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SUMMARY 

Regulation of gene expression in mammalian cells depends on long-range chromatin 

interactions between enhancers and promoters. Currently, the exact mechanisms that 

connect distal enhancers to their specific target promoters remain to be fully elucidated. 

Here we show that the histone H3 Lysine 4 monomethylation (H3K4me1) writer proteins 

MLL3 and MLL4 (MLL3/4) play an active role in this process. We demonstrate that in 

differentiating mouse embryonic stem cells, MLL3/4-dependent deposition of H3K4me1 at 

enhancers correlates with increased levels of chromatin interactions, whereas loss of 

MLL3/4 leads to greatly reduced frequencies of chromatin interactions and failure of 

lineage-specific gene expression programs. We further show that H3K4me1 facilitates 

recruitment of the Cohesin complex to chromatin in vitro and in vivo, providing a potential 

mechanism for MLL3/4 to promote chromatin looping. Taken together, our results support 

an active role for MLL3/4 in modulating chromatin organization at enhancers in 

mammalian cells. 
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INTRODUCTION 

 Enhancers play a critical role in regulating spatiotemporal gene expression programs in 

animals (Lee and Young, 2013; Levine, 2010; Levine et al., 2014; Makova and Hardison, 2015; 

Ong and Corces, 2011). These cis-regulatory elements recruit sequence-specific transcription 

factors (TFs) (Lee et al., 1993; Levine, 2010) and chromatin remodeling complexes to regulate 

target gene transcription from a distance (Dekker et al., 2013; Gorkin et al., 2014; Lee and 

Young, 2013; Levine et al., 2014; Nora et al., 2012; Ong and Corces, 2014). Active enhancers 

exhibit characteristic histone modifications such as H3K4me1 and H3K27ac, DNase I 

hypersensitivity, occupancy by H3.3 and H2A.Z histone variants, and production of short-lived 

RNA known as eRNAs (Aday et al., 2011; Buecker and Wysocka, 2012; Hardison and Taylor, 

2012; Heintzman et al., 2009; Heintzman et al., 2007; Rajagopal et al., 2013; Roy et al., 2010). 

Based on these biochemical features, millions of candidate enhancers have been annotated in the 

human genome (Consortium, 2012; Kundaje et al., 2015). 

Lineage-specific enhancers undergo step-wise activation during development, beginning 

with the binding of sequence-specific transcription factors, which recruit various chromatin 

remodeling complexes to promote chromatin modification and nucleosome dynamics (Ren and 

Yue, 2015). The chromatin modification H3K4me1 is a hallmark of the initial stage of enhancer 

activation, while the appearance of active chromatin marks such as H3K27ac defines an active 

state (Buecker and Wysocka, 2012; Ernst et al., 2011; Heintzman et al., 2009; Rada-Iglesias and 

Wysocka, 2011; Wang et al., 2015). Mll3 and Mll4 encode the histone H3 lysine 4 (H3K4) 

monomethytransferases with partially redundant functions (Hu et al., 2013; Lee et al., 2013; 

Wang et al., 2016a). Recruitment of MLL3 and MLL4 by transcription factors is necessary for 

enhancer-mediated activation of target genes during cellular differentiation (Herz et al., 2012; Hu 

et al., 2013; Lee et al., 2013). It has been reported that MLL3/4 regulate enhancer activation 

through the recruitment of the co-activator protein p300, a histone acetyltransferase that mediates 

H3K27 acetylation and transcriptional activation of target genes (Wang et al., 2016a). 

  Activation of enhancers is not only characterized by various histone modifications, but 

also accompanied by formation of long-range chromatin interactions between the distal cis-
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regulatory elements and the target gene promoters (Deng et al., 2012; Gorkin et al., 2014). 

Enhancer/promoter interactions are constrained in the topologically associating domains (TADs) 

(Symmons et al., 2014; Symmons et al., 2016), which are megabase-long chromosome regions 

characterized by highly frequent intra-domain chromatin interactions and infrequent inter-

domain interactions (Dixon et al., 2012; Nora et al., 2012). TADs are highly conserved among 

different cell types and across species (Dixon et al., 2012; Schmitt et al., 2016). Disruption of the 

TAD boundaries can result in altered gene expression and developmental disorders (Andrey et al., 

2013; Dixon et al., 2016; Schwarzer and Spitz, 2014). A number of molecules have been shown 

to regulate chromatin organization in mammalian cells.  The Mediator and Cohesin Complexes 

have been reported to play an important role in enhancer/promoter interactions (Kagey et al., 

2010). The insulator binding protein CTCF has also been implicated in the chromatin 

organization in mammalian cells (Gomez-Diaz and Corces, 2014; Narendra et al., 2015; Phillips-

Cremins et al., 2013; Rao et al., 2014; Sanborn et al., 2015; Tang et al., 2015; Zuin et al., 2014). 

At the beta-globin locus, the transcription co-factor Ldb1 mediates long-range chromatin 

interactions between the locus-control-region (LCR) and target genes (Deng et al., 2012). 

