĵ1(t) + κi2Ĵ2(t) + · · ·+ κiDĴD(t) ⇔ Jsyn(t) = KĴ(t) (6)

for some fictive currents Ĵ1(t), . . . , ĴD(t). For D = 2, Eq. 6 is similar to Eq. 2, with the 218

important distinction that Eq. 2 describes an externally imposed current while the 219

current in Eq. 6 is the current originating from the synaptic connectivity within the 220

network. The question now is whether this intrinsic Ĵ can be designed to evolve 221

according to some specified dynamics? 222

Because the relationship between Jsyn(t) and Ĵ(t) is linear, Ĵ(t) can also be written 223

as a linear combination of the filtered spike trains, 224

Ĵd(t) =

N∑
j=1

ϕdjuj(t) ⇔ Ĵ(t) = Φu(t) (7)
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Fig 2. Schematic description of the procedure to design networks with a
prescribed dimensionality. Here we have factored the weight matrix into two
components. The weight matrix Φ transforms the filtered spike trains to the fictive
currents Ĵ (Eq. 7). The fictive currents constitute the low-dimensional input that in
turns drive the same neuron population, with a scaling K. Note that the separation of
the network in three layers is only to describe the procedure and there is only one set of
neurons. The eventual recurrent connectivity is then described as W = KΦ.

for some other coefficients {ϕdj}. We can use the Neural Engineering Framework (NEF, 225

Eliasmith and Anderson, 2003) and choose these coefficients by applying a 226

straight-forward linear least squares optimization, fitting the filtered spike trains onto a 227

desired fictive current. This method becomes even more useful when we recall that the 228

filtered spike trains uj(t) in turn are generated by the synaptic currents, which implies 229

that Ĵ can be chosen to be a function of the current firing rates of the neurons, and 230

hence, implicitly, itself (see Fig. 2). This implies that Ĵ can be specified for a set of 231

differential equations and not just a fixed trajectory. 232

Combining Eq. 6 and 7, we identify the similarity with Eq. 5: 233

Jsyn(t) = KΦ︸︷︷︸
W

u(t) (8)

Because K ∈ RN×D, Φ ∈ RD×N and W = KΦ, the rank of W will be at most D. As 234

mentioned above, this is not obviously desirable. For this reason, Fig. 2 should be seen 235

as strictly conceptual and not directly corresponding to any anatomical structure — the 236

neurons are actually connected using a weight matrix W = KΦ, as in Eq. 3. In 237

particular, K and Φ are only used to choose a suitable W . 238

Biologically constrained weight matrix 239

While the matrix W ensures that the network will have low-dimensional activity, the 240

above derivation of the weight matrix does not impose any constraints on W through K 241

and Φ. In particular, biological weight matrices are typically sparse and adhere to Dale’s 242

law (Strata and Harvey, 1999), i.e., that all the outgoing synapses from a neuron are 243

either excitatory or inhibitory. A few elegant tricks have been proposed for separating 244
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the population into excitatory and inhibitory fractions (Parisien et al., 2008; Boerlin et 245

al., 2013). Here we chose a more straight forward approach: rather than finding the 246

optimal Φ, we applied the least square optimization to each neuron individually. This 247

meant the coefficients found by the solver directly corresponded to the elements in W , 248

and constraints imposed on them transferred directly to the weight matrix. 249

Using the above mentioned approach we constructed a network with N = 5000 250

neurons and D = 4 fictive currents, and constrained the linear least squares solver to 251

find a weight matrix where the post-synaptic weights of the first 4000 (i.e., 80%) neurons 252

are non-negative, and the last 1000 (i.e. 20%) are non-positive. This approximated the 253

fraction of excitatory and inhibitory neurons found in the primate cortex (Braitenberg 254

and Schüz, 1998). Additionally, to impose the constraint of sparse connectivity, we 255

randomly chose 75% of the elements of the weight matrix to constrain to zero. The 256

weight matrix resulting from this procedure can be seen in Fig. 3A. Note that a synapse 257

might well be zero without being constrained to zero. Intuitively, this can happen if the 258

least-squares optimal weight for an excitatory synapse would have been negative, or vice 259

versa. Biologically, one might relate them to silent synapses. Because of this effect, the 260

probability of an active connection was 10.77% between excitatory neurons, 10.85% 261

from excitatory to inhibitory, 18.89% from inhibitory to excitatory, and 18.76% between 262

inhibitory neurons. These connection probabilities are well within the biological ranges 263

