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Abstract 12 
Many bacteria live in spatially structured assemblies where the microenvironment of a cell is shaped by 13 
the activities of its neighbors. Bacteria regulate their gene expression based on the inferred state of the 14 
environment. This raises the question whether the phenotypes of neighboring cells can become 15 
correlated through interactions via the shared microenvironment. Here, we addressed this question by 16 
following gene expression dynamics in Escherichia coli microcolonies. We observed strong spatial 17 
correlations in the expression dynamics for pathways involved in toxin production, SOS-stress response, 18 
and metabolism. These correlations can partly be explained by a combination of shared lineage history 19 
and spatial gradients in the colony. Interestingly, we also found evidence for cell-cell interactions in SOS-20 
stress response, methionine biosynthesis and overall metabolic activity. Together our data suggests that 21 
intercellular feedbacks can couple the phenotypes of neighboring cells, raising the question whether 22 
gene-regulatory networks have evolved to spatially organize biological functions. 23 

 24 
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Introduction 26 
Many bacteria do not live in isolation, instead they are members of larger communities (Claessen et al. 27 
2014). The microenvironment in these communities is partly determined by abiotic conditions, but it is 28 
also affected by the activities of a cell’s neighbors (Flemming et al. 2016; Stewart and Franklin 2008). 29 
At the same time, cells adjust their phenotype by regulating gene expression based on the inferred state 30 
of the local microenvironment. The phenotype of a cell is thus likely influenced by its location in the 31 
community and by the identity and the activities of neighboring cells.  32 

The functionality of the community as a whole depends on the combined activities of all of its members. 33 
Being part of a group can allow cells to specialize in performing different tasks (Kolter, Vlamakis, and 34 
van Gestel 2015). Such interactions between different cell types can lead to new or improved 35 
functionality that goes beyond the sum of the activities of the individual cells (Claessen et al. 2014; van 36 
Vliet and Ackermann 2015). In multispecies biofilms most of this specialization is the result of genetic 37 
differences between member species. However, specialization can likewise occur in single species 38 
communities as the result of phenotypic variation among cells (Kolter, Vlamakis, and van Gestel 2015; 39 
Ackermann 2015; Ackermann et al. 2008). One well studied example is in clonal Bacillus subtilis 40 
biofilms, where functionality depends on interactions between multiple different cell types (Lopez and 41 
Kolter 2010; Kolter, Vlamakis, and van Gestel 2015). 42 

Interactions between different cell types can be sensitive to the spatial arrangements of the different 43 
types (Liu et al. 2016; Nadell, Drescher, and Foster 2016). For example, the division of labor between 44 
nitrogen fixing and photosynthetic cells in multicellular cyanobacteria is likely more efficient due to the 45 
regular spacing of nitrogen fixing cells along the filaments (Muro-Pastor and Hess 2012). Furthermore, 46 
recent work in B. subtilis colonies directly linked functionality at the group level to the spatial arrangement 47 
of two cell types that perform complementary functions (van Gestel, Vlamakis, and Kolter 2015). More 48 
generally, we expect that correlations in the phenotypes of neighboring cells can be beneficial for a large 49 
number of activities (Ross-Gillespie and Kümmerli 2014). Positive correlations (i.e. neighbors having 50 
similar phenotypes) can allow cells to coordinate their activities. This can be of benefit in the production 51 
of secreted effectors, by allowing a sufficient build-up in local effector concentrations. Negative 52 
correlations (i.e. neighbors having different phenotypes) can facilitate division of labor between cells. This 53 
can be of benefit in the context of anabolic pathways: cells can benefit from economies of scale by 54 
specializing on the biosynthesis of a subset of metabolites, while exchanging end products with 55 
neighbors specializing on complementary pathways (Johnson et al. 2012; Guantes et al. 2015). 56 

Spatial correlations in phenotypes can be the result of several processes. In previous work it was found 57 
that several phenotypes can be epigenetically inherited (Robert et al. 2010; Veening et al. 2008; 58 
Veening, Smits, and Kuipers 2008; Hormoz, Desprat, and Shraiman 2015; Julou et al. 2013). Such 59 
epigenetic inheritance leads to positive correlations between the phenotypes of closely related cells (e.g. 60 
between sisters or cousins, i.e., cells that are only separated by one or two cell divisions (Hormoz, 61 
Desprat, and Shraiman 2015)). As neighboring cells tend to be highly related, epigenetic inheritance can 62 
lead to positive spatial correlations in phenotypes. Furthermore, neighboring cells are exposed to a 63 
similar combination of environmental gradients (Flemming et al. 2016; Stewart and Franklin 2008). A 64 
common gene regulatory response to these gradients can thus result in positive correlations in 65 
phenotypes. Finally, local interactions (i.e. intercellular feedbacks) can lead to a coupling in expression 66 
levels between neighbors (Risser, Wong, and Meeks 2012; Bassler and Losick 2006). These 67 
intercellular feedbacks can give rise to either positive or negative correlations in phenotypes. Spatial 68 
correlations in phenotypes will depend on the combined effects of epigenetic inheritance, spatial 69 
gradients, and intercellular feedbacks. However, so far these processes have mostly been studied in 70 
isolation. At the moment we thus lack a quantitative understanding of the relative contributions of these 71 
processes to spatial correlations in phenotype. 72 

Here we address the following question: to what extent are cellular activities correlated between 73 
neighboring cells? We are especially interested in the role of intercellular feedbacks between neighbors. 74 
As a model system we used two-dimensional microcolonies of Escherichia coli. We followed the growth 75 
of a microcolony using time-lapse microscopy while tracking spatiotemporal gene expression patterns 76 
using transcriptional reporters. Subsequently, we quantified spatial correlations in gene expression and 77 
developed a novel statistical approach to disentangle the effects of shared linage history, spatial 78 
gradients, and local interactions. We found strong spatial correlations for all studied pathways, which we 79 
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could attribute to the effects of shared lineage history and, for some pathways, the effects of spatial 80 
gradients and local interactions. 81 

We studied two groups of pathways for which we expected to find spatial correlations of opposite signs. 82 
As a model for secreted effector molecules, where we expected positive correlations, we chose the 83 
bacteriocin colicin Ib. In natural systems the extra cellular concentration of bacteriocin needs to reach a 84 
threshold concentration to inhibit the growth of nearby sensitive cells (Cascales et al. 2007). If 85 
neighboring cells coordinated their expression dynamics, it would be easier for them to reach this 86 
threshold concentration. We thus hypothesized that colicin Ib expression levels should be positively 87 
correlated between neighboring cells.  88 

As a model for anabolic pathways, where we expected negative correlations, we chose three pathways 89 
involved in amino acid biosynthesis.  Previous work using genetic consortia of complementary amino-90 
acids autotrophs has shown that many amino acids can be exchanged through the environment (Mee et 91 
al. 2014; Wintermute and Silver 2010). Furthermore, amino acid production costs appear to show 92 
economies of scale: the cost of producing an extra amino acid decreases with increasing production 93 
levels (Pande et al. 2013). The community can thus grow faster if its members specialize on the 94 
production of complementary subset of amino-acids and exchange surpluses with each other. Indeed, it 95 
was found that several genetic consortia of cross-feeding strains (i.e. complementary strains that cannot 96 
produce one amino acid but overproduce another) could outcompete a wildtype ancestor (Pande et al. 97 
2013). This shows that a division of labor strategy can increase population growth rates when cells are 98 
genetic specialists. We hypothesized that a similar benefit could be obtained if genetically identical cells 99 
phenotypically specialize on the production of different amino acids. Such phenotypic specialization 100 
could be obtained if random fluctuations in amino acid production rates (e.g. due gene expression noise 101 
(Elowitz et al. 2002; Ozbudak et al. 2002; Kaern et al. 2005)) are amplified by intercellular feedback 102 
loops. Furthermore, we hypothesized that cells would arrange their activities in space to optimize the 103 
efficiency of the division of labor. Specifically, we expected that neighboring cells would specialize on 104 
different pathways in order to optimize the exchange of amino acids. We thus expected to observe 105 
negative correlations (i.e. dissimilarity) in the expression levels of amino acid synthesis pathways between 106 
neighboring cells. 107 

Results 108 
To test our hypotheses, we followed the spatiotemporal gene expression dynamics in microcolonies of E. 109 
coli. Gene expression was quantified using plasmid-based green fluorescent protein (GFP) transcriptional 110 
reporters. The mean fluorescent intensity of the transcriptional reporter is approximately proportional to 111 
the concentration of GFP and hence a proxy for the concentration of the protein encoded by the gene of 112 
interest. We thus refer to this quantity as protein level. We furthermore quantified the rate of change in 113 
the total fluorescent intensity over time, which is a proxy for the promoter activity (see Methods, (Kiviet et 114 
al. 2014)). Cells were inoculated at low density on agar pads and the growth of a microcolony founded 115 
by a single cell was followed over time using time-lapse microscopy. We quantitatively analyzed the 116 
observed spatiotemporal gene expression patterns using a newly developed statistical approach. We will 117 
first describe the dynamics observed for colicin Ib, while simultaneously introducing our analysis 118 
methods. Subsequently, we will apply the same methods to analyze the dynamics for the amino acid 119 
synthesis pathways.  120 

Neighboring cells have similar protein levels of colicin Ib 121 
First we investigated the expression patterns of the bacteriocin colicin Ib (cib), which is a pore-forming 122 
toxin found in natural isolates of E. coli and Salmonella (Riley and Wertz 2002; Cascales et al. 2007). cib 123 
transcription is co-repressed by the binding of LexA to the SOS-box (SOS DNA repair response) and by 124 
the binding of Fe2+-Fur complex to the iron box (Ferric uptake regulation) (Cascales et al. 2007; 125 
Nedialkova, Denzler, Koeppel, Diehl, Ring, Wille, Gerlach, and Stecher 2014a). cib transcriptional 126 
repression can be partly relieved by activation of the SOS-response in response to DNA damage, or by a 127 
shortage in ferrous iron (Fe2+) (Spriewald et al. 2015; Nedialkova, Denzler, Koeppel, Diehl, Ring, Wille, 128 
Gerlach, and Stecher 2014a). Here, we relived repression by Fur by chelating free iron in the medium. 129 
We did not induce SOS response, so any cib expression is likely the result of SOS induction due to 130 
spontaneous occurring DNA damage (Pennington and Rosenberg 2007).  131 

Colicin Ib protein levels varied strongly between cells in a microcolony (median coefficient of 132 
variation=0.19, n=8, Figure 1A). This is consistent with previous reports of high variation in colicin 133 
expression levels (Silander et al. 2012). It is important to note that we do not expect any genetic 134 
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variation between cells in the microcolony: when a microcolony is founded by a single cell there is a 88% 135 
chance that no mutations occur after 7 generations (assuming a mutation rate of 10-3, per genome, per 136 
generation (Lee et al. 2012)). Likewise, we do not expect abiotic variation in the agar pads: diffusion 137 
should equalize any inhomogeneities across the colony within seconds (e.g. a molecule with a diffusion 138 
coefficient similar to that of glucose (D~600	µm2/s) diffuses across a microcolony (~13µm) in 139 
approximately 0.07 seconds). Instead, gene expression noise is likely an important factor leading to the 140 
observed phenotypic variation (Elowitz et al. 2002; Ozbudak et al. 2002; Kaern et al. 2005). Moreover, 141 
the combined metabolic activities of cells in the colony can give rise to emergent gradients in nutrients 142 
and other excreted metabolites. These emergent gradients can in turn also contribute to phenotypic 143 
variation.  144 