Additionally, eRNAs have been proposed to promote enhancer/promoter interactions (Chapuy et 

al., 2013; Li et al., 2013). The Polycomb repressive complex PRC1 has been reported to maintain 

promoter-promoter interactions at silent developmental genes (Eskeland et al., 2010; 

Schoenfelder et al., 2015).  

Recent chromatin contact maps generated in fly and mammalian cells have revealed a 

close connection between the chromatin modification state and the higher order chromatin 

architecture (Boettiger et al., 2016; Dixon et al., 2015; Jin et al., 2013; Sanyal et al., 2012; 

Sexton et al., 2012; Wang et al., 2016b). In particular, changes in local chromatin interactions 

have been shown to correlate with H3K4me1 dynamics during differentiation of human 

embryonic stem (ES) cells (Dixon et al., 2015). Based on these observations, we hypothesized 

that H3K4me1 monomethyltransferases MLL3 and MLL4 may modulate chromatin interactions 

at enhancers. To test this hypothesis, we examined chromatin interactions in mouse embryonic 

stem cells (mESCs) deficient for both MLL3 and MLL4 (DKO, hereafter). We observed that 

MLL3/4 are indeed required for maintaining proper chromatin interactions between enhancer 
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and promoters in mESC. Through genome-wide analysis of chromatin contacts, we demonstrated 

that the local chromatin contacts at distal regulatory elements are dependent on MLL3/4 in 

mouse ES cells. We obtained evidence that MLL3/4 modulate local chromatin organization 

through recruitment of the Cohesin complex.  In the absence of MLL3/4, Cohesin occupancy at 

enhancers was greatly reduced during mES cell differentiation. Additionally, targeted deposition 

of H3K4me1 was sufficient for recruitment of Cohesin complex to DNA in cells. Altogether, 

these results provided strong evidence that MLL3/4 activate enhancers by promoting chromatin 

interactions, in addition to recruitment of p300. 
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RESULTS 

 

MLL3/4 are required for enhancer/promoter chromatin interactions at Sox2  

To determine the role of MLL3/4 on chromatin organization at enhancers, we first 

focused on a previously identified super-enhancer located 130 kb downstream of the Sox2 gene 

(Figure 1A and Supplemental Figure S1A) (Li et al., 2014; Zhou et al., 2014). Deletion of this 

super-enhancer caused a drastic, allele-specific reduction of Sox2 expression in cis (Li et al., 

2014; Zhou et al., 2014). Additionally, this super-enhancer was shown to interact with the Sox2 

gene in mESCs (Li et al., 2014; Phillips-Cremins et al., 2013; Zhou et al., 2014). Both H3K4me1 

and H3K27ac were present at the super-enhancer in wild-type cells (WT, hereafter), but were 

completely or partially lost in MLL3/4-knockout cells (DKO, hereafter) (Figure 1A), confirming 

an essential role for MLL3/4 in deposition of active chromatin marks at the Sox2 distal super 

enhancer (Sox2 SE, hereafter).  

 To test the hypothesis that loss of MLL3/4 would impair chromatin interactions at 

enhancers, we employed 4C-seq (van de Werken et al., 2012) to examine the chromatin 

interactions centered at either the Sox2 promoter or the distal enhancers, in WT cells and DKO 

cells (Figure 1A). Strikingly, the Sox2 promoter-enhancer interaction was dramatically reduced 

in the DKO cells, suggesting that MLL3/4 are required for the formation of chromatin 

interactions between the Sox2 promoter and Sox2 SE (Figure 1A and Supplemental Figure 

S1B). As a control, we examined a homozygous Sox2 SE deletion mouse ES cell line (DEL, 

hereafter)(Li et al., 2014). Loss of interaction between Sox2 promoter and Sox2 SE flanking 

regions was detected in DEL cells, confirming that the super-enhancer element required for 

promoter-distal enhancer interactions at the Sox2 locus (Supplemental Figure S1C). We further 

employed Three-Dimensional Fluorescent in situ Hybridization technology (3D-FISH) as an 

orthogonal approach to validate the loss of interaction in vivo at single cell resolution. Consistent 

with 4C-seq results, the spatial distance between Sox2 SE and Sox2 promoter significantly 

increased in both DKO and DEL cells (Figure 1B, 1C and Supplemental Figure S1D, S1E).  

 In accord with previous observations linking Sox2 promoter-enhancer interactions to 

Sox2 transcription (Li et al., 2014; Zhou et al., 2014), a partial decrease in SOX2 mRNA 

expression was observed (~50%) in DKO cells (Figure 1D). Previously, it was shown that 
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removal of Sox2 SE led to more than 90% reduction of SOX2 expression (Li et al., 2014). The 

relative mild effect of MLL3/4 knockout on SOX2 expression indicates that additional 

mechanisms may be involved in regulating SOX2 expression that compensate for the reduction 

of MLL3/4 at the enhancer and subsequent loss of long-range interactions.  

To exclude the possibility that loss of chromatin interactions in DKO cells is due to a 

reduced level of SOX2 expression, we carried out RNA-seq analysis of the WT and DKO cells. 