(Boucsein et al., 2011; Kätzel et al., 2010; Petreanu et al., 2009). Furthermore, because 264

the set of possible presynaptic neurons is chosen independently for each postsynaptic 265

neuron, the weight matrix can no longer be decomposed into K and Φ, and its rank is 266

not strictly bound by D. Indeed, the singular values of the weight matrix shown in 267

Fig. 3B indicate that its rank is larger than D = 4 for our example problem. 268

The Daleian and the sparse connectivity were both forced into the design of the 269

weight matrix. However, an interesting property emerged without the addition of any 270

explicit constraints, namely, a heavy-tail on the distribution of synaptic weights 271

(Fig. 3C). Although a closer analysis reveals it to be somewhat leptokurtic (kurtosis is 272

4.56 for logarithmized weights), the weight distribution is in any case rather close to 273

being log-normal across more than five orders of magnitude. This conforms with recent 274

experimental data that suggests that the weight distributions in biological neural 275

networks are typically heavy-tailed, if not perfectly log-normal (Buzsáki and Mizuseki, 276

2014). In addition, the sum of excitatory and inhibitory weights is ≈ 0 for each neuron 277

(Fig. 3D). In summary, even though we have used an engineering based approach, the 278

resulting weight matrix W conforms with several key properties of the synaptic 279

connectivity in vivo. 280

Low-dimensional activity in a spiking neuronal network 281

To confirm that indeed the network we have designed has a low-dimensional intrinsic 282

activity dynamics we simulated a spiking neuronal network with 5000 LIF neurons 283

connected according to the weight matrix shown in Fig. 3A. In order to reduce spike 284

train regularity, independent white noise was added to each neuron. As can be seen in 285

Fig. 4C and 4D, the firing pattern is neither perfectly regular nor perfectly irregular 286

(Poisson), but in between. 287

The fictive currents we used to construct the network connectivity do not directly 288

correspond to any measurable quantity in the network. Therefore, in order to verify 289

that the network followed the instilled dynamic, we created four independent readout 290

units. For the readout units, we found a set of weights Φreadout using a linear 291

least-squares optimization, similar to how the weights W were set. However, because 292

these readouts do not correspond to any biological entity, we did not enforce the 293

biological constraints for Φreadout. The readout values for the fictive currents can be 294

seen in Fig. 4A. Note that they vary rhythmically. This is because the dynamical 295
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A B

C D

Fig 3. The weight matrix. (A) The color indicates synaptic weight, the scale is
logarithmic on both sides of zero respectively. Red indicates excitatory and blue
indicates inhibitory synapses. (B) The singular values of the weight matrix. The values
are tilted, but the matrix clearly has higher rank than 4. (C) The distribution of values
in the weight matrix. Note that the distribution definitely is heavy-tailed albeit not
perfectly log-normal. (D) Summation of all incoming excitatory and inhibitory synaptic
weights to each neuron (one row of W ). The total weight of excitatory synapses
(abscissa) matches the total weight of inhibitory synapses (ordinate) for each neuron.
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A

B

C D

Fig 4. Low-dimensional network activity. (A) The four fictive currents (encoded
values) during the first second of the simulation. (B) Spikes emitted by a selection of
250 neurons (200 excitatory (red) and 50 inhibitory(blue)) during the first second of the
simulation. (C) The mean inter-spike interval (ISI) versus the standard deviation of the
inter-spike interval for each neuron. Most of the points lie below the unity slope line
indicating that non-Poissonian nature of the spiking activity. Inter-spike intervals longer
than 100 ms were rare and have been excluded from the analysis. (D) Distribution of
coefficients of variance of ISI.
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system we used to describe the fictive currents consisted of two limit cycles, with Ĵ1 and 296