 145 
Figure 1. Neighboring cells have similar expression levels of colicin Ib. 146 
A) Fluorescence image of an E. coli microcolony with GFP transcriptional reporter for colicin Ib (cib). 147 
Colicin expression was induced by chelating free iron in the medium, but no DNA damaging agent was 148 
added. 149 
B) Reconstructed image of the colony shown in A: cell shapes obtained from cell segmentation are 150 
uniformly colored based on their mean corrected intensity (see Figure 1-Figure Supplement 1). Note how 151 
neighboring cells tend to have similar intensities.  152 
C)  Same as in B, but fluorescence intensities are randomly permuted among the cells. Note that the 153 
similarity between neighboring cells has been reduced compared to B. 154 
D) Quantification of spatial correlations in expression levels: cells are grouped into two clusters (intensity 155 
above or below median intensity). Each cell is compared to all its neighbors and the percentage of 156 
neighbors that is of the same cell type is calculated (red line). This procedure is repeated 104 times after 157 
randomly permuting the intensities among the cells (blue distribution). The observed similarity is 158 
significantly higher for the true data compared to the randomized data (p<1·10-4, randomization test). 159 

Visual inspection suggested that Colicin Ib levels were non-randomly distributed in the colony. Rather, 160 
neighbors appeared to be similar to each other (Figure 1A). To quantitatively investigate the expression 161 
patterns, we first corrected the fluorescent images for optical artifacts (Figure 1B, –Figure Supplement 1, 162 
see Methods). Subsequently, we quantified the spatial correlation in Colicin Ib levels using a 163 
randomization test. We found that neighboring cells are significantly more similar to each other than can 164 
be expected by chance (Figure 1D, p=10-4, see Methods). We observed similar results for an additional 8 165 
replicate microcolonies (Figure 1–Figure Supplement 2). Consistent with our hypothesis, we thus 166 
consistently observed positive spatial correlation in Colicin Ib levels.   167 

Two main factors could contribute to the observed positive spatial correlation in Colicin Ib levels: shared 168 
lineage history and spatial proximity. If a cell’s phenotype is epigenetically inherited (e.g. due to protein 169 
inheritance) this will cause similarity in protein levels between closely related cells (e.g. between sisters or 170 
cousins, (Veening, Smits, and Kuipers 2008; Hormoz, Desprat, and Shraiman 2015)). As closely 171 
related cells also tend to lie close by in space, epigenetic inheritance could lead to spatial correlations in 172 
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expression levels. Spatial proximity by itself, i.e. independent of the effects of lineage history, could also 173 
lead to spatial correlations in expression levels. In this case neighboring cells would be more similar to 174 
each other than could be expected based on their relatedness. This could be either due to local cell-cell 175 
interactions or due to cells sharing the same microenvironment. As lineage history and spatial proximity 176 
tend to be strongly correlated, we developed a statistical method to disentangle these two effects. 177 

Shared lineage history leads to spatial correlations in colicin Ib expression dynamics  178 
To identify the causes of spatial correlations in Colicin Ib protein levels we followed the growth of 179 
microcolonies using time-lapse microscopy and reconstructed the full, spatially resolved, lineage trees 180 
(Figure 2A). These lineage trees contain complete information on the locations of cells, their phenotypes, 181 
and their relatedness. These lineage tree thus allowed us to disentangle the effects of shared lineage 182 
history and spatial proximity on spatial correlations in expression levels. 183 

 184 
Figure 2. Reconstructing lineage trees to disentangle the effects of space and relatedness  185 
A) Left: frames from a time-lapse movie of a growing microcolony with a GFP reporter for cib. The 186 
images show GFP intensities using a heatmap representation for t=0,3,6h. Right: reconstructed lineage 187 
tree. Cells are plotted as a function of location (horizontal plane) and time (vertical axis). Branching points 188 
in the lineage tree mark cell division events.  The spheres at the tip of the tree represent cells at the final 189 
time point with their color indicating the Colicin Ib level of the cell.  190 
B) Statistical test to quantify the effect of shared lineage history on similarity in expression levels. A focal 191 
cell (FC, red) is compared with its closest relative (CR, green) and with an equidistant cell (ED, blue), 192 
which is a cell that has the same distance to the focal cell as the closest relative, but that is less related.  193 
C) Statistical test to quantify the effect of spatial proximity on similarity in expression levels. A focal cell 194 
(FC, red) is compared with one of its neighbors (NB, green) and with an equally-related cell (ER, blue), 195 
which is a cell that has the same relatedness to the focal cell as the neighbor, but that is further away in 196 
space. B,C) The insets at the bottom show the positions of these cells in the GFP image for the last time 197 
point (see panel A).   198 

First, we developed a test for the effect of shared lineage history on spatial correlations in phenotype. We 199 
could disentangle the effect of relatedness from the effect of spatial proximity by analyzing a group of 200 
cells that differ in their relatedness, but that are identical in their spatial arrangement. Specifically, we 201 
compared three cells: a focal cell, its closest relative (e.g. its sister), and an equidistant cell, i.e. a cell that 202 
shares the same spatial relation with the focal cell as the closest relative, but that is less related (Figure 203 
2B). We then compared the phenotypic difference between the focal cell and the equidistant cell (!"#) 204 
with the phenotypic difference between the focal cell and its closest relative (!$%). The effect of shared 205 
lineage history was quantified by the ratio of these two quantities (i.e. !"#/!$%). Values larger than 1 206 
indicate that shared lineage history leads to similarity in phenotype (i.e. positive correlations), while values 207 
smaller than 1 indicate that shared lineage history leads to dissimilarity in phenotype (i.e. negative 208 
correlations). 209 

We found that shared lineage history leads to positive correlations in Colicin Ib levels: a cell is much more 210 
similar to its closest relative than to an equally distant (but less related) cell. Specifically, the phenotypic 211 
difference between a focal cell and the equidistant cell is on average 5.8 times higher than the 212 
phenotypic difference between the focal cell and its closest relative (Figure 3A, !"#/!$% =5.8, p<1·10-5, 213 
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t-test, n=9). Additionally, we found that closely related cells are also similar with respect to their cib 214 
promoter activity (Figure 3A, !"#/!$% =1.8, p=0.002). While the similarity in protein level is to be 215 
expected due to protein inheritance, the similarity in promoter activity shows that closely related cells are 216 
also similar in their current activities.  217 

 218 
Figure 3. Factors contributing to spatial correlations in colicin Ib expression dynamics. 219 
A) Shared lineage history leads to similarity in Colicin Ib protein levels (left) and promoter activity (right). 220 
The phenotypic difference between a focal cell and an equidistant cell (!"#) is significantly larger than the 221 
phenotypic difference between a focal cell and its closest relative (!$%), i.e. !"#/!$% > 1. 222 
B) Spatial proximity leads to similarity in Colicin Ib levels but not in promoter activity. For Colicin Ib levels, 223 
the phenotypic difference between a focal cell and an equally-related cell (!"%) is significantly larger than 224 
the phenotypic difference between the focal cell and one of its neighbors (!)*), i.e. !"%/!)* > 1. 225 
C) Local spatial effects do not contribute to spatial correlations in Colicin Ib levels or promoter activity. 226 
Local spatial effects were calculated using the residuals of a linear regression of a cell’s phenotype to the 227 
distance of a cell to the colony edge. The difference in residuals between a focal cell and an equally- 228 
related cell (!"% +,-./) is not significantly different from the difference in residuals between the focal cell 229 
and one of its neighbors (!)* +,-./), i.e. !"%/!)* +,-./ ≈ 1. 230 
D) Global spatial effects contribute to spatial correlations in Colicin Ib levels. Global spatial effects were 231 
calculated as the difference between the total effects of spatial proximity (panel B) and the local spatial 232 
effects (panel C).   233 
A-D) Each point corresponds to a microcolony with 117-138 (mean=128) cells; points are horizontally 234 
offset. Thick horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines indicate the 235 
expected value under the null-hypothesis (1 for panel A-C, 0 for panel D). Null hypothesis rejected with: 236 
*p<0.05, **p<0.01, ***p<0.001, t-test, n=9. The statistics are robust to the choice of the equally-related 237 
cell (Figure 3–Figure Supplement 1), the size of the colony being analyzed (Figure 3–Figure Supplement 238 
2), and differences in the processing of fluorescent images (Figure 3–Figure Supplement 3). Full data can 239 
be found in Figure 3 – Source Data 1.  240 

Spatial proximity leads to spatial correlations in Colicin Ib protein level  241 
Can the observed spatial correlation in Colicin Ib protein levels be fully explained by the shared lineage 242 
history of neighbors, or are there additional factors that couple gene expression in cells depending on 243 
their spatial proximity? To answer this, we investigated if neighboring cells are more similar to each other 244 
than could be expected based on how related they are. If spatial proximity by itself also contributes to 245 
spatial correlations in phenotypes, this would suggest that a cell’s phenotype is partly determined by its 246 
population context. Population context could matter both due to global spatial effects, that is, due to 247 
systematic differences in gene expression levels with a cell’s location in the colony, or due to local 248 
interactions between neighboring cells. We first analyzed whether spatial proximity by itself contributes to 249 
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spatial correlations in phenotype. Subsequently, we investigated whether the contribution of spatial 250 
proximity is due to global and/or local effects. 251 

We developed a test to quantify whether spatial proximity contributes to spatial correlations in 252 
phenotypes, after correcting for the effects of shared lineage history. We corrected for the effects of 253 
shared lineage history by comparing a group of cells that are identical in their relatedness, but that differ 254 
in how far they are apart. We then asked whether a cell is more similar to its neighbors than to cells that 255 
have the same relatedness, but that are further away in space. Specifically, we compared three cells: a 256 
focal cell, one of its neighbors, and an equally-related cell, i.e. a cell that has the same relatedness to the 257 
focal cell as the neighbor but that is further away in space (Figure 2C). We then compared the 258 
phenotypic difference between the focal cell and the equally-related cell (!"%) with the phenotypic 259 
difference between the focal cell and its neighbor (!)*). The effect of spatial proximity was quantified 260 
using the ratio of these two quantities (i.e. !"%/!)*). Values larger than 1 indicate that spatial proximity 261 
leads to similarity in phenotype (i.e. positive correlations), while values smaller than 1 indicate that spatial 262 
proximity leads to dissimilarity in phenotype (i.e. negative correlations). 263 

We found that spatial proximity leads to significant similarity in Colicin Ib levels: the phenotypic difference 264 
between a focal cell and an equally-related cell is on average 1.15 times higher than the phenotypic 265 
difference between the focal cell and its neighbor (Figure 3B, !"%/!)* =1.15, p=1·10-3). However, 266 
spatial proximity does not significantly affect promoter activity (Figure 3B, !"%/!)* =0.99, p=0.7).  267 

Why did we observe that spatial proximity leads to similarity in protein levels, but not in promoter 268 
activities? One possible reason is that protein levels have a longer autocorrelation time than promoter 269 
activities, i.e. they are influenced by events further in a cell’s past. The amount of proteins inside a cell is 270 
the sum of protein production and protein inheritance. The protein level is therefore influenced by the 271 
transcriptional activity of both the cell itself and its ancestors. Contrarily, we determined the promoter 272 
activity as the amount of proteins produced during a time scale corresponding to roughly one cell cycle. 273 
It thus reflects only the transcriptional activity within this time period. The overall (i.e. time-averaged) 274 
activities of cells could be spatially correlated even if they are not synchronized in time, for example due 275 
to transcriptional bursts or time-delays between the responses in neighboring cells. This would lead to an 276 
observed similarity over longer timescales (i.e. for protein levels) even when there is no similarity on 277 
shorter time scales (i.e. for promoter activity). Furthermore, promoter activities, which are calculated 278 
using temporal derivatives, are likely more affected by measurement noise than protein levels, which are 279 
directly measured. Weak effects of spatial proximity on similarity could thus be harder to detect using 280 
promoter activities than using protein levels.  281 