No apparent change in expression of other pluripotency transcription factors (TFs), such as 

Pou5f1 and Nanog, was detected (Supplemental Figure S1G, Figure 4B). Therefore, the loss of 

chromatin interactions between the super-enhancer and target gene in the DKO cells is unlikely 

the result of secondary effects of reduced expression or other transcription factors.  

Similar to the Sox2 locus, we also observed disruption of enhancer-promoter interactions 

and target gene expression at the Car2 gene locus in DKO cells (Supplemental Figure S1F), 

while an independent study identified a loss of promoter/enhancer interactions at the Lefty gene 

locus using the same MLL3/4 DKO cells (Wang et al., 2016a). Our results demonstrate that 

chromatin interactions between enhancers and target genes depend on H3K4me1-

methyltransferases MLL3/4. 

 

MLL3/4 loss leads to reduced chromatin interactions at enhancers in the ES cells  

 To determine whether MLL3/4 knockout also led to a general loss of chromatin 

interactions at enhancers in the DKO cells, we first carried out ChIP-seq analysis in WT and 

DKO cells to examine the effects of MLL3/4 loss on genomic distribution of H3K4me1. 

Focusing on a set of enhancers previously determined in mouse ES cells (Hnisz et al., 2013), we 

found that loss of MLL3/4 led to a significant decrease of H3K4me1 signals at enhancers 

genome-wide (Supplemental Figure S2A). We identified a total of 78,645 narrow H3K4me1 

peaks in WT mESC cells, and observed that H3K4me1 signals at 34,527 of them decreased by 

more than 50% in DKO cells. We referred to these as MLL3/4-dependent H3K4me1 regions 

(Supplemental Figure S2B and Table S1A). Little or no change was detected in the other 

44,118 genomic regions, which we designated as MLL3/4-independent H3K4me1 regions 

(Supplemental Figure S2B and Table S1B). In addition, 9,228 genomic regions acquired 

H3K4me1 peaks upon MLL3/4 knockout (Other; Supplemental Figure S2B and Table S1C). 
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Consistent with a previous report (Hu et al., 2013), we found that more than 85% of MLL3/4-

dependent H3K4me1 regions were promoter-distal (>2kb), whereas MLL3/4-independent 

H3K4me1 regions were enriched at or near TSS. Most of the increased H3K4me1 peaks in DKO 

were located within TSS proximal regions (Supplemental Figure S2C). Motif analysis revealed 

strong enrichment of ES-specific transcription factor (TF) binding sites in MLL3/4-dependent 

H3K4me1 regions (Supplemental Figure S2D), consistent with a previously reported role for 

the sequence-specific TFs in recruiting MLL3/4 to establish H3K4me1 at distal enhancers (Lee 

et al., 2013). Gene ontology analysis indicates that genes near the MLL3/4-dependent H3K4me1 

regions are involved in pluripotency and stem cell maintenance (Supplemental Figure S2E), 

suggesting a role for MLL3/4-dependent H3K4me1 regions in cell type specific gene expression.  

 We next employed in situ Hi-C (Rao et al., 2014) to investigate alterations in chromatin 

architecture in both DKO cells to determine whether loss of MLL3/4 would result in loss of 

chromatin interactions at enhancers genome-wide. We carried out two biological replicates both 

WT and DKO cells, and obtained approximately 109 reads from each cell line. As shown in 

Figure 2A, the TAD structures were well preserved upon MLL3/4 knockout (Figure 2A and 

Supplemental Figure S3A). The difference of TAD boundaries between WT and DKO is at a 

similar level of that between biological replicates (Supplemental Figure S3C and S3D). The 

strongest loss of contact frequency was observed between bins located shorter than 100 kb apart 

from each other (Supplemental Figure S3B). The short distance suggests that the effects of 

MLL3/4 loss on chromatin interactions are constrained within TADs. Since chromatin 

interactions that were altered between genomic regions were generally less than 200 kb apart, we 

focused on such local chromatin interactions in subsequent analyses. We observed that these 

short-range chromatin contacts were not evenly distributed in the genome. Some regions showed 

significantly higher frequencies of interactions than the others, which we referred to as 

Frequently Interacting REgions, or FIREs in short (Schmitt et al., 2016). To quantify local 

chromatin contacts, we calculated the accumulated contact frequency of a given bin to all its 

surrounded bins with a distance between 15 kb to 200 kb. As we focus on this specific range of 

interactions, we used the HiCNormCis for normalization (Schmitt et al., 2016, Extended 

Experimental Procedures), which achieved greater reduction or even complete elimination of 

systematic errors introduced by the effective fragment length, GC content and mappability score, 
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than other normalization tools (Supplemental Figure S3E, S3F, S3G and S3H) (Imakaev et al., 

2012; Rao et al., 2014). We defined FIRE score as the z-score for each bin. We found that FIRE 

scores were highly reproducible between biological replicates (Pearson rWT=0.964, 

Supplemental Figure S4A; and rDKO=0.960, Supplemental Figure S4B), but were significantly 

different between the WT and DKO cells (Supplemental Figure S4C). This result suggests that 

FIRE score is a robust and sensitive proxy for local chromatin interactions including promoter-

enhancer interactions. By using a threshold of p value <= 0.05, we determined 14,190 FIREs in 

WT cells and 13,542 FIREs in DKO cells, covering approximately 5% of total genome. Roughly 

70% of FIREs are shared between WT and DKO cells. We categorize FIREs into WT-specific, 

DKO-specific and shared, with a cutoff of FIRE score = 1.5 (Supplemental Figure S4D, Table 

S2). Genes in the cell-type (WT or DKO) specific FIREs showed significantly higher expression 

level than the same set of genes expressed in the other cell type (Supplemental Figure S4E). 