Ĵ2 oscillating at 2 Hz, and Ĵ3 and Ĵ4 at 4 Hz (see Methods). 297

The representational precision of the network is quite low, which can be seen in the 298

wobbling of the fictive currents in Fig. 4A. In particular, for a network with 5000 299

neurons, it is considerably less precise than would be expected of similar models 300

previously proposed (Eliasmith, 2005; Denève and Machens, 2016; Abbott et al., 2016). 301

This is because of a combination of the added noise and the constraints in the solver. 302

Specifically, the sparse connectivity implies that each neuron can only use the input 303

from a little more than 10% of the network to estimate and calibrate its input current. 304

Additionally, we used a synaptic time constant of only 10 ms, meaning the synaptic 305

currents were not heavily smoothed and therefore were more difficult to linearly 306

combine into smoothly varying fictive currents. Larger networks with slower synaptic 307

time constants (e.g. those based on NMDAR and GABAB) would result in more precise 308

fictive currents. 309

The purpose of our model is in any case not to improve coding or representational 310

accuracy, but to demonstrate that it is possible to control the dimensionality of the 311

network. To verify that the activity is indeed four-dimensional, we employed the same 312

procedure we used to create Fig. 1. Namely, we divided the 10 s simulation duration 313

into 250 consecutive bins, counted the number of spikes from each neuron in each bin 314

and finally applied PCA on the sequence of spike count vectors (Fig. 5). The first four 315

dimensions constitute 80% of the total variance (Fig. 5B), leading us to conclude that 316

our network is essentially four-dimensional. These four dimensions are however not 317

perfectly matched to the four fictive currents one-to-one (compare Fig. 4A and Fig. 5A). 318

In other words, PCA does not fully discern the four “underlying” signals. Rather, the 319

network activity projected down to the four first principal components evolve as a linear 320

combination of the the fictive currents. For instance, even though we designed our 321

network to exhibit two different limit cycles, the limit cycles constructed from the 322

network activity are not perfect circles (Fig. 5C,D) but the periodicities at 2 Hz and 323

4 Hz are nonetheless clearly visible (Fig. 5A). 324

Robustness of the low-dimensional activity manifold 325

The approach described above suggest that achieving a low dimensional activity 326

dynamics requires fine tuning of the synaptic weights with a very high precision that 327

may be biologically implausible. Moreover, synaptic weights are not likely to stay fixed 328

in the brain in vivo. Stochastic nature of the vesicle release, activity dependent 329

plasticity, stochastic changes in the spines, neuronal excitability and neuromodulators 330

can perturb the synaptic strength at various time scales. MacNeil and Eliasmith (2011) 331

found that perturbation of the synaptic weights can impair the stability of the attractor 332

dynamics a network is designed to follow, but argued that synaptic learning rules can be 333

designed to counter the effect. In any case, for low dimensionality, maintaining 334

within-attractor dynamics is less important than maintaining the attractor itself. In 335

other words, the temporal dynamics of the fictive currents in Fig. 2 are less important 336

than maintaining the overall architecture. 337

To verify the robustness of the low dimensional activity to perturbations in synaptic 338

weights, we scaled each synaptic weight by a factor cij which was drawn from a normal 339

distribution with mean 1.0 and standard deviation σ (Fig. 6A). Note that weight 340

perturbations are not equivalent to addition of noise to each neuron. The stability of 341

the low-dimensional activity was estimated in terms of the explained variance ratio of 342

dimensions of the activity (analogous to Fig. 5B). 343

Our simulations showed that as long as the synaptic weight are scaled within 10% of 344

their original values, the distribution of explained variance onto the four dimensions 345

remains stable. As expected, the within-attractor dynamics collapsed before the low 346
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A

B C D

Fig 5. Principal component analysis of the spiking activity. (A) The first four
principal components of the network spiking activity. (B) The fraction of the total
variance explained by each principal component. Note that the activity is essentially
four-dimensional, as intended. (C) and (D) Phase plots of the network activity (the
same data as in A) indicating the underlying dynamical system that we intended to
implemented in the network.