In summary, our data shows that both shared lineage history and spatial proximity contribute to positive 282 
spatial correlations in Colicin Ib protein levels. Shared lineage history also contributes to positive 283 
correlations in cib promoter activity, but there is no evidence that spatial proximity also affects promoter 284 
activities. 285 

Global spatial effects lead to correlations in Colicin Ib protein levels  286 
Spatial proximity could lead to correlations in expression levels in two ways: by global and by local spatial 287 
effects. Global spatial effects refer to situations where expression dynamics vary systemically with the 288 
overall position of a cell in the microcolony. Specifically, we investigated whether expression dynamics 289 
correlated with the distance of a cell to the edge of the colony. Additionally, local (i.e. microscale) effects 290 
could lead to correlations in expression dynamics. Such local effects are most likely the result of 291 
interactions between neighboring cells. These interactions can be either the result of direct sharing of 292 
cellular components, or be a consequence of intercellular feedbacks mediated though the local 293 
microenvironment.  Both global and local effects could thus affect the phenotype of a cell through spatial 294 
variation in the environment. Although there is no fundamental difference between these two situations, 295 
we reserve global spatial effects for cases where the microenvironment varies on spatial scales that are 296 
(much) larger than the size of a cell and use local effects for cases where variation occurs on scales 297 
comparable to the size of a cell.  298 

First we analyzed whether global spatial effects contribute to correlations in Colicin Ib expression 299 
dynamics. Visual inspection suggested that expression levels increased towards the center of the 300 
colonies. A linear regression of Colicin Ib protein levels with a cell’s distance to the colony edge 301 
confirmed this observation (mean r2=0.096, Figure 3–Figure Supplement 4). As neighboring cells are 302 
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similar in their distance to the colony edge, the observed correlation could thus lead to similar expression 303 
levels in neighboring cells.  304 

To what extend does the observed global trend in colicin Ib expression dynamics explain the effect of 305 
spatial proximity? To find out, we recalculated the effect of spatial proximity after correcting for the global 306 
spatial effects. We can correct the phenotype of a cell for the global spatial effects by subtracting the 307 
expected phenotype determined by the linear regression from the observed phenotype. We then 308 
recalculated the effect of spatial proximity using these residuals (Figure 3C). This gives an estimate for the 309 
importance of local spatial effects. The importance of global spatial effects is then estimated as the 310 
difference between the effect of spatial proximity determined from the observed phenotype of a cell 311 
(!"%/!)*, Figure 3B) with the effect of spatial proximity determined from the residuals of the linear 312 
regression (!"%/!)* +,-./, Figure 3C). 313 

We found that the spatial correlations in Colicin Ib levels are strongly influenced by global spatial effects 314 
(Figure 3D,  !"%/!)* − !"%/!)* +,-./ =0.18, p=6·10-4). In fact, we no longer observe a significant effect 315 
of spatial proximity when we only analyzed the local spatial effects (Figure 3C,  !"%/!)* +,-./ =0.98, 316 
p=0.3). The spatial correlations in Colicin Ib levels are thus mainly the result of shared lineage history and 317 
shared overall position in the colony. Does this mean that intercellular feedbacks do not play any role in 318 
Colicin Ib expression patterns? 319 

Direct cell-cell interactions in SOS response  320 
We designed an experimental system where we could directly test if intercellular feedbacks affect Colicin 321 
Ib expression dynamics. The system consists of two strains: an inducible strain in which we can induce 322 
the expression of a target gene and a reporter strain that has a reporter for the same gene, but that does 323 
not respond to the inducing signal. If intercellular feedbacks were present, reporter cells neighboring 324 
inducible cells should have higher expression levels than isolated reporter cells.   325 

 326 
Figure 4. Direct cell-cell interactions in SOS response.   327 
A) Test for direct interactions in SOS-response. Cells with a transcriptional reporter for recA (pSV66-328 
recA-rpsM, red cells) where grown together on agar pads with cells in which SOS response was induced 329 
by expressing the nuclease domain of colicin E2 (pSJB18, black cells). After 1h, the average SOS 330 
induction level was compared between reporter cells that do (right) and do-not (left) have inducible 331 
neighbors. The grey area indicates the region where cells are considered neighbors. Nuclease 332 
expression was induced by adding Anhydrotetracycline (AHT) to the agar pad. B). Cells neighboring 333 
inducible cells have higher SOS response levels. Each dot shows the mean GFP intensity of a recA 334 
transcriptional reporter in cells with inducible neighbors divided by the mean intensity in reporter cells 335 
with no direct inducible neighbors. For each replicate we analyzed 51-189 (mean=137) reporter cells with 336 
inducible neighbors and 359-713 (mean=575) reporter cells with no inducible neighbors. Points are 337 
horizontally offset, thick horizontal line indicates mean, thin lines 95% confidence intervals. Reporter cells 338 
neighboring inducible cells have significantly higher levels of recA expression with a mean relative SOS 339 
induction of 1.030 (95% CI=1.015,1.045), p=9·10-4, t-test, n=15. Full data can be found in Figure 4 – 340 
Source Data 1.  341 

We expect that cib expression is mainly the result of fluctuations in SOS response activity, as we relieved 342 
transcriptional repression by Fur by chelating free iron in the medium (Nedialkova, Denzler, Koeppel, 343 
Diehl, Ring, Wille, Gerlach, and Stecher 2014b; Spriewald et al. 2015; Pennington and Rosenberg 344 
2007). We thus hypothesized that any interactions in colicin expression dynamics would most likely be 345 
the result of intercellular feedbacks in SOS response. To test this hypothesis, we constructed a strain in 346 
which we could induce SOS response by expressing a nuclease inside the cell (Figure 4A, Methods). We 347 
combined this strain with a reporter strain that carried a transcriptional reporter for recA, which is a key 348 
component of the SOS response and has previously been used as a reporter for SOS induction levels 349 
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(Friedman et al. 2005). The two strains were grown together on agar pads and we compared SOS 350 
induction levels in reporter cells that neighbored inducible cells with reporter cells without inducible 351 
neighbors. We found that SOS induction levels significantly increased when reporter cells neighbored an 352 
inducible cell (Figure 4B, mean relative induction=1.030, p=9·10-4, n=15). Although the increase in SOS 353 
induction levels is significant, its effect is rather small: reporter cells neighboring inducible cells have on 354 
average only 3% higher RecA protein levels than isolated reporter cells. One reason for the small effect 355 
size could be that SOS induction levels increased only in a small fraction of the inducible cells (Figure 4–356 
Figure Supplement 1). When we average over all reporter-inducible cells pairs we thus underestimate the 357 
true effect size. Nonetheless, this data strongly suggests that there are intercellular feedbacks in SOS-358 
response: cells appear to “sense” the SOS response level in their neighbors and respond by upregulating 359 
their own SOS response. 360 

Despite finding evidence for direct intercellular feedbacks in SOS response, we did not observe any 361 
effect of spatial proximity on recA expression (Figure 3–Figure Supplement 5).  RecA protein levels are 362 
spatially correlated (Figure 1–Figure Supplement 2), however this can be fully explained by the effects of 363 
shared lineage history (Figure 3-Figure Supplement 5A, !"#/!$% =5.9, p=1·10-4). We did not find a 364 
significant effect of spatial proximity (Figure 3-Figure Supplement 5B, !"%/!)* =1.07, p=0.2). One 365 
explanation for this finding is that the intercellular feedbacks are too weak to be detected with our 366 
statistical method. Another possibility is that intercellular feedbacks can only be detected when a large 367 
enough fraction of the population has high levels of SOS induction. We did not induce SOS response in 368 
the microcolonies that were used to analyze the effects of spatial proximity. The fast majority of cells in 369 
the colony had thus only very low SOS induction levels. In contrast, in our experiment where we detected 370 
evidence for interactions, we had induced high levels of SOS response in at least part of the population. 371 

Shared lineage history and spatial proximity lead to spatial correlations in anabolism  372 
Next, we turn to our hypothesis that neighboring cells should be dissimilar in their expression levels of 373 
anabolic pathways. We studied three pathways involved in amino acid biosynthesis in E. coli and 374 
followed their expression dynamics using transcriptional reporters. Specifically, we followed: PheL, the 375 
leader peptide of the pheLA operon that encodes for an enzyme involved tyrosine and phenylalanine 376 
biosynthesis; MetA, an enzyme involved in methionine biosynthesis; and TrpL, the leader peptide of the 377 
trpLEDCBA operon that encodes for enzymes involved in tryptophan biosynthesis. Previous work has 378 
shown that trpL has relatively high variation in expression levels (Silander et al. 2012). We expected that 379 
higher levels of variation would facilitate cells to specialize on the production of different amino acids. 380 
Furthermore, it was previously found that cells with knockout mutations in the biosynthesis pathways of 381 
phenylalanine and methionine tend to grow well when combined with a large number of complementary 382 
knockout strains in cross feeding cultures (Mee et al. 2014; Wintermute and Silver 2010). This suggests 383 
that these two amino acids can efficiently be shared between cells, making it more likely that neighboring 384 
cells could specialize on the synthesis of different amino acids and complement each other. 385 

First we analyzed the spatial correlations in protein levels using a randomization test, where we expected 386 
to observe negative correlations. Contrary to our hypothesis, we observed strong positive spatial 387 
correlations in the protein levels of all three pathways (Figure 1–Figure Supplement 2). An important 388 
driver of these positive correlations is the effect of shared lineage history: for all three pathways we 389 
observe that closely related cells are similar in both protein levels and promoter activities (Figure 5A, 390 
!"#/!$% >1 for all pathways). However, even after correcting for lineage effects we observed that 391 

protein levels are similar between neighboring cells. For all three pathways the phenotypic difference 392 
between a focal cell and its neighbor is smaller than the phenotypic difference between the focal cell and 393 
an equally related, but more distant, cell. However, this effect is only significant for pheL (Figure 5B, 394 
!"%/!)* >1 for all pathways). Based on protein levels we thus do not find any evidence for a division of 395 

labor in amino acid synthesis between neighboring cells.  396 
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 397 
Figure 5. Analyses of factors that contribute to spatial correlations in amino acid synthesis.  398 
A) Shared lineage history leads to similarity in protein levels and promoter activity for all three pathways 399 
involved in amino acid synthesis. In all cases, the phenotypic difference between a focal cell and an 400 
equidistant cell (!"#) is significantly larger than the phenotypic difference between a focal cell and its 401 
closest relative (!$%), i.e. !"#/!$% > 1.  402 
B) Spatial proximity leads to similarity in PheL protein levels and dissimilarity in metA promoter activity.  403 
For PheL protein levels the phenotypic difference between a focal cell and an equally-related cell (!"%) is 404 
significantly larger than the phenotypic difference between the focal cell and one of its neighbors (!)*). 405 
For metA promoter activities, neighboring cells are less similar than expected based on their relatedness, 406 
i.e. !"%/!)* < 1.  407 
C) The dissimilarity in metA promoter activity is due to local spatial effects. Local spatial effects were 408 
calculated using the residuals of a linear regression of a cell’s phenotype to the distance of a cell to the 409 
colony edge. For metA promoter activity, the difference in residuals between a focal cell and an equally- 410 
related cell (!"% +,-./) is significantly smaller than the difference in residuals between the focal cell and 411 
one of its neighbors (!)* +,-./), i.e. !"%/!)* +,-./ < 1.  412 
D) Global spatial effects lead to similarity in PheL protein levels and trpL promoter activity. Global spatial 413 
effects were calculated as the difference between the total effects of spatial proximity (panel B) and the 414 
local spatial effects (panel C).   415 
A-D) Each point corresponds to a microcolony with 117-138 (mean=128) cells, points are horizontally 416 
offset. Thick horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines indicate the 417 
expected value under the null hypothesis (1 for panel A-C, 0 for panel D). Null-hypothesis rejected with: 418 
*p<0.05, **p<0.01, ***p<0.001, t-test, n=9 (pheL, metA) or 8 (trpL). Full data can be found in Figure 5 – 419 
Source Data 1.  420 