WT-specific FIREs were significantly enriched in genes involved in regulation of cell 

differentiation and cell fate determination (Supplemental Figure S4F).  

Upon knockout of MLL3/4, the chromatin contacts in WT FIREs were reduced compared 

to non-FIRE genomic regions (Figure 2B). To illustrate how H3K4me1 signals are associated 

with chromatin interactions at individual loci, we used a 2 Mb-region containing Sox2 on 

chromosome 3 as an example. The FIRE score was significantly decreased near the Sox2 SE 

locus in DKO cells, coincident with depletion of H3K4me1, whereas the nearby Fxr1 locus was 

less affected (Figure 2C). We observe a significant decrease in average FIRE scores of typical 

(TE) and super enhancers (SE) genome-wide, but not at the transcriptional start sites (TSS) 

(Figure 2D). Consistent with this observation, FIRE scores at WT-specific H3K4me1 peaks 

were higher in WT cells compared to DKO cells (Supplemental Figure S4G). Similarly, WT-

specific and shared H3K27ac peaks between WT and DKO showed average increase in FIRE 

score (Supplemental Figure S4H). The FIRE score, a well-established proxy for chromatin 

interactions (Schmitt et al., 2016), was demonstrated here tightly associated with MLL3/4-

dependent H3K4me1 peaks and H3K27ac peaks. These peaks that are mostly located at TSS 

distal enhancer regions (Supplemental Figure S2). Our results suggest that MLL3/4 are 

required for elevated levels of chromatin interactions at the enhancers compared with other 

genomic regions. 
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The Cohesin Complex Acts Downstream of MLL3/4 to Promote Chromatin Interactions at 

Enhancers 

 To gain insight into the molecular mechanisms by which MLL3/4 promote chromatin 

interactions at enhancers, we next examined the inter-dependency of enhancer occupancy by 

MLL3/4 and Cohesin complex (Kagey et al., 2010). The Cohesin complex, consisting of Smc1, 

Smc3, Rad21 and SA1/2, has been proposed to mediate chromatin contacts between enhancers 

and promoters (Hadjur et al., 2009; Ing-Simmons et al., 2015; Kagey et al., 2010; Mizuguchi et 

al., 2014; Wendt et al., 2008; Yan et al., 2013; Zuin et al., 2014). We hypothesized that MLL3/4 

may facilitate the recruitment of Cohesin complex to enhancers. To test this hypothesis, we first 

asked whether MLL3/4 are required for the recruitment of Cohesin at the Sox2 SE. We 

performed ChIP-seq experiments in WT and DKO cells using antibodies against the Cohesin 

subunit Rad21 and Mediator subunit Med12. Consistent with previous reports (Kagey et al., 

2010; Yan et al., 2013), both Cohesin and Mediator complexes were co-localized with H3K4me1 

peaks at the Sox2 Super-enhancer in WT mESC (Figure 3A). In addition, we observed elevated 

FIRE scores at the Cohesin and Mediator binding sites, consistent with previous report that 

Cohesin act together with the Mediator complex to mediate chromatin interactions (Kagey et al., 

2010)(Figure 3F). Upon knockout of MLL3/4, occupancy of the Sox2 Super-enhancer by both 

complexes was lost or greatly reduced in WT and DKO cells (Figure 3A), suggesting that 

occupancy of Cohesin and Mediator complexes at enhancers is MLL3/4-dependent. Genome-

wide analysis further showed that binding of Cohesin complex to MLL3/4-dependent H3K4me1 

peaks was drastically reduced, while the occupancy remained unchanged near the Mll3/4-

independent H3K4me1 peaks (Figure 3B).  

To determine whether Cohesin complex acts downstream of MLL3/4 to regulate 

chromatin interactions, we depleted the expression of Cohesin complex component RAD21 

using shRNA-mediated knockdown (Supplemental Figure S5C). On the other hand, no obvious 

change of H3K4me1 at either Sox2 SE or around the gene body was detected (Figure 3D, upper 

panel), despite loss of chromatin interactions between Sox2 SE and the promoter (Figure 3D, 

lower panel). Sox2 expression also decreased upon Rad21 knockdown, confirming the 
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functional role of enhancer-promoter interactions in gene activation (Figure 3E). Therefore, 

MLL3/4 likely act upstream of the Cohesin complex to mediate chromatin interactions.  