dimensionality itself. By collapse of the within-attractor dynamics, we mean that the 347

four fictive currents were no longer following the prescribed dynamics. The four fictive 348

currents were designed to be linearly independent so that four dimensions would be 349

clearly visible. Thus, when that design stopped working, the fictive current tend to 350

become partially correlated. Therefore, at about σ = 0.20 in Fig. 6A, the dimensionality 351

appears closer to two than four. 352

The low-dimensional activity manifold constrains learning 353

Even though Φ and K are not directly visible in the weight matrix, it is useful to 354

consider these variables to understand how the intrinsic manifold of the neuronal 355

activity may constrain learning. While K describes the relation between the fictive 356

currents and the synaptic input, Φ describes the relation between the filtered output 357

and the fictive currents. Due to the somatic and other non-linearities, the optimal Φ 358

does not necessarily equal KT. However, the transfer functions are typically linear 359
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A B C

Fig 6. Network resilience to weight perturbations. (A) Number of components
required to explain the variance (dimensionality) of the population activity changed as
the synaptic weights are perturbed. The size of perturbation to the weight matrix was
systematically increased. Each synapse was perturbed by an amount σWij Each bar
corresponds to one such simulation and shows how many components are required to
explain the variance (or the dimensionality) for a given size of perturbation. (B) Similar
to A, but instead of being perturbed synapses are removed in increasing order of
absolute weight. The manifold is stable even when almost half of the synapses are
removed. (C) Similar to B, but instead synapses are removed in decreasing order of
absolute weight. Removing the largest synapses results in much greater impairment.

enough for the approximation Φ ≈ KT not to be unreasonable (Eliasmith and 360

Anderson, 2003, p. 55-56, 191). Indeed, some authors (e.g. Boerlin et al., 2013) have 361

successfully employed this approximation in their network design. 362

As discussed above, when performing a dimensionality reduction on the spiking 363

activity, the fictive currents are not necessarily perfectly aligned to the projection of the 364

activity to the low dimensional space. We denote this projection Λ ∈ RN×D for a 365

D-dimensional dimensionality reduction. By definition, the columns of Λ consist of the 366

first D principal components of the spiking activity. Λ is not strictly equal to K nor to 367

ΦT . However, assuming the neuron transfer functions and binning of spike trains in 368

discrete time bins do not have a prominent effect on the output dimensionality 369

(suggested by Fig. 1), we can argue that the subspace spanned by Λ ought to 370

approximate the subspace spanned by K. 371

In view of these observations we turn our attention to the recent study by Sadtler et 372

al. (2014), and address the question why animals find it hard to learn BCI mappings 373

which lie outside the intrinsic manifold of the network activity? In other words, why the 374

intrinsic structure of the network activity pose strict limits over learning. Sadtler et al. 375

(2014) trained monkeys to control a cursor on a computer screen using the spiking 376

activity recorded from primary motor cortex. In particular, the velocity of the cursor 377

was determined by projecting a sample of the cortical activity down to a two 378

dimensional velocity vector. By changing the projection of the neurons in the mapping, 379

the authors forced the monkeys to relearn the projection, or more precisely, to generate 380

a new network activity that could move the cursor in the desired direction. They found 381

that when the change in the activity projections was designed such that the desired 382

neuronal activity remained in the intrinsic manifold — the subspace spanned by Λ in 383

our terminology — the monkeys were able to quickly learn the new mapping and 384

control the cursor. On the other hand, when the activity projection for the BCI task 385
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was designed such that the desired activity was outside the intrinsic manifold, the 386

monkeys found it hard to learn the new mapping and in some cases failed to learn. 387

Using the approximation Λ ≈ K ≈ ΦT , we propose an explanation for the differences 388

in learning performance between inside- and outside-manifold perturbations. An 389

inside-manifold perturbation, as described by Sadtler et al. (2014), can be written as 390

some rotation (possibly including reflection) of the columns of Λ: 391

Λ′ = ΛQ (9)

where Q ∈ RD×D is an orthogonal matrix and Λ′ ∈ N× D is the new directions of the 392

axes of the subspace. To create this new subspace, assuming Λ ≈ K, the monkeys have 393

to change the projection from the fictive currents to the synaptic currents to: 394

K ′ ≈ KQ (10)

and similarly for the projection from filtered spike trains to the fictive currents: 395

Φ′
T ≈ ΦTQ ⇔ Φ′ ≈ QT Φ (11)