Spatial dissimilarity in promoter activity of methionine biosynthesis  421 
Interestingly, however, we did find negative correlations for metA promoter activity. This means that 422 
neighboring cells are more dissimilar in their promoter activities than expected based on how related they 423 
are. Specifically, the phenotypic difference between a focal cell and its neighbor is 1.13 times larger than 424 
the phenotypic difference between a focal cell and an equally-related cell (Figure 5B, !"%/!)* =0.89, 425 
p=0.05). This difference does not change when we correct for global spatial effects by analyzing the 426 
residuals of a linear regression of metA promoter activity with the distance of a cell to the colony edge 427 
(Figure 5C, !"%/!)* +,-./ =0.89, p=0.04). The dissimilarity in metA promoter activities is thus the result 428 
of local effects. This suggests that there are negative intercellular feedbacks affecting the expression of 429 
metA. In other words: if a cell transcribes metA at a high rate, its neighbors will tend to transcribe this 430 
gene at a low rate. For pheA and trpL we found no evidence for similar negative feedback loops in 431 
promoter activity (Figure 5B). 432 

For metA, we thus observed that neighboring cells where significantly dissimilar in their promoter 433 
activities, while their protein levels tended to be similar (though the latter effect was not significant, Figure 434 
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5B). This discrepancy could be due to the different autocorrelation times of protein levels and promoter 435 
activities. At any given time, a cell could try to differentiate from its neighbors, resulting in dissimilarity in 436 
promoter activities. However, the identity and activities of a cell’s neighbors change over time due to the 437 
growth of the microcolony. The constant changes in promoter activity over time could thus prevent 438 
protein levels (which depend both on past and current promoter activities) of becoming dissimilar 439 
between neighbors. 440 

Spatial similarity in overall metabolic state of cells 441 
We observed positive correlations in all three amino acid synthesis pathways we studied. This raises the 442 
question whether such positive correlations are a more general feature of a cell’s metabolism. To 443 
investigate this possibility, we simultaneously measured a cell’s elongation rate (i.e. its growth rate) and 444 
the expression level of rpsM, which codes for the S13 ribosomal protein. Ribosome production levels 445 
have previously been shown to be strongly correlated to a cell’s growth rate (Scott et al. 2010; Scott et 446 
al. 2014). We thus expected that rpsM expression is a good proxy for a cell’s overall metabolic activity.  447 

 448 
Figure 6. Analyses of factors that contribute to spatial correlations in metabolism.  449 
A) Shared lineage history leads to similarity in RpsM protein levels (left), rpsM promoter activity (middle), 450 
and cell elongation rate (right). In all cases, the phenotypic difference between a focal cell and an 451 
equidistant cell (!"#) is significantly larger than the phenotypic difference between a focal cell and its 452 
closest relative (!$%), i.e. !"#/!$% > 1.  453 
B) Spatial proximity leads to similarity in RpsM protein levels, rpsM promoter activity, and cell elongation 454 
rate. In all cases, the phenotypic difference between a focal cell and an equally-related cell (!"%) 455 
significantly is larger than the phenotypic difference between the focal cell and one of its neighbors (!)*), 456 
i.e. !"%/!)* > 1.  457 
C) The similarity in RpsM protein levels is partly due to local spatial effects. Local spatial effects were 458 
calculated using the residuals of a linear regression of a cell’s phenotype to the distance of a cell to the 459 
colony edge. For RpsM protein levels, the difference in residuals between a focal cell and an equally- 460 
related cell (!"% +,-./) is significantly larger than the difference in residuals between the focal cell and one 461 
of its neighbors (!)* +,-./), i.e. !"%/!)* +,-./ > 1.  462 
D) Global spatial effects lead to similarity in RpsM protein levels and cell elongation rate. Global spatial 463 
effects were calculated as the difference between the total effects of spatial proximity (panel B) and the 464 
local spatial effects (panel C).  465 
A-D) Each point corresponds to a microcolony with 117-138 (mean=128) cells, points are horizontally 466 
offset. Thick horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines indicate the 467 
expected value under the null hypothesis (1 for panel A-C, 0 for panel D). Null hypothesis rejected with: 468 
*p<0.05, **p<0.01, ***p<0.001, t-test, n=10. Full data can be found in Figure 6 – Source Data 1.    469 

We observed significant positive correlations in both RpsM protein levels and cell elongation rate (Figure 470 
1–Figure Supplement 2). Overall metabolic activities thus appear to be spatially correlated. A large part of 471 
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this correlation is again due to the effects of shared lineage history (Figure 6A). However, even after 472 
correcting for the effects of lineage history, we observed that neighboring cells are similar in the protein 473 
level and promoter activity of rpsM and in cell elongation rate (Figure 6B). Neighboring cells are thus 474 
more similar in their metabolic activities than expected based on their relatedness.  475 

Spatial proximity leads to similarity in metabolic activities due to both global and local spatial effects 476 
(Figure 6CD). RpsM protein levels and cell elongation rate are both (weakly) correlated with the distance 477 
of a cell to the edge of the colony (mean r2=0.07 and 0.02, respectively, Figure 3–Figure Supplement 4). 478 
Interestingly, both increase towards the center of the colony, showing that cells in the colony center have 479 
higher metabolic activities than cells at the edge. These global effects significantly contribute to the 480 
similarity between neighboring cells (Figure 6D). After removing the global effects, we still observed that 481 
spatial proximity tends to cause similarity in rpsM expression dynamics and cell growth rate, though the 482 
effect is only significant for RpsM protein levels (Figure 6C). Together, these data show that metabolic 483 
activities are spatially correlated; these correlations are mostly driven by shared lineage history and global 484 
spatial effects. However, we also found evidence for local spatial effects in metabolic activities. This 485 
suggests that intercellular feedbacks can couple metabolic activity and cell growth between neighboring 486 
cells.  487 

Discussion  488 
We studied the expression dynamics of genes involved in a range of cellular activities in E. coli 489 
microcolonies and found highly non-random spatial gene expression patterns in all cases (Figure 1–490 
Figure Supplement 1). Using a newly developed statistical method (Figure 2) we were able to show that 491 
the observed positive spatial correlations in gene expression dynamics are the result of a combination of 492 
shared lineage history and global and local spatial effects (Figure 7A). 493 

Shared lineage history led to a similarity in protein levels and promoter activities for all studied traits 494 
(Figure 7B). Such lineage correlations have been reporter before and can easily be explained: in most 495 
cases proteins are partitioned equally between daughter cells at cell division (Robert et al. 2010; 496 
Hormoz, Desprat, and Shraiman 2015; Veening et al. 2008; Veening, Smits, and Kuipers 2008; Julou 497 
et al. 2013). With the exception of cases where cell division is asymmetric (or when proteins are present 498 
as a single copy at cell division) we thus expect shared lineage history to contribute towards positive 499 
spatial correlations. 500 

Global spatial effects generally also contribute towards positive spatial correlations, however we found 501 
that they only affected a subset of the studied traits (Figure 7C). These global effects are likely caused by 502 
emergent spatial gradients that are the result of the uptake, release, and diffusion of metabolites during 503 
population growth (Julou et al. 2013; Stewart and Franklin 2008; Flemming et al. 2016). Interestingly, 504 
cells in the colony center grew faster and had higher expression levels of rpsM. This shows that nutrients 505 
are not limiting growth in the colony center, but instead that higher densities stimulate growth (possibly 506 
due to the build-up of excreted, growth promoting, metabolites). Additionally, we observed higher protein 507 
levels of Colicin Ib in the colony center. This could either be due to increased competition for iron 508 
(reducing repression by Fur) or due to higher SOS-induction levels. Although recA transcription levels 509 
hardly varied with the distance to the colony edge (Figure 3–Figure Supplement 4 and 5), variation in its 510 
post-translational activation could still explain the higher cib expression levels in the colony center.   511 

After correcting for lineage history and global spatial effects we still observed significant effects of spatial 512 
proximity for RpsM protein levels and metA promoter activity (Figure 7C) and we found direct evidence 513 
for intercellular feedbacks in SOS-response (Figure 4). Together these results show that a cells 514 
phenotype can depend on that of its neighbors through intercellular feedbacks. This coupling could be 515 
the result either of a direct exchange of cellular components between cells (e.g. via nanotubes (Dubey 516 
and Ben-Yehuda 2011; Pande et al. 2015), pili (Hayes, Aoki, and Low 2010), vesicles (Schwechheimer 517 
and Kuehn 2015), or membrane fusion (Ducret et al. 2013)) or indirectly, by the conditioning of the local 518 
microenvironment. However, the molecular mechanisms behind these intercellular feedbacks are 519 
currently unknown and are likely pathway specific. 520 
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 521 
Figure 7. Causes of spatial correlations in phenotype.  522 
A) Spatial correlations in phenotype are the consequence of three major factors: shared lineage history, 523 
global spatial effects, and local spatial effects. The relative importance of these three factors differs 524 
between different pathways (see panels B and C). 525 
B) For each pathway the relative importance of lineage history ( !"%/!)* ) and spatial proximity ( !"#/!$% ) 526 
is shown for protein level and cell elongation rate (left) and promoter activity (right). In most cases lineage 527 
history is the dominant factor (note the different scaling of the axis).  528 
C) For each pathway the relative importance of global spatial effects ( !"%/!)* − !"%/!)* +,-./ ) and local 529 
spatial effects ( !"%/!)* +,-./ ) is shown for protein level and cell elongation rate (left) and promoter activity 530 
(right). 531 
B,C) Each point corresponds to the average value over 8-10 microcolonies; the data are identical to 532 
those shown in Figures 3, 5, and 6. Error bars indicate 95% confidence intervals. The green shaded 533 
region (upper right region) indicates that both factors contribute to similarity in phenotype; the red 534 
shaded region (bottom left) indicates that both factors contribute to dissimilarity in phenotype; in the 535 
other two regions (grey shading) the two factors have opposing effects.  536 

Spatial correlations in expression levels can potentially have functional consequences, for example by 537 
allowing cells to coordinate their activities with their neighbors. We hypothesized that positive correlations 538 
could be beneficial for excreted compounds, while negative correlations might be of benefit in anabolism. 539 
Consistent with the first hypothesis, we observed strong positive spatial correlations in colicin Ib 540 
expression levels; however, we did not observe negative correlations for any of the investigated amino 541 
acid synthesis pathways. Although we did observe spatial dissimilarity in metA promoter activity, the 542 
stronger converging effect of lineage history resulted in an overall positive correlation in expression levels. 543 
Nonetheless, our data does not completely rule out the possibility of a phenotypic division of labor in 544 
amino acid biosynthesis. The activity of many metabolic pathways is at least partly controlled by 545 
posttranslational regulation (Kochanowski, Sauer, and Noor 2015). Although transcriptional reporters 546 
can give us information about the overall activities of a cell, they cannot give any insight into the dynamic 547 
posttranslational adjustments of metabolic fluxes. For example, many amino acid synthesis pathways are 548 
regulated by end product inhibition (Chubukov et al. 2014). Negative correlations in amino acid synthesis 549 
fluxes could thus be present without corresponding differences at the transcriptional level.  550 