  

H3K4me1 Facilitates Recruitment of Cohesin Complex  

 One potential mechanism for MLL3/4 to facilitate recruitment of Cohesin complex at 

enhancers is via H3K4me1. Consistent with this hypothesis, the Cohesin complex is generally 

co-localized with H3K4me1 peaks in vivo (Figure 3B and Supplemental Figure S5B). To 

further test this hypothesis, we performed in vitro pull down assays using nuclear extracts from 

HeLa cells and reconstituted mononucleosomes bearing either unmodified H3 histones or H3 

with chemically-modified epitopes mimicking lysine 4, including mono-, di- and tri-methylation. 

We found that the Cohesin complex bound more strongly to the mononucleosomes with 

H3K4me1 and H3K4me2 modifications than unmodified nucleosomes. As a control, the FACT 

complex showed stronger preference to H3K4me3 than H3K4me1 (Orphanides et al., 1999; 

Takahata et al., 2009)(Figure 3C and Supplemental Figure S5A).  

Our ChIP-seq and in vitro pull-down assays strongly suggest that H3K4me1 may either 

directly or indirectly facilitate the binding of the Cohesin complex to enhancers to mediate 

chromatin interactions. To further determine whether H3K4me1 is the sufficient for Cohesin 

recruitment, we repurposed the catalytically dead Cas9 protein (dCas9) to induce ectopic 

H3K4me1 at targeted locus by fusing it to the MLL3 SET domain (MLL3SET, hereafter), which 

catalyzes monomethylation of H3K4 (Hu et al., 2013). We show that transfection of dCas9-

MLL3SET and a set of guide RNAs targeting the Sox2 SE to DKO cells significantly increases 

local H3K4me1 levels at the targeted region (Figure 3G, right panel) as well as Cohesin 

occupancy at Sox2 SE, indicating that H3K4me1 ca indeed facilitate Cohesin recruitment in vivo. 

As a control, H3K4me1 and Cohesin occupancy at the non-targeted Sox2 promoter was not 

significantly altered (Figure 3G, left panel).  

 

Dynamic Chromatin Organization at Lineage-specific Enhancers during Mouse Stem Cell 
Differentiation  

 If MLL3/4 plays an important role in chromatin interactions at enhancers, its presence at 

enhancers during mESC differentiation would be required for new chromatin interactions at 
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enhancers to occur. To test this prediction, we treated WT and DKO cells with retinoic acid (RA) 

to induce the differentiation of these cells towards the neural progenitor cell (NPC) lineage. We 

collected the cells every 12 hours over a 60-hour period (Figure 4A). Single cell RNA-seq 

analyses showed that both WT and DKO cells lost Nanog expression after RA treatment.  

However, while the WT cells successfully differentiate into the NPC lineage, as evidenced by the 

expression of NPC-specific markers, such as Vimentin, while DKO cells failed to completely 

differentiate into the NPC lineage (Figure 4B). Bulk RNA-seq analysis showed broad defects in 

the induction of genes involved in neuronal function (Figure 4C, D). In particular, group III 

genes were induced in WT but not in DKO cells (Figure 4C). Lack of induction of these genes 

in DKO cells indicated a failure of differentiation towards NPC in the absence of MLL3/4, 

supported by Gene Ontology analysis of group III genes (Figure 4D). This result strongly 

supports the model that MLL3/4 are critical for stem cell differentiation and renewal (Eissenberg 

and Shilatifard, 2010; Gu and Lee, 2013). 

We also examined the dynamic H3K27ac and H3K4me1 profiles in WT and DKO cells 

at various time points during NPC differentiation using ChIP-seq (Figure 5A and Table S3). 

Strikingly, at a majority of the distal H3K27ac peaks, H3K4me1 signals were depleted in DKO 

cells, and cells resulted in a failure to induce cell type specific gene expression. This observation 

provides further support for a role for MLL3/4 in regulating the chromatin epigenetic landscape 

at distal enhancers. 

To dissect the temporal relationships between H3K4me1 deposition, Cohesin occupancy 

and chromatin organization, we examined Cohesin and Mediator occupancy and FIRE scores in 

the regions where accumulating H3K4me1 and H3K27ac signals were detected along 

differentiation in WT cells but not in DKO (Figure 5A). If H3K4me1 is necessary for Cohesin 

and Mediator recruitment, gradual loss of H3K4me1 at enhancers during mESC differentiation 

would lead to a decrease in Cohesin and Mediator binding. As expected, these loci showed 

increased Cohesin and Mediator binding during differentiation only in WT cells, along with 

increased H3K4me1 signals (Figure 5B). Interestingly, the FIRE score of this region was also 

gradually elevated in WT cells, in accordance with the role of MLL3/4 in regulation of 

chromatin interactions (Figure 5C).  
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In order to more clearly reveal the concordant change of H3K4me1 signal, Cohesin 

binding and FIRE score, we zoomed in our analysis to one of our representative locus the Sox2 

SE. We observed a gradual decrease in Cohesin and Mediator binding along differentiation, 

concurrently with decreased H3K4me1 signals (Figure 6A). Expectedly, the FIRE score 

spanning this region also gradually decreased, in accordance with the role of H3K4me1 in 

regulation of chromatin interactions mediated by Cohesin and Mediator (Figure 6B). At another 

representative locus, we observed accumulation of H3K4me1 but not H3K27ac signals at Day 

1.5, while Cohesin and Mediator binding signals were detected at Day 2, 12 hours later than the 

histone marks (Figure 6C). As expected, FIRE score of this region increased in WT cells, 

consistent with increased Cohesin and Mediator occupancy (Figure 6D). In DKO cells, neither 

Cohesin nor Mediator could be detected in both loci at any time point, likely due to lack of 

H3K4me1 at enhancers. This striking example demonstrated that changes of Mediator and 

Cohesin binding preceded or coincided with H3K4me1, suggesting that the histone modification 

could potentially stabilize Cohesin and Mediator loading at enhancers, as well as chromatin 

organization.  