The new weight matrix can then be written as 396

W ′ = K ′Φ′ ≈ KQQT Φ = KΦ = W (12)

where QQT = I follows from the fact that Q is orthogonal. That is, Eq.12 suggests that 397

inside manifold projections require that W ′ ≈W . This suggests that a relatively small 398

amount of learning may be sufficient to rearrange the axes of the intrinsic manifold. 399

By contrast, an outside-manifold perturbation requires: 400

Λ′outside = SΛ (13)

for some orthogonal matrix S ∈ RN×N . Following the same steps as above, the weight 401

matrix W ′outside required to learn the outside-manifold projections is given by: 402

W ′outside ≈ SKΦST = SWST (14)

In the generic case, W ′outside is not equal to W . That is, learning W ′outside to elicit 403

Λ′outside may require substantial synaptic changes and extensive learning. 404

To support our theory we performed inside- and outside-manifold perturbations on 405

our network model. Specifically, we took inspiration from the procedure Sadtler et al. 406

(2014) used to choose the perturbations and let Q be a permutation matrix. However, 407

while Sadtler et al. (2014) used D = 10, we kept our choice as D = 4. There are 4! = 24 408

permutations matrices with dimensions 4× 4, of which one is the identity matrix. Each 409

of these corresponds to a permutation of the columns of K. For outside-manifold 410

perturbations, we similarly let S be a permutation matrix. This transformation 411

permuted the rows of K. However, to limit the the number of possibilities of S, we 412

partitioned the rows of K into D = 4 blocks, as shown in Fig. 7A. We then restricted S 413

to permutations of the blocks, rather than of each row individually, resulting in only 414

4! = 24 possible permutations. Partitioning the blocks this way is similar to how Sadtler 415

et al. (2014) performed the outside-manifold perturbations. 416

For all 23 non-identity permutations, we simulated the network twice: in the first 417

instance we permuted the columns of K and in the second instance we permuted the 418

blocks of rows of the matrix K. Given the altered K ′ in each simulation we calculated a 419

new W ′ using the linear least squares optimization described above. In other words, we 420

did explicitly include the approximation from Eq. 10, but not from Eq. 11. For 421

comparison, we also simulated the network 23 times without any permutations of K, 422
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Fig 7. Inside- and outside-manifold permutations. (A) In our experiments the
dimensions of K was 5000× 4. (B) We changed the elements of K following four
different rules — (a) no change at all, (b) permuting the four columns, (c) grouping the
rows into four blocks, and permuting the blocks and (d) choosing an independent K ′.
We applied each rule 23 times, going through every permutation for b and c. For each
modification of K, we calculated the corresponding weight matrix W ′ and measured its
Frobenius difference from W . The large Frobenius distance indicates that more weights
have to be modified to transform the matrix W to W ′.

and 23 times where we chose a completely independent K ′. Because some randomness 423

was introduced in the choice of evaluation points and the initialization of the solver, the 424

weight matrix was not necessarily identical even when K ′ = K. For each of these 425

simulations, we compared W ′ to the original W (Fig. 7B). As expected from Eq. 12, a 426

permutation of the columns on average resulted only in a marginally different W ′ 427

(Fig. 7Bb). In fact, the change was so small that it was similar to the case when we did 428

not permute the columns (Fig. 7Ba). Permuting the rows (Fig. 7Bc), on other hand, 429

resulted in almost as large change of W as if K ′ was chosen randomly (Fig. 7Bd). Thus, 430

these results are consistent with our theoretical explanation that changing the intrinsic 431

manifold of neuronal activity requires large changes in the weight matrix and, therefore, 432

animals may find it hard to learn tasks that involve such transformation of neuronal 433

activity. 434

The above description shows that the network connectivity (W ) defines the intrinsic 435

manifold and the dynamical structure of neuronal activity. There is only a small 436

distance between the original network connectivity W and a new network connectivity 437

W ′ that remaps the neuronal activity within the original manifold (Fig. 7Bb). That is, 438

only minor adjustments in the synaptic weights may be sufficient to remap the neuronal 439

activity within the intrinsic manifold. This could explain why animals quickly learn the 440