Intercellular feedbacks could also be important in the context of collective information processing. 551 
Inferences about the state of the environments are fundamentally noisy. One way to increase the 552 
accuracy is by pooling measurements between a group of neighboring cells through intercellular 553 
feedbacks (Hein et al. 2015; SIMONS 2004; Berdahl et al. 2013; Popat et al. 2014). Furthermore, in 554 
cases where there is heterogeneity in either environmental cues (e.g. in case of spatial gradients) or in the 555 
sensitivity of cells to these cues (e.g. if cells differ in receptor abundances), this pooling of information 556 
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could allow cells to gather better information about the environment than they can in isolation (Hein et al. 557 
2015; Berdahl et al. 2013). We expect such processes to especially be of benefit in the context of stress 558 
response system. A cell’s survival chances might increase if it preemptively upregulates its stress 559 
response system if its neighbor is stressed, even if it is not yet exposed to any stressor itself. Consistent 560 
with this idea we found evidence for direct intercellular feedbacks in SOS response. Whether this does 561 
indeed provide a benefit, and whether such feedbacks apply more generally to stress response systems 562 
are interesting directions for future work.  563 

The functional consequences of spatial correlations in phenotypes do not directly depend on the 564 
processes that give rise these correlations. Shared lineage history, global spatial effects, and positive 565 
intercellular feedbacks could, for example, all lead to similar spatial gene expression patterns. However, 566 
there are important differences between these processes that can affect functionality. The relative 567 
positioning of a cell and its relatives is largely determined by the physics of cell growth (Nadell et al. 568 
2013). Likewise, global spatial effects will largely be determined by the physical and chemical properties 569 
of the environment (Stewart and Franklin 2008). Both these processes are thus beyond the control of 570 
the cell and, importantly, can result in very different spatial patterns depending on environmental 571 
conditions. In contrast, intercellular feedbacks would allow cells to coordinate activities with their 572 
neighbors irrespective of the environment. This allows for more robust and consistent pattern formation. 573 
Furthermore, intercellular feedbacks allow for more flexibility as it can give rise to both positive and 574 
negative correlations and could even operate between genetically unrelated cells. Finally, intercellular 575 
feedbacks directly link the genotype of a cell to the spatial patterns of gene-expression at the colony 576 
level, potentially allowing for these patterns to evolve by natural selection. 577 

Our most important conclusion is that the phenotype of a cell depends to a large extend on the 578 
population context in which it grows. Our work thereby joins a growing number of recent studies 579 
showing that a large degree of phenotypic variation is not random, but rather determined by a cells 580 
lineage history, location in the population and/or the activities of its neighbors (Snijder and Pelkmans 581 
2011; Symmons and Raj 2016). We found that population context affected a number of diverse 582 
pathways, suggesting that it could be equally important in other pathways, both in E. coli and in other 583 
microorganisms. Furthermore, we expect the same principles to hold in more complex 3D-biofilms. If we 584 
want to understand the activities of individual cells in such systems, or the functioning of the population 585 
as a whole, it is thus essential to learn more about the feedbacks between a cell and the surrounding 586 
population. 587 

Methods 588 

Strains and reporter plasmids 589 
All experiments were done using E. coli MG1655 (see Supplementary File 1-Table 1 for a list of strains 590 
and plasmids used in this study). Gene expression dynamics were followed using transcriptional 591 
reporters. The promoter region of the gene of interest was inserted in front of a gfpmut2 green 592 
fluorescent protein. For trpL, metA, pheL, and rpsM we used reporters based on the pUA66/pUA139 593 
low copy number plasmids (Zaslaver et al. 2006). For recA we used a newly constructed dual reporter 594 
plasmid, pSV66-recA-rpsM, which is based on the low copy number plasmid pUA139 (Zaslaver et al. 595 
2006). This plasmid contains a GFPmut2 transcriptional reporter for recA and an additional turboRFP 596 
(red fluorescent protein) transcriptional reporter for rpsM, allowing for the independent measurement of 597 
two promoters within the same cell (see Supplementary File 2 for construction details). For cib we used 598 
the medium copy number plasmid pM1437 with a pBR322 background (Nedialkova, Denzler, Koeppel, 599 
Diehl, Ring, Wille, Gerlach, and Stecher 2014a; Spriewald et al. 2015). MG1655 does not naturally 600 
contain the cib operon in its chromosome. To measure Colicin Ib expression dynamics, we therefore 601 
transformed TB60 (MG1655 containing a chromosomal kanR cassette) with the p2-camR plasmid that is 602 
based on the natural occurring Salmonella pColB9 plasmid, which contains, among others, the cib 603 
operon (Stecher et al. 2012). We subsequently transformed the same strain with the pM1437 plasmid 604 
containing the cib transcriptional reporter. Additionally, we used the high copy number plasmids pGFP 605 
and pRFP with inducible green and red fluorescent proteins under control of the lac promoter to check 606 
for fluorescent bleed-through and halos (see Supplementary File 1-Table 1).  607 

Strain with inducible SOS response 608 
To test for interactions in SOS response we constructed a plasmid, pSJB18, with which SOS response 609 
can be chemically induced. To do so, the nuclease domain of colicin E2 (colE2) was cloned downstream 610 
of the Ptet tetracycline inducible promoter of the pMG-Ptet vector (see Supplementary File 2 for 611 
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construction details). Upon induction, the nuclease activity results in DNA breaks, which in turn activates 612 
the cell’s SOS response. We made sure that the nuclease produced in a cell could not directly affect 613 
neighboring cells in two ways: i) pSJB18 does not contain the lysis gene that is part of the full colE2 614 
operon; as colicins are released during cell lysis this greatly reduces the amount of extracellular nuclease 615 
(Cascales et al. 2007).  ii) pSJB18 only contains the C-terminal nuclease domain of the colE2; the N-616 
terminal and central domains that are required for Colicin E2 to enter a target cells (by mediating receptor 617 
binding and membrane translocation, respectively (Cascales et al. 2007)) were removed. A second 618 
plasmid, pSJB19, was constructed. This plasmid is identical to pSJB18, except that it also contain the 619 
coding sequence for the Colicin E2 immunity protein. Expression of this immunity protein inhibits the 620 
nuclease activity of Colicin E2 (see Supplementary File 2 for construction details). 621 

We confirmed the functionality of the construct by co-transforming MG1655 with pSJB18 and pUA139-622 
recA (Zaslaver et al. 2006). The latter contains a GFP transcriptional reporter for the SOS-response gene 623 
recA. Expression of the nuclease was induced by adding 100ng/ml of the non-toxic tetracycline analog 624 
anhydrotetracycline (AHT, Fluka, Buchs, Switzerland). Using flow cytometry and single-cell microscopy 625 
we confirmed that SOS-response activity (measured as recA expression levels) increased when the 626 
inducer was added (Figure 4-Figure Supplement 1).  627 

Media and growth conditions 628 
In all cases cultures were started from a single colony taken from a LB-agar plate and grown overnight at 629 
37°C in a shaker incubator. Subsequently the cultures were diluted 100 to 1000 fold and grown until 630 
mid-exponential phase. Cells containing reporters for cib, recA, and rpsM were grown in LB media 631 
(Sigma-Aldrich, Buchs, Switzerland, or Applichem, Darmstadt, Germany). For these reporters, 632 
microscopy was done on agar pads consisting of LB with 1.5% agar (Sigma-Aldrich or Applichem). Cells 633 
containing reporters for metA, pheL and trpL were grown overnight in M9 medium (47.76 mM Na2HPO4, 634 
22.04 mM KH2PO4, 8.56 mM NaCl and 18.69 mM NH4Cl) supplemented with 1mM MgSO4, 0.1 mM 635 
CaCl2, 0.4% Glucose (all from Sigma-Aldrich), and 5% LB. Diluted cultures were grown in M9 medium 636 
supplemented with 1mM MgSO4, 0.1 mM CaCl2 and 0.4% Glucose. Microscopy was done on agar pads 637 
consisting of M9 salts with 1.5% agar and supplemented with 1mM MgSO4, 0.1 mM CaCl2 and 0.4% 638 
Glucose.  639 

Plasmid maintenance was insured by adding the appropriate antibiotic to the culture medium and agar 640 
pads: 50µg/ml ampicillin (pM1437, pSJB18, pGFP, pRFP, Applichem), 50µg/ml kanamycin (pUA66, 641 
pUA139, pSV66, Sigma-Aldrich) and 15µg/ml chloramphenicol (p2-camR, Sigma-Aldrich). For 642 
experiments with the cib reporter we added additionally 0.1mM DTPA (diethylenetriaminepentaacetic 643 
acid, Fluka) to the medium of the diluted cultures and to the agar pads to chelate free iron. For the SOS 644 
interaction experiments 100ng/ml of anhydrotetracycline (AHT) was added to the agar pads to induce 645 
the nuclease in pSJB18. For these experiments, no antibiotics were added to the agar pads as the two 646 
strains (MG1655+pSJB18 and MG1655+pSV66-recA-rpsM) carry different resistance genes. As these 647 
experiments only lasted 1h, we expect plasmid loss to be negligible. For experiment using pGFP or pRFP 648 
we added 1mM IPTG (Isopropyl β-D-1-thiogalactopyranoside, Promega, Madison, Wisconsin) to the 649 
liquid cultures and agar pads to induce expression of the fluorescent proteins. 650 

Agar pad preparation 651 
Agar pads were prepared by adding the appropriate supplements to molten aliquots of LB or M9 agar 652 
and adding 250µl of this mixture to the well of hollow-well microscope slides (Karl Hecht GmbH, 653 
Sondheim, Germany). The wells were sealed with a cover glass and dried at room temperature for 20 to 654 
30min. Subsequently the cover glass was removed and the agar was cut into a square of approximately 655 
5x5mm in the center of the well. 0.5 to 2µl of prepared cell suspension (see below) was added to the 656 
center of the pad and left to dry. Finally, the pad was sealed by adding a new cover glass. An air-tight 657 
seal was insured by adding a thin layer of lubricating grease (Glisseal, Borer, Zuchwil, Switzerland) 658 
between the two glass surfaces. The agar pad only occupies the central part of the well; the remaining 659 
area contains air to insure that sufficient oxygen is present for aerobic growth.  660 

Before inoculation the optical density at 600nm (OD600) of the cultures was measured. The cultures 661 
were diluted to the desired OD600 (of 0.001 to 0.01) before adding 0.5 to 2µl of cells to the pad. For the 662 
SOS interaction experiment the two strains were first washed to remove antibiotics from the growth 663 
medium. Subsequently the strains were mixed in approximately a 1:1 ratio and added to the agar pad.  664 

 665 
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Microscopy 666 
Time-lapse microscopy was done using fully-automated Olympus IX81 inverted microscopes (Olympus, 667 
Tokyo, Japan). Imaging was done using a 100X NA1.3 oil objective (Olympus) and either a F-View II CCD 668 
camera (for cib, Olympus Soft Imaging Solutions, Münster, Germany) or an ORCA-flash 4.0 v2 sCMOS 669 
camera (all other data, Hamamatsu, Hamamatsu, Japan). Fluorescent imaging was done using a X-670 
Cite120 120 Watt high pressure metal halide arc lamp (Lumen Dynamics, Mississauga, Canada) and 671 
Chroma 49000 series fluorescent filter sets (N49002 for GFP and N49008 for RFP, Chroma, Bellows 672 
Falls, Vermont). Focus was maintained using the Olympus Z-drift compensation system and the entire 673 
setup was controlled with either the Olympus CellM or CellSens software. The sample was maintained at 674 
37°C by a microscope incubator (Life imaging services, Basel, Switzerland). Images were taken every 3 675 
(rpsM, elongation rate), 5 (cib) or 7.5 (recA, trpL, pheA, metA) minutes for several hours.   676 