 

Dynamic Chromatin Contacts at Super-enhancers during ES cell Differentiation Depend 

on MLL3/4 

 To more clearly demonstrate the role of MLL3/4 in mediating chromatin interactions, we 

focused on super-enhancer, which are regions with highly clustered sites of transcription factor 

and co-factor binding sites, and involved in activing transcription of cell identity genes through 

long-range chromatin interactions (Dowen et al., 2014).  We identified super-enhancers in WT 

and DKO cells at different time points, based on unusually high levels of H3K27ac signals 

(Hnisz et al., 2013; Loven et al., 2013; Whyte et al., 2013) (Supplemental Figure S6A and 

Table S4). Consistent with a recent report (Schmitt et al., 2016), over half of the super-enhancers 

identified above were within FIREs in WT mESC, and the H3K27ac signals at these SEs were 

gradually lost during differentiation. In the DKO cells, the FIRE scores at these regions were 

near background levels, providing strong support for a role of MLL3/4 in chromatin interactions 

at FIREs and SEs (Supplemental Figure S6B). For example, at the Sox2 locus, the super-

enhancer gradually lost H3K27ac signal until fully depleted by Day 1.5 (Supplemental Figure 
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S6C). FIRE score at this enhancer also decreased along differentiation (Supplemental Figure 

S6D). In DKO cells, the super-enhancer was not properly formed due to lack of MLL3/4 and the 

chromatin interaction frequency was also very low at this region. 
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DISCUSSION 

 Great strides have been made in the identification of cis regulatory sequences in the 

human genome (Consortium, 2012; Kundaje et al., 2015). Since the majority of the candidate 

cis-regulatory sequences located far from the transcription start sites, it is generally believed that 

3D chromatin architecture plays a critical role in enhancer function. However, the mechanisms 

by which long-range chromatin interactions are established at lineage-specific enhancers during 

development are still incompletely understood (Dixon et al., 2015; Phillips-Cremins et al., 2013). 

In particular, it has yet to be shown whether chromatin remodeling complexes play an active role 

in chromatin organization at enhancers, despite the data showing close correlation between 

dynamic histone modifications and chromatin organization during human ES cell differentiation 

(Dixon et al., 2015; Dixon et al., 2012; Jin et al., 2013; Sanyal et al., 2012; Sexton et al., 2012). 

Here, we present multiple lines of evidence for a role for histone methyltransferases MLL3/4 in 

promoting long-range chromatin interactions at enhancers. First, knockout of MLL3/4 at Sox2 

super-enhancer resulted in loss of chromatin interactions between the enhancer and Sox2 

promoter; second, loss of MLL3/4 also led to a decrease in genome-wide chromatin interactions 

at promoter-distal regions bearing MLL3/4-dependent H3K4me1; third, loss of MLL3/4 resulted 

in reduced occupancy by the Cohesin complex, which promotes enhancer/promoter interactions 

in mammalian cells (Kagey et al., 2010). Furthermore, MLL3/4 are required for depositing 

H3K4me1 and establishing local chromatin interactions at distal enhancers during mouse ES cell 

differentiation. Finally, pull-down experiment using nuclear extracts showed that the Cohesin 

complex binds more strongly to H3K4me1-modified nucleosomes than other forms of 

nucleosomes, and targeted deposition of H3K4me1 in the nucleus enhances recruitment of 

Cohesin complex to local chromatin. Taken together, our results support a model that MLL3/4 

modulate local chromatin interactions at enhancers by depositing H3K4me1 mark and 

facilitating the binding of Cohesin (Figure 6E).  

 Cohesin has been shown to mediate chromatin interactions in metazoan cells (Hadjur et 

al., 2009; Ing-Simmons et al., 2015; Kagey et al., 2010; Mizuguchi et al., 2014; Zuin et al., 2014). 

Our results suggest that MLL3/4 could facilitate or stabilize Cohesin recruitment at enhancers to 

promote DNA interactions with other chromatin regions, particularly at promoters. We observed 

that Cohesin would not bind to the super-enhancers at Sox2 and Car2 loci and thus no chromatin 
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interactions formed in the absence of MLL3/4 (Figure 1 and Supplemental Figure S1). During 

NPC differentiation, we also observed that H3K4me1 signals coincide or precedes Cohesin 

loading. We provided evidence that the Cohesin may directly or indirectly associate the 

H3K4me1 mononucleosome. However, we do not yet know how H3K4me1 is recognized by the 

Cohesin complex.  None of the subunits of Cohesin contains known H3K4me1 binding domains. 