BCI mapping that lied within the intrinsic manifold. On the other hand, a network 441
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connectivity that remaps the network activity outside the intrinsic manifold is vastly 442

different from the original matrix W that defines the intrinsic manifold (Fig. 7Bc). 443

That is, animals need to retune all the synapses within the network to learn a BCI task 444

that requires them to remap the neuronal activity outside the intrinsic manifold. Thus, 445

our model suggests that animals were slow in acquiring BCI tasks that required them to 446

remap the neuronal activity out of the intrinsic manifold, because such changes would 447

entail bringing in large changes in the strengths of all the synapses in the network. 448

Discussion 449

Recent experiments have found that (1) neuronal activity is constrained to a 450

low-dimensional manifold (Cunningham and Yu, 2014) and (2) animals find it difficult 451

to generate activity that lies outside the intrinsic manifold, thereby containing their 452

learning and behavioral repertoire (Sadtler et al., 2014). Thus far, neuronal mechanisms 453

and functional meaning of the low-dimensionality of the intrinsic activity have remained 454

obscure. At its simplest a network with clustered connectivity can generate 455

low-dimensionality and in that model number of clusters would determine the 456

dimensionality of the network activity (Mazzucato et al., 2016; Williamson et al., 2016). 457

However, clustered connectivity is not consistent with the experimental data. Moreover, 458

such a simple model neither provides a functional reason for the low-dimensionality nor 459

explains why it is difficult to move the neuronal activity out of the intrinsic manifold. 460

Here, we addressed these two questions and propose that: (1) Low-dimensional activity 461

structure reflects the problem the network is designed or has evolved to solve i.e. 462

dimensionality of the network activity is directly related to the complexity of the 463

problem a network is solving. (2) The intrinsic manifold arises due to a specific 464

structure of neuronal connectivity and (3) generation of an activity that lies outside the 465

intrinsic manifold requires a big change in the neuronal connectivity. Because such a 466

large rewiring of connectivity either may not be possible or may take a long time, 467

animals will find it difficult to generate activity outside the intrinsic manifold. 468

Furthermore, we have shown that neuron transfer-function may not affect the 469

dimensionality of the network activity. In addition, we have also provided a systematic 470

way to generate spiking neuronal networks that follow a certain dynamics and with 471

activity confined to a low-dimensional manifold. This method is based on the Neural 472

Engineering Framework (NEF Eliasmith and Anderson, 2003). Specifically, we have 473

demonstrated that the NEF can be used create networks with an arbitrary distribution 474

of variance along the first few principal components. This is a more general feature than 475

creating networks where the variance arbitrarily decreases along the principal 476

components, as is typically seen in most naturally occurring low-dimensional systems. 477

To emphasize this general control, we created a network with activity that varied 478

approximately equally in four directions in the state space, but substantially less in any 479

other direction. However, we do not suggest that having the variance equally 480

distributed along four dimensions accurately reflects biological networks. Rather, we 481

argue that networks created by the NEF and similar frameworks can be designed to 482

have any distribution of variance along the D first dimensions, given that the dynamical 483

system (Eq. 1) is chosen appropriately. In spite of this ability, they have been neglected 484

as a tool for modeling and explaining low dimensionality in neural networks. 485

While NEF is a powerful method to construct spiking neuronal networks that 486

conform to a specific dynamical system, the resulting networks often produce highly 487

regular spiking activity patterns. We introduced noisy inputs to the neurons to generate 488

irregular spike patterns without affecting the dynamics of the network activity much. 489

Our approach does not strictly depend on the NEF, and other similar models (e.g. 490

Boerlin et al., 2013; Abbott et al., 2016) could also be used to construct spiking 491
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neuronal network that exhibit low-dimensional activity. Unlike NEF, one common 492

feature of the other models is that there are an additional set of connections between 493

neurons in the population that is not subject to the same explicit construction rule 494

(Abbott et al., 2016). In Fig. 2, this would correspond to having lateral connections 495

within the population independently of Φ and K. These connections can be either 496

random (e.g. Hoerzer et al., 2012; Sussillo and Abbott, 2009) — essentially turning the 497

network into a reservoir or echo state — or specifically designed to optimize the spike 498

times for ease of decoding (e.g. Boerlin et al., 2013). When properly tuned, such extra 499

weights can increase the irregularity and hence the realism of the spike trains. 500