Selection and analysis of microcolonies 677 
Fiji (Schindelin et al. 2012) was used for data visualization, image cropping and file-type conversions. All 678 
other processing was done using Matlab (version 2013 and newer, MathWorks, Natick, Massachusetts). 679 
For each reporter we analyzed 8 to 10 microcolonies, we decided on this sample size based on 680 
preliminary experiments with a colicin Ib reporter strain. Each micro colony is considered to be an 681 
independent biological replicate. From each agar pad we selected 1 to 6 (median=2) positions that 682 
contained an isolated micro colony of sufficient size (>128 cells before cell overlap occurs) and good 683 
optical quality. We manually determined the time range where cells were present in a single layer and 684 
cropped the images to only contain the area occupied by the colony. 685 

Subsequently Schnitzcells 1.1 (Young et al. 2011) was used to segment and track cells. For cib, 686 
segmentation was done on phase contrast images. For trpL, metA, pheA, and rpsM segmentation was 687 
done on the GFP fluorescent images. The reporter plasmid for recA also contained a RFP reporter for 688 
rpsM, here segmentation was done on the RFP fluorescent images. As a last step custom Matlab code 689 
was used to extract fluorescent and geometrical properties of each cell (see fluorescent image 690 
processing and cell length determination below).  691 

Fluorescent image processing 692 
There are a number of optical artifacts that could cause neighboring cells to have similar fluorescent 693 
intensity levels, it is thus essential to correct for these artifacts before calculating the spatial similarity. 694 
Specifically, we applied the following corrections (see also Figure 1–Figure Supplement 1): 695 

• Shading correction. We corrected for inhomogeneities in the illumination field using a shading image. 696 
This image gives the normalized intensity of the incoming light for each pixel in the image. 697 
Subsequently we obtained the shading corrected image by dividing the intensity in each pixel of the 698 
captured fluorescent image by the intensity in the corresponding pixel of the shading image. 699 

• Deconvolution. Diffraction will cause the light of a point source to be spread across several pixels. 700 
Bright cells will thus generate a “halo” that increases the fluorescent intensity of its neighbors. We 701 
corrected for diffraction by deconvolving the shading corrected image with the experimentally 702 
measured point spread function (PSF) of the microscope (Kiviet et al. 2014). Deconvolution was 703 
done using the Matlab function “deconvlucy”, which uses the Lucy-Richardson method. We found 704 
that the accuracy of the deconvolution correction depends critically on the size of the PSF that is 705 
used (Figure 1–Figure Supplement 3B). When the size of the PSF is too small (e.g. 13x13 pixels) the 706 
halos are not completely removed, increasing fluorescent intensities in neighbors of bright cells. If the 707 
PSF is too large (e.g. 30x30 pixels) a “dark halo” artifact is formed, decreasing fluorescent intensities 708 
in neighbors of bright cells. We calibrated the required size of the PSF by mixing unlabeled wild type 709 
cells with cells carrying a high copy number plasmid with an inducible green fluorescent protein. We 710 
then selected the size of the PSF (i.e. 24x24 pixels) for which median fluorescent intensity in 711 
unlabeled cells neighboring GFP labeled cells are the same as for isolated unlabeled cells (Figure 1–712 
Figure Supplement 3B,C). Furthermore, we confirmed that our statistical analysis of the effects of 713 
spatial proximity is robust to small changes in the size of the PSF (Figure 3–Figure Supplement 3).  714 

• Background correction. We performed a background correction to compensate for temporal 715 
changes in the incoming light intensity. For each pixel the background corrected intensity (Icorr) was 716 
calculated as: Icorr = (I-Dark)/(Bg-Dark), where I is the pixel intensity after shading correction and 717 
deconvolution, Bg is the median intensity of all background pixels (i.e. all pixels that are not part of 718 
any segmented cell) and Dark is the median pixel intensity for the dark image (i.e. an image taken 719 
when no light reaches the camera taken with the same exposure settings). 720 
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• Cell center intensity. As sell segmentation is imperfect, some pixels at the periphery will be 721 
misclassified. To increase robustness to such errors we calculated the mean fluorescent intensity 722 
only over the central area of the cell. The central area is found by eroding (i.e. shrinking) the cell 723 
segmentation mask on all sides with one quarter of the median cell width (the median cell width was 724 
determined over all cells in the microcolony). For most cells the intensity was thus be determined for 725 
the central 50%. If erosion removed all pixels in the cell mask, we progressively reduced the number 726 
of outer pixels we removed until at least a single row of pixels remained in the cell center. 727 

• Fluorescence bleed-through. The recA reporter strain contained a second RFP reporter for rpsM. We 728 
confirmed that there is no fluorescence bleed-through from the RFP to the GFP channel. To do so, 729 
we mixed unlabeled cells with cells carrying a high copy number plasmid with inducible red 730 
fluorescent protein. The distribution of fluorescent intensities in the GFP channel in unlabeled cells is 731 
identical to intensities in the GFP channel for the RFP labeled cells. This shows that emission from 732 
the red fluorescent protein do not affect measured intensities in the GFP channel (Figure 1–Figure 733 
Supplement 3A). 734 

After performing all corrections, we obtained for each cell the mean fluorescent intensity, 3 4 , which is 735 
proportional to the concentration of GFP molecules in the cell and hence to the concentration of the 736 
gene of interest. Throughout the text we use protein level to refer to the mean fluorescent intensity. 737 

Cell length determination 738 
Cell length was determined following the procedure described in (Kiviet et al. 2014). In short: the cell 739 
centerline was determined by fitting the cells mask with a 3th degree polynomial (5(7)). To find the cell 740 
pole positions we calculated the silhouette proximity (sum of the squared distance to closest 25 pixels in 741 
cell mask) along the centerline. This measure is constant in the cell center, but increases sharply at the 742 
poles; the position of the cell poles was taken as the point along the centerline where the proximity 743 
silhouette reached 110% of the average value in the cell center. The cell length was subsequently 744 
calculated by numerical integration of 1 + 5:(7);<=

<>
	@7, where 5: 7  is the derivative of 5(7) and 7A 745 

and 7B are the positions of the cell pole. 746 

Cell elongation rate 747 
Cell elongation rates (r) were calculated for the microcolonies with a rpsM transcriptional reporter by 748 
fitting the exponential curve C 4 = C(0) ∙ G+∙H to the cell length over time. The fitting was done using a 749 
linear fit on the log transformed cell lengths over a sliding time window of 7 time-points (21 minutes). 750 
When the time window exceeded the life time of a cell, it was extended by summing the cell lengths of 751 
the two daughter cells or by taking a fraction of CA/(CA + CA,-.-H,+) of the mother cell length. Here, CA	and 752 
CA,-.-H,+	are the lengths of a cell and its sister at their birth. This fraction takes the effects of asymmetries 753 
at cell division into account.  754 

Promoter activity  755 
The promoter activity (JK) is estimated as the rate of change in the total fluorescent intensity of a cell: 756 
JK 4 = /

/H
3HLH(4). The measurement of total fluorescent intensity as the summed intensity over all pixels 757 

in the cell mask is very sensitive to segmentation inaccuracies. To get a more accurate estimate of 758 
promoter activities we thus estimate the total fluorescent intensity by multiplying the mean fluorescent 759 
intensity of a cell, 3(4)	with its length, C(4); as the cell width is constant through the lifetime of a cell, this 760 
quantity is proportional to the total fluorescent intensity of a cell: 3HLH 4 ∝ 3 4 ∙ C 4 = 3(4). The promoter 761 
activity is then estimated as the slope of a linear fit of this quantity over a window of 5 time points: 762 
JK 4 ∝ /

/H
3(4). When the time window exceeded the life time of a cell, it was extended by summing the 763 

total fluorescent intensities of the two daughter cells or by taking a fraction 3A/(3A + 3-.-H,+L ) of the total 764 
intensity of the mother cell.Here, 3A and 3-.-H,+L 	are the total fluorescent intensities of a cell and its sister at 765 
their birth. This fraction takes the effects of asymmetries at cell division into account.  766 

Cell geometric and neighborhood properties 767 
The cell width and its position were determined using the Matlab regionprops function and correspond to 768 
the minor-axis length of a fitted ellipse and the coordinates of the center of mass, respectively. The 769 
neighbors of a cell were found by expanding the cell mask in all directions with ¾ of the median cell 770 
width; all cells that overlap with this expanded area are classified as neighbors. The distance of a cell to 771 
the colony edge was determined as the minimum Euclidean distance between pixels inside the cell mask 772 
and pixels that are part of the colony boundary.  773 
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 774 

Neighborhood similarity statistic 775 
We quantitatively investigated the apparent non-randomness of expression patterns in the microcolonies 776 
using a randomization procedure. Cells in the colony were classified into two groups depending on 777 
whether their mean fluorescent intensity was above or below the median intensity in the microcolony. For 778 
each cell in the colony we calculated the fraction of neighboring cells that was classified in the same 779 
group and we computed the mean over all cells (red bar, Figure 1D, –Figure Supplement 2). We then 780 
randomly permuted intensities between cells in the colony and recalculated the mean fraction of 781 
neighbors classified in the same group. This procedure was repeated 104 times obtaining the distribution 782 
shown in Figure 1D. p-values were calculated by taking the fraction of randomized samples that have a 783 
higher mean fraction of neighbors of the same type than the non-randomized data.  784 

Statistic for effect of shared lineage history  785 
We tested for the effect of shared lineage history by quantifying how similar a cell is to its closest relative 786 
after correcting for the effects of spatial proximity. We compared the phenotypes within a group of three 787 
cells: a focal cell, its closest relative, and an equidistant cell. The closest relative will typically be a cell’s 788 
sister, however if the sister has already divided we selected one of its offspring (e.g. a niece of the focal 789 
cell) at random. The equidistant cell is a cell that directly neighbors the closest relative and that has a 790 
center-to-center distance to the focal cell that is the most similar to that of the closest relative.  791 

We then calculated the difference in phenotype between the focal cell i and its closest relative (NO.): 792 
!$%. = P. − P$%Q 	and between the focal cell i and its equidistant cell (RS.): !"#. = P. − P"#Q , where P., 793 
P$%Q, and P"#Q are the phenotypes (i.e. protein levels, promoter activities, or elongation rates) of the focal 794 
cell, closest relative, and equidistant cell, respectively. Finally, we calculated the effect of shared lineage 795 
history by taking the ratio of these two phenotypic distances: median !"#. !$%. ,	where the median is 796 
taken over all cells in the colony.  797 

Statistic for the effect of spatial proximity 798 
We tested for the effect of spatial proximity by quantifying how similar a cell is to its neighbors after 799 
correcting for the effects of shared lineage history. We compared the phenotypes within a group of three 800 
cells: a focal cell, one of its neighbors, and an equally-related cell. We defined a cell’s neighbors as all 801 
cells that are directly adjacent (within ¾ cell width) to the focal cell (mean number of neighbors=5,95% 802 
range=[3,8]). For each neighbor we found a group of equally-related cells, these are cells that have the 803 
same relatedness to the focal cell as the neighbor, but that are further away in space (mean number of 804 
equally-related cells=20,95% range=[0,70]). From this group we selected the most distant equally- 805 
related cell, which is the equally-related cell with the largest Euclidean distance to the focal cell. 806 