It is likely that a bridging factor might be responsible for Cohesin recruitment to H3K4me1. The 

ATP-dependent chromatin-remodeling factor SNF2h/SMARCA5 is known to be involved in 

gene regulation and directly interact with Cohesin component RAD21 (Hakimi et al., 2002). Its 

interacting factors, ACF/BAZ1A and WSTF/BAZ1B, are known to independently form ACF and 

WICH complexes with SNF2h/SMARCA5 (Bochar et al., 2000; Ito et al., 1999). BAZ1A/B are 

known to contain PHD domains, capable of binding to H3 histones, posing them intriguing 

candidates for H3K4me1 readers (Li et al., 2016). Indeed, we observed that BAZ1A and SNF2h 

are enriched at Mll3/4-dependent H3K4me1 peaks (Supplemental Figure S5D). Future 

experiments would be needed to test whether ACF and WICH complexes may play a role in 

recruitment of Cohesin to H3K4me1 marked nucleosomes. In summary, our model suggests that 

the enhancer-associated histone modification H3K4me1 is required for enhancer function, either 

through recruitment of structural complexes that facilitate chromatin interactions or stabilizing 

the loading of such complexes. 
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EXPERIMENTAL PROCEDURES 

 

Cell Culture 

 Mouse embryonic stem cell lines were derived from E14 strain and reported separately 

(Wang et al., 2016a). WT and DKO cells were cultured in mouse ES cell media: DMEM 85%, 

15% fetal bovine serum (Hyclone), penicillin/streptomycin, 1× non-essential amino acids 

(Gibco), 1× GlutaMax, 1000 U/ml LIF (Millipore), 0.4 mM β-mercaptoethanol. Mouse ES cells 

were initially cultured on 0.1% gelatin-coated petri-dish with CF-1 irradiated mouse embryonic 

fibroblasts (GlobalStem) and were passaged twice on 0.1% gelatin-coated feeder-free plates 

before harvesting. Lenti-X 293 cells (Clontech) were cultured in DMEM containing 10% Tet-

approved fetal bovine serum (Clontech), penicillin/streptomycin and GlutaMax (Gibco). 

Alkaline phosphatase staining was performed using the Alkaline Phosphatase Staining kit 

(STEMGENT) in the presence of MEF feeder cells. 

 

in situ Hi-C 

 The in situ Hi-C experiments were conducted according to Rao et al., 2014. Briefly, 2 

million cells were cross-linked with 1% formaldehyde for 10min at RT and reaction was 

quenched using 125 mM of Glycine for 5 min at RT. Nuclei were isolated and directly applied 

for digestion using 4 cutter restriction enzyme MboI (NEB) at 37 °C o/n. The single strand 

overhang was filled with biotinylated-14-ATP (Life Tech.) using Klenow DNA polymerase 

(NEB). Different from tradition Hi-C, with in situ protocol the ligation was performed when the 

nuclear membrane was still intact. DNA was ligated for 4 hours at 16 °C using T4 ligase (NEB). 

Protein was degraded by proteinase K (NEB) treatment at 55 °C for 30 min. The crosslinking 

was reversed with 500 mM of NaCl and heat at 68 °C o/n. DNA was purified and sonicated to 

300-700 bp small fragments. Biotinylated DNA was selected with Dynabeads MyOne T1 

Streptavidin beads (Life Tech.). Sequencing library was prepared on beads and intensive wash 

was performed between different reactions. Libraries were checked with Agilent Bioanalyzer 

2100 and quantified using Qubit (Life Tech.). Libraries were sequenced with Illumina Hiseq 

2500 or Hiseq 4000 with 50 or 100 cycles of paired-end reads.  
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Data Processing and FIRE Analysis 

 Hi-C pre-processing pipeline is applied to all the raw Hi-C data as described in (Dixon et 

al., 2015). All intra-chromosome reads within 15-kb are removed from the downstream analyses. 

The filtered intra-chromosome reads connecting two genomic regions located greater than 15-kb 

were selected and binned into 10-kb resolution to build the Hi-C contact matrices. For each 10-

kb bin, the raw FIRE score is defined as the total number of chromatin interactions within 200-

kb. A custom normalization pipeline, 'HiCNormCis', was modified from the HiCNorm (Hu et al., 

2012) and applied to normalize raw FIRE score. Briefly, a Poisson regression model is fitted for 

each 10-kb bin, with the raw FIRE score as the outcome variable, and three local genomic 

features, such as effective fragment length, GC content and mappability score, as the covariates. 

The residuals from the Poisson regression model are used as the normalized FIRE score, which 

are comparable among different 10-Kb bins and different Hi-C datasets. Next, for each 10-kb bin, 

z-score is calculated based on the normalized FIRE score. 10-kb bins with z-score > 1.64 (p-

value < 0.05) are defined as FIRE bins. More details could be found in Extended Experimental 

Procedure. 

 

3D-FISH 

 WT or DKO cells were cultured on laminin-coated coverslips (Neuvitro) for 1 hour at 

37°C, and then rinsed with PBS and fixed with 4% PFA in PBS for 10 minutes. The fixation was 

quenched with 0.1 Tris-HCl, pH 7.5, for 10 minutes, rinsed and stored in PBS.  