Intuitively, it follows that the induced distortion might also jeopardize the low 501

dimensionality. Surprisingly however, the activity of such networks is in fact low 502

dimensional (Hoerzer et al., 2012; DePasquale et al., 2016). Thus, the matrix Φ could 503

be generated by such approaches without affecting our results, but it remains to be 504

shown and could be a focus of future work. 505

Our approach to generate spiking neuronal network with low-dimensional activity 506

involves estimation of network weight matrices using a fitting procedure. This, however 507

does not mean that synaptic weights must have an arbitrary precision to generate the 508

prescribed dynamics for a particular network or that there is only one such weight 509

matrix. In fact, the resulting dynamical system is robust to synaptic noise and each 510

synapses can be perturbed by up 20% of its weight before the network loses its intrinsic 511

dimensionality (6A). Moreover, several properties of the the resulting weight matrix are 512

consistent with experimental measurements of the network connectivity e.g. 513

heavy-tailed distribution of synaptic weight, silent synapses and balance of excitation 514

and inhibition for each neuron. Still, the question arises whether such weight matrices 515

and/or dynamical systems can be learned? This is a known critique of the NEF and 516

similar frameworks, to which some tentative solutions have been suggested (MacNeil 517

and Eliasmith, 2011; Eliasmith, 2013). 518

One of the key implications of this model is that knowing the weight matrix W alone 519

is not sufficient to infer the dynamical system implemented by the network. While the 520

weight matrix could be factored into Φ̂ and K̂, those may not relate to the original Φ 521

and K or may not even have the same dimensions. Similar concerns regarding the 522

weight matrix have been earlier expressed (Buonomano, 2009) and it is not a feature 523

specific to our approach or the NEF. Although knowing the rank of the weight matrix 524

may give hints about the dimensionality of the network activity, we have shown that the 525

weight matrix can have considerably higher rank than the activity itself. However, that 526

information can also be inferred from the spiking activity itself which is much simpler to 527

measure. In fact, the low dimensionality implies that sampling of only a few neurons 528

may be sufficient to get a good estimate of the dimensionality. In addition, if our model 529

is correct, the dimensionality of the network activity is also visible in the input to the 530

neuron and can also be inferred from the sub-threshold membrane potential or calcium 531

imaging signals. 532

Next, when the weight matrix encodes a dynamical system, the dimensionality of the 533

resulting network activity is independent of the number of neurons sampled from the 534

network as long as the count of sampled neurons is larger than the dimensionality of the 535

underlying dynamics system. Unlike previous suggestion, clustered connectivity is not 536

necessary to keep the dimensionality low and independent of the sample size. In our 537

model the synaptic weights exhibit a heavy tailed-distribution (Fig. 3C). The weak 538

synapses, however do not contribute much to the resulting dynamics and up to 40% of 539

the weakest synapses can be removed without affecting the dynamics (Fig. 6B). By 540

contrast, the network dimensionality and dynamics are more susceptible to removal of 541

the strong synapses (Fig. 6C). Thus, the model predicts that a loss of a few strong 542

synapses may be detrimental to the network function. 543
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Throughout this text we have emphasized on designing network with low-dimensional 544

dynamics. Here, and in other similar literature low-dimensionality refers to the fact the 545

number of components required to explain the variance of the network activity are far 546

smaller than the number of neurons in the network. That is, whether a dimensionality 547

D is small or not depends on the number of neurons in the network. Here, we have 548

extended that concept one step further and have suggested that the dimensionality of a 549

network activity refers to the number of variables a network control while performing a 550

certain task, for instance to implement a dynamics system. It can be argued that 551

because tasks such as sensorimotor transformation and working memory are inherently 552

low-dimensional, the resulting activity in these tasks is also low-dimensional. More 553

complex cognitive tasks may exhibit higher dimensionality Fusi et al. (2016). In 554

addition, it is also possible that the low-dimensional dynamics is only a feature of a 555

specific neuron type and inclusion of other cell-types may increase the dimensionality. 556
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