We then calculated the difference in phenotype between the focal cell i and its neighbor j: !)*
.,Z = P. − PZ  807 

and between the focal cell and the most distant equally-related cell (RO.,Z): !"%
.,Z = P. − P"%Q,[ , where P., 808 

PZ, and P"%Q,[ are the phenotypes (i.e. protein levels, promoter activities, or elongation rates) of focal cell i 809 
its neighbor j, and their most distant equally-related cell. Finally, we calculated the effect of spatial 810 
proximity by taking the ratio of these two phenotypic distances: median !"%

.,Z !)*
.,Z ,	where the median is 811 

taken over all neighbor-focal cell pairs in the colony.  812 

We also tested whether our choice of equally-related cell affected our conclusions (Figure 3–Figure 813 
Supplement 1). We recalculated the statistics using the median phenotypic distance between the focal 814 
cell and all equally-related cells: !\,/("%)

.,Z = median P. − P"%Q,[] , where P"%Q,[]  is the phenotype of the kth 815 
equally-related cell of neighbor j of focal cell i and the median is taken over all equally-related cells. 816 
Subsequently we calculated the effect of spatial proximity as: median !\,/("%)

.,Z !)*
.,Z ,	where the median 817 

is taken over all neighbor-focal cell pairs in the colony. 818 

Statistic for local spatial effects 819 
The phenotype of a cell can vary systematically within the colony, we corrected for such global effects 820 
using a linear regression of a cell’s phenotype (P.) with its distance to the edge of the colony (@.): P. =821 
^ + _ ⋅ @., where ^ and _ are constants. The strength of local spatial effects could then be estimated by 822 
correcting the observed phenotype of a cell (P.La-) for the global trend by calculating the residuals of the 823 
regression: P.+,-./ = P.

La- − (^ + _ ⋅ @.). We then calculated the ratio of phenotypic differences 824 
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(median !"%
.,Z !)*

.,Z
+,-./

) as described above, where the phenotype of a cell (P.) was replaced with the 825 
residual of the regression (P.+,-./). 826 

Statistic for global spatial effects 827 
The importance of global spatial effects was quantified by calculating to what extend the effect of spatial 828 
proximity is reduced when we correct for the systematic variation in phenotype. Specifically, we defined 829 
the global spatial effect as: median !"%

.,Z !)*
.,Z -median !"%

.,Z !)*
.,Z

+,-./
, whµere the first term describes the 830 

total effect of spatial proximity and the second term describes the local spatial effects.  831 
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Figure Supplements  1 

 2 
Figure 1–Figure Supplement 1. Image processing pipeline. 3 
A) Phase contrast images were segmented using Schnitzcells (Young et al. 2011) to find the cell masks 4 
(right). For some reporters, segmentation was done on fluorescent images (see Methods), 5 
B) GFP images (upper left) were corrected for inhomogeneities in the illumination field (shading 6 
correction), diffraction (deconvolution), and background fluorescence (background correction), the 7 
resulting corrected image is shown (upper right). The mean fluorescence intensity was determined in the 8 
cell center only (lower left) and assigned to the entire cell mask (lower right). The figure shows an 9 
example of a microcolony with a transcriptional reporter for cib. 10 
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 11 
Figure 1–Figure Supplement 2. Neighboring cells have similar expression levels. 12 
For all measured phenotypes (except trpL promoter activity) we observed that neighbors are significantly 13 
more similar than can be expected by chance (p<10-6, except for: elongation rate (p=3·10-5), metA 14 
promoter activity (p=3·10-4), and trpL promoter activity (p=0.05), Chi-squared test on combined p-Values 15 
using Fischer’s method).   16 
Spatial correlations in phenotypes were quantified using a randomization test: cells were grouped into 17 
two clusters (intensity above or below median intensity). Each cell was compared to all its neighbors and 18 
the percentage of neighbors of the same cell type was calculated (red line). This procedure was repeated 19 
104 times after randomly permuting measured intensities among all cells (blue distribution). Each column 20 
shows 8 to 10 replicate microcolonies of 117-138 (mean=128) cells for each reporter. Data is shown for 21 
three phenotypes: protein level (upper left), elongation rate (upper right), and promoter activity (bottom). 22 
*p<0.05, **p<0.01, ***p<0.001, randomization test.  23 
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 24 
Figure 1–Figure Supplement 3. Correcting for fluorescence halos and bleed-through 25 
A) Image correction fully compensates for fluorescence halos. Cells expressing GFP (MG1655+pGFP) 26 
were mixed with non-fluorescent wild-type cells (MG1655). There is no significant difference in GFP 27 
intensity between isolated wild type cells (WT, blue, median=1.04, interquartile range=(0.97,1.08), 28 
n=1118) and wild type cells neighboring a GFP labeled cell (WT-GFP, red, med=1.02, IQR=(0.89,1.13), 29 
n=206; p=0.47, Wilcoxon rank sum test). For this figure a point spread function of 24x24 pixels was 30 
used (see panel B). 31 
B) The radius of the point spread function (PSF) strongly affects the accuracy of the deconvolution 32 
routine. When the radius is too small (<24) the deconvolution is not strong enough to remove halos from 33 
bright cells: i.e. the corrected GFP intensity in WT cells next to GFP labeled cells (red curve) is higher 34 
than the intensity in isolated WT cells (blue curve). When the radius of the PSF is too large (>24) artifacts 35 
are introduced causing dark halos to appear around bright cells, thus leading to an over correction: i.e. 36 
the corrected GFP intensity in WT cells next to GFP labeled cell (red curve) is lower than the intensity in 37 
isolated WT cells (blue curve). When a radius of 24 pixels is used, a close to perfect correction is 38 
obtained (see panel A). All images are corrected using a PSF of this size. Uncorr: gfp intensities for 39 
images that are only background corrected; no shading correction or deconvolution has been 40 
performed. Points: median values, dark shaded region: 25-75 percentile range, light shaded region: 2.5-41 
97.5% range.  42 
C) There is no detectable fluorescence bleed-through from the RFP channel into the GFP channel. Cells 43 
expressing RFP (MG1655+pRFP) were mixed with non-fluorescent wild-type cells (MG1655). There is no 44 
significant difference in corrected GFP intensities for wild type cells (WT, blue, med=1.06, 45 
IQR=(1.00,1.10), n=781) and for RFP labeled cells (RFP, red, med=1.05, IQR=(1.00,1.10), n=517; 46 
p=0.51, Wilcoxon rank sum test). 47 
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 48 
Figure 3–Figure Supplement 1. Robustness of statistic to choice of equally-related cells. 49 
Same as Figure 3B-D, except that all equally related cells are considered instead of only the most distant 50 
one. Specifically, the median phenotypic distance to all equally related cells is used (see Methods).  51 
Each point corresponds to a microcolony with 117-138 (mean=128) cells, points are horizontally offset. 52 
Thick horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines indicate the 53 
expected value under the null hypothesis (1 for panel A-B, 0 for panel C). Null hypothesis rejected with: 54 
*p<0.05, **p<0.01, ***p<0.001, t-test, n=9. Full data can be found in Figure 3 – Figure Supplement 1 – 55 
Source Data 1.  56 

 57 

 58 
Figure 3–Figure Supplement 2. Robustness of statistic to time of analysis. 59 
Same as Figure 3A-D, except that the analysis is repeated for 5 different colony sizes.  60 
Each point corresponds to a microcolony of the indicated size, points are horizontally offset. Thick 61 
horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines indicate the expected 62 
value under the null hypothesis (1 for panel A-C, 0 for panel D). Null hypothesis rejected with: *p<0.05, 63 
**p<0.01, ***p<0.001, t-test, n=9. Full data can be found in Figure 3 – Figure Supplement 2 – Source 64 
Data 1. 65 
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 66 
Figure 3–Figure Supplement 3. Robustness of statistic to variation in deconvolution procedure.   67 
Same as Figure 3A-D, except that the statistics were calculated for uncorrected intensities (uc) and for 68 
deconvoluted data where point spread functions (PSF) of various sizes were used (see also Figure 1–69 
Figure Supplement 3B). PSF radii of 13 (strong under correction), 22 (mild under correction), 24 (optimal 70 
correction), 26 (mild over correction) and 30 pixels (strong over correction) were used. The effect of 71 
spatial proximity is systematically over estimated for uncorrected and strongly under corrected data (PSF 72 
radius=13), but is robust to mild under and over correction (PSF radius between 24 and 30). 73 
Uncorrected intensities were calculated from images that are background corrected, but where no 74 
shading correction or deconvolution has been applied.  75 
Each point corresponds to a microcolony with 117-138 (mean=128) cells, points are horizontally offset. 76 
Thick horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines indicate the 77 
expected value under the null hypothesis (1 for panel A-C, 0 for panel D). Null hypothesis rejected with: 78 
*p<0.05, **p<0.01, ***p<0.001, t-test, n=9. Full data can be found in Figure 3 – Figure Supplement 3 – 79 
Source Data 1. 80 
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 81 
Figure 3–Figure Supplement 4. Dependence of reporter expression dynamics on position in 82 
colony. 83 
The dependence of protein level, elongation rate, and promotor activity on the position of a cell in the 84 
colony. A) R-square value of a linear regression of normalized phenotype (i.e. protein level, elongation 85 
rate, or promoter activity) with the distance of a cell to the colony edge. Each point corresponds to a 86 
microcolony with 117-138 (mean=128) cells, points are horizontally offset. Thick horizontal lines indicate 87 
median value. B) Slope (1/mm) of a linear regression of normalized phenotype with the distance of a cell 88 
to the colony edge. Each point corresponds to a microcolony with 117-138 (mean=128) cells, points are 89 
horizontally offset. Thick horizontal lines indicate median value. Dashed lines indicate a slope of 0. 90 
Median slope significantly different from zero with: *p<0.05, **p<0.01, Wilcoxon rank sum test, n=9, 91 
except for trpL (n=8) and rpsM (n=10).C) Normalized phenotype as function of the distance of a cell to 92 
the colony edge. Each point corresponds to a single cell. Data for 8 to 10 microcolonies are pooled 93 
together. The red line shows a linear fit to the data. In all cases, normalization is done by dividing the 94 
phenotype of a cell by the mean value in the colony. 95 
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 96 
Figure 3–Figure Supplement 5. Expression dynamics of recA. 97 
Same as Figure 3, but for the expression dynamics of the SOS response gene recA. Spatial correlations 98 
in the protein level and promoter activity of recA are solely due to shared lineage history (panel A), spatial 99 
proximity has no significant effect (panel B).  100 
Each point corresponds to a microcolony with 117-138 (mean=128) cells, points are horizontally offset. 101 
Thick horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines indicate the 102 
expected value under the null hypothesis (1 for panel A-C, 0 for panel D). Null hypothesis rejected with: 103 
*p<0.05, **p<0.01, ***p<0.001, t-test, n=9. Full data can be found in Figure 3 – Figure Supplement 5 – 104 
Source Data 1.  105 
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 106 
Figure 4–Figure Supplement 1. Inducible SOS response.   107 
Histogram of log transformed GFP intensities measured with flow cytometry in uninduced conditions (left) 108 
and induced condition (100ng/ml AHT or 0.5µg/ml mitomycin C, right). The expression profiles are 109 
shown for 4 strains: pSJB18+pUA139-recA (red): containing an inducible nuclease and a GFP 110 
transcriptional reporter for recA; note that recA expression levels increase for a small fraction of cells in 111 
the presence of the AHT inducer. pSJB19+pUA139-recA (green): same as pSJB18, except that the 112 
plasmid also contains the Colicin E2 immunity protein that prevents nuclease activity inside the cell; note 113 
that recA expression levels do not increase in the presence of AHT. pMG-pTet (purple): cell with GFP 114 
under control of the Ptet promoter; note that all cells have increased GFP levels in the presence of AHT. 115 
pUA139-recA (grey): cell with GFP transcriptional reporter for recA where SOS response was induced 116 
by adding 0.5µg/ml mitomycin C (mitoC) to the culture medium; note that all cells have high levels of 117 
recA expression. 118 
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Supplementary File 1–Table 1.  1 

Table 1. List of plasmids used in this study. †:pM1437 and p2-camR were co-transformed into 2 
MG1655 kanR. 3 

Name Carrier 
strain 

Genotype Description Source 

pM1437†  MG1655 
kanR (TB60) 

pBR322-derivative, Pcib-
gfpmut2, ampR 

colicin Ib transcriptional 
reporter, used together with 
p2-camR 

(Nedialkova 
et al. 2014) 

p2-camR† MG1655 
KanR (TB60) 

Salmonella enterica serovar 
Typhimurium plasmid pColB9, 
camR 

Contains colicin Ib operon, 
used together with pM1437 

(Stecher et 
al. 2012) 

pUA139-recA MG1655 pUA139 derivative, PrecA-
gfpmut2, kanR 

recA transcriptional reporter (Zaslaver et 
al. 2006) 

pUA139-trpL MG1655 pUA139 derivative, PtrpL-
gfpmut2, kanR 

trpL transcriptional reporter (Zaslaver et 
al. 2006) 

pUA139-rpsM MG1655 pUA139 derivative, PrpsM-
gfpmut2, kanR 

rpsM transcriptional 
reporter 

(Zaslaver et 
al. 2006) 

pUA66-metA MG1655 pUA66 derivative, PmetA-
gfpmut2, kanR 

metA transcriptional 
reporter 

(Zaslaver et 
al. 2006) 

pUA66-pheA MG1655 pUA66 derivative, PpheA-
gfpmut2, kanR 

pheA transcriptional 
reporter 

(Zaslaver et 
al. 2006) 

pSV66-recA-
rpsM 

MG1655 pUA139 derivative, PrecA-
gfpmut2, PrpsM-turboRFP, 
kanR 

recA/rpsM dual 
transcriptional reporter 

This study 

pGFP MG1655 pQE derivative, Plac-gfpmut2, 
ampR 

IPTG inducible gfp Lab strain- 
collection  

pRFP MG1655 pQE derivative, Plac-mcherry, 
ampR 

IPTG inducible rfp Lab strain- 
collection  

pSJB18 MG1655 
nalR smR 

pMG-Ptet derivative, Ptet-
cea(nuclease domain), ampR 

Tet inducible nuclease 
domain of colicin E2 

This study 

pSJB19 MG1655 
nalR smR 

pMG-Ptet derivative, Ptet-
cea(nuclease domain)-cei, 
ampR 

Tet inducible nuclease 
domain of colicin E2 + 
colicin E2 immunity protein 

This study 

pMG-pTet MG1655 
nalR smR 

Ptet-gfp Tet inducible GFP (Neuenschw
ander et al. 
2007) 

pTurboRFP MG1655 turboRFP Source of turboRFP coding 
sequence 

(Hol et al. 
2014) 

pZS2-123 MG1655 Triple reporter  Source of multiple 
terminator sequence 

(Cox, 
Dunlop, and 
Elowitz 
2010) 

pColE2-p9 MG1655 Colicin E2 plasmid Source of cea and cei 
coding sequence 

(Hol et al. 
2014) 
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Supplementary File 2 – Plasmid construction 1 

Construction of pSJB18 and pSJB19 2 
The pSJB18 plasmid is based on the pMG-Ptet plasmid (Neuenschwander et al. 2007) which contains 3 
the tetracycline inducible Ptet promoter. The colicin E2 nuclease domain (ceanuclease) was amplified from 4 
plasmid pColE2-p9 (Kerr et al. 2002; Hol et al. 2014) using primers ColE2_C-dom_tet_fwd and 5 
ColE2_tet_rev (see Supplementary File 2–Table 1 for primer sequences). The forward primer includes an 6 
ATG start codon and Xbal restriction site, the reverse primer includes a Xhol restriction site. The amplicon 7 
was inserted into pMG-Ptet via Xbal/Xhol. The construct sequence was confirmed with sequencing.  8 

We constructed a second plasmid, pSJB19, that is identical to pSJB18, except that it also includes the 9 
Colicin E2 immunity protein (cei). This immunity protein is co-expressed with the nuclease domain and 10 
inhibits the nuclease activity. The Colicin E2 nuclease domain (ceanuclease) was amplified together with the 11 
colicin E2 immunity protein (cei) from plasmid pColE2-p9 (Kerr et al. 2002; Hol et al. 2014) using primers 12 
ColE2_C-dom_tet_fwd and ImmE2_tet_rev (see Supplementary File 2–Table 1). The forward primer 13 
includes an ATG start codon and Xbal restriction site, the reverse primer includes a Xhol restriction site. 14 
The amplicon was inserted into pMG-Ptet via Xbal/Xhol. The construct sequence was confirmed with 15 
sequencing. 16 

Construction of pSV66-rpsM-rpsM dual-reporter 17 
The pSV66 dual reporter is based on the low copy number pUA66/pUA139 (Zaslaver et al. 2006) 18 
reporter plasmid, but contains an additional transcriptional reporter based on the red fluorescent protein 19 
TurboRFP. The arrangement of the two reporters was based on the triple reporter plasmid pZS2-123 20 
(Cox, Dunlop, and Elowitz 2010). Specifically, the gfmut2 and turborfp reporters are separated by a 21 
region containing multiple transcriptional terminators amplified from pZS2-123. The plasmid was 22 
constructed using a three-step Gibson assembly protocol (New England Biolabs, Ipswich, 23 
Massachusetts): 24 

1) PrpsM-tRFP promoter-reporter construct. The promotor region of rpsM was amplified from plasmid 25 
pUA139-rpsM (Zaslaver et al. 2006) using primers Prpsm-fw/rv (see Supplementary File 2–Table 1 26 
for primer sequences). The coding sequence of turborfp was amplified from plasmid pTurboRFP (Hol 27 
et al. 2014) using rfp-fw/rv. The resulting products were joined using Gibson assembly. 28 

2) PrpsM-turboRFP-terminator construct. The PrpsM-turboRFP construct from step 1 was amplified 29 
from the Gibson assembly product using primers Prpsm-fw and rfp-rv. The multiple terminator 30 
region was amplified from plasmid pZS2-123 (Cox, Dunlop, and Elowitz 2010) using primers ter-31 
fw/rv. The resulting products were joined using Gibson assembly. 32 

3) pSV66-rpsM-rpsM plasmid. The PrpsM-turboRFP-terminator construct from step 2 was amplified 33 
from the Gibson assembly product using primers ter-rv and Prfp-fw. The greater part of plasmid 34 
pUA139-rpsM ((Zaslaver et al. 2006), including the Prpsm-gfpmut2 reporter, origin of replication and 35 
kanamycin resistance cassette) was amplified using primers vector-fw/rv. The resulting products 36 
were joined using Gibson assembly. 37 

We confirmed the sequence of the promoter regions, fluorescent proteins, terminator region and origin of 38 
replication using sequencing.  39 

Construction of pSV66-recA-rpsM dual-reporter 40 
To construct the dual reporter pSV66-recA-rpsM the promoter region in front of gfpmut2 of the pSV66-41 
rpsM-rpsM was replaced with the promoter of recA using a one-step Gibson assembly process. The 42 
promoter for recA was amplified from the plasmid pUA139-recA (Zaslaver et al. 2006) using primer 43 
Pgfp-fw/rv and the backbone of pSV66-rpsM-rpsM was amplified with gfpVec-fw/rv. The two PCR 44 
products were then combined using Gibson assembly and the sequence of both the recA and rpsM 45 
promoter region, as well as the intermediate terminator region was confirmed using sequencing.  46 

In all steps we used the Q5 high-fidelity DNA polymerase for DNA amplification and Gibson Assembly 47 
master mix for Gibson assembly (New England Biolabs, Ipswich, Massachusetts). 48 

  49 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 20, 2017. ; https://doi.org/10.1101/109991doi: bioRxiv preprint 

https://doi.org/10.1101/109991
http://creativecommons.org/licenses/by/4.0/


 35 

Table 1. Primer sequences used to construct plasmids pSJB18, pSJB19, and pSV66. Underlined 50 
parts are tails added to primers to provide homology for Gibson assembly. Abbreviations: (gibson): 51 
primers are used to amplify end product of Gibson assembly; tRFP: turboRFP; ter: terminator 52 

 53 

Name Sequence Target Note 

Primers for pSJB18 and pSJB19 

ColE2_C-
dom_tet_fwd 

5’ AAT TCT AGA ATG AAC AAT TTA ATC 
GAT TTG CCC 

pColE2-p9 Contains ATG start 
codon and XbaI 
restriction site 

ColE2_tet_rev 5’ GAT CTC GAG TTA CTT ACC CCG 
ATG AAT AT 

pColE2-p9 Contains Xhol 
restriction site 

ImmE2_tet_rev 5’ GAT CTC GAG TCA GCC CTG TTT 
AAA TCC 

pColE2-p9 Contains Xhol 
restriction site 

Primers for pSV66 

Prpsm-fw 5’ GTA TCA CGA GGC CCT TTC G pUA139-rpsM 
/ PrpsM-tRFP 
(gibson) 

 

Prpsm-rv 5’ TGT TCT CCT TGA TCA GCT CGC 
TCA T ATG TAT ATC TCC TTC TTA AAT 
CTA GAC TCG AG 

pUA139-rpsM Homology to tRFP 

rfp-fw 5’ ATG AGC GAG CTG ATC AAG G pTurboRFP  

rfp-rv 5’ ATT TGA TGC CTG G TCA TCT GTG 
CCC CAG TTT G 

pTurboRFP / 
PrpsM-tRFP 
(gibson) 

Homology to ter 

ter-rv 5’ GAT CGA GAA GGA CAC GGT TAA 
TAC 

pZS2-123 / 
PrpsM-tRFP-
ter (gibson) 

 

ter-fw 5’ GGG GCA CAG ATG A CCA GGC ATC 
AAA TAA AAC GAA AG 

pZS2-123 Homology to tRFP 

Prfp-fw 5’ TAA CAA ACT AGC AAC ACC AGA 
ACA G GTA TCA CGA GGC CCT TTC G 

PrpsM-tRFP-
ter (gibson) 

Homology to 
vector 

vector-fw 5’ CTG TTC TGG TGT TGC TAG TTT G pUA139-rpsM  

vector-rv 5’ AGT ATT AAC CGT GTC CTT CTC GAT 
C CCT GCA GGT CTG GAC ATT TAT TTG 

pUA139-rpsM Homology to ter 

Pgfp-fw 5’ CTG GCA ATT CCG ACG TCT AAG 
AAA C 

pUA139recA Homologous to 
gfpVec-rv 

Pgfp-rv 5’ CAA CAA GAA TTG GGA CAA CTC 
CAG TG 

pUA139-recA Homologous to 
gfpVec-fw 

gfpVec-fw 5’ CAC TGG AGT TGT CCC AAT TCT 
TGT TG 

pSV66-rpsM-
rpsM 

 

gfpVec-rv 5’ GTT TCT TAG ACG TCG GAA TTG 
CCA G 

pSV66-rpsM-
rpsM 
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