 To generate probes, fosmid clone spanning Sox2 SE locus or promoter locus (BACPAC), 

was labeled with Alexa-fluor 568-5-dUTP or Alexa-fluor 488-5 dUTP (Life Technologies) using 

Nick Translation Kit (Roche) and incubated at 15°C for 4 hours. The reaction was stopped by 1 

µl 0.5M EDTA, pH 8 and heat-inactivated at 65°C for 10 minutes. Unbound dyes were removed 

using illustra ProbeQuant G-50 Micro Columns (GE Healthcare) following the manufacturer’s 

instructions. For each hybridization, 20 ng of FISH probes were ethanol precipitated with 10 µg 

of sonicated salmon sperm DNA, 4 µg of mouse Cot-1 DNA, 1/10th volume of 3M sodium 
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acetate, pH 5.2, and 2.5 volume of 100% ethanol. Each probe was precipitated and dissolved in 5 

µl of formamide and 5 µl of 2X hybridization mix (8X SSC/40% dextran sulfate) at 55°C for 20 

minutes. The probes were denatured at 75°C for 5 minutes before applying to slides. 

 Fixed cells on coverslips were blocked in 5% BSA/ 0.1% Triton-X/1X PBS for 30 

minutes at 37°C and washed with 0.1% Triton-X 100 in PBS. Cover slips were then 

permeabilized in 0.1% saponin/0.1% Triton-X/1X PBS for 10 min at room temperature, 

incubated in 20% glycerol in PBS for 20 minutes at room temperature, freeze-thawed three times 

in liquid nitrogen, incubated in 0.1M HCl for 30 minutes at room temperature, blocked in 3% 

BSA and 100 µg/ml RNase A in PBS for 1h at 37°C, permeabilized again in 0.5% saponin/0.5% 

Triton-X 100/1X PBS for 30 minutes at 37°C, and washed in 2X SSC. Cells were denatured with 

70% formamide/2X SSC at 73°C for 2.5 minutes and with 50% formamide/2X SSC at 73°C for 

1 minute, after which denatured probes was applied to the slide. After overnight incubation at 

37°C, cells were washed twice with 50% formamide/2X SSC at 37°C for 15 minutes and 2X 

SSC at 37°C. The cover slips were stained with DAPI and rinsed in PBS before mounting on the 

slides with ProLong Gold Antifade Mountant and sealed with nail polish. Images were acquired 

at 100x magnification on DeltaVision RT Deconvolution microscope, controlled by SoftWorX 

software. DNA spots were identified and measured using TANGO v.0.93 software. 

 

RNA-seq, single cell RNA-seq and Data Analysis 

 Total RNA from ES cells was extracted with Trizol® according to protocol (Thermo 

Scientific, 15596-026). PolyA+ RNA was purified with the Dynabeads mRNA purification kit 

(Life Tech.). The mRNA libraries were prepared for strand-specific sequencing using Illumina 

TruSeq Stranded mRNA Library Prep Kit Set A (Illumina, RS-122-2101) or Set B (Illumina, RS-

122-2102). Libraries were sequenced with Illumina Hiseq 2500 for 100 cycles single reads. 

 For single cell RNA-seq, cells were harvested after trypsin treatment and washed with 

PBS. For each time point, cell densities were estimated using a hemocytometer and 2000-5000 

cells were collected for library preparation. The single cell library was prepared with 

Chromium™ Single Cell 3’ v2 Library kit (10XGenomics). The libraries were sequenced using 
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Illumina Hiseq4000 and 16-20 million single read reads were acquired for each individual library 

respectively. The single cell RNA-seq data was analyzed using Cellranger R kit that was 

provided by 10XGenomics with default parameters. The quality control statistics was listed in 

Supplemental Table S7. 

 Sequence reads were mapped to mouse mm9 reference genome with TopHat (Trapnell et 

al., 2009). The differential expression was analyzed with Cuffdiff (Trapnell et al., 2012). We 

plotted the differentially expressed genes if the fold change of adjusted FPKM value between 

E14 and DKO is larger than 2. 

 Gene Ontology analysis was carried out using DAVID release 6.7 with default 

parameters (Huang da et al., 2009). 

 

Additional experimental information can be found in “Supplemental Information”. 
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FIGURE LEGENDS 

Figure 1.  MLL3/4 Are Required for Chromatin Interactions at the Sox2 enhancer 

(A) ChIP-seq and 4C-Seq analysis of Sox2 locus in wild type and MLL3/4 double knockout 

mESCs. Top, genome browser snapshot of ChIP-seq data showing loss of H3K4me1 and partial 

reduction of H3K27Ac at Sox2 Super-enhancer (SE) in MLL3/4 double knockout mESCs. SE, 

super-enhancer. WT, wild type mouse ES cell line E14. DKO, MLL3/4 double knockout mouse 

ES cell line. y-axis shows input normalized ChIP-seq reads per kilobase pair per million total 

reads (RPKM). Sox2 SE is indicated in red shade. Sox2 gene locus is indicated by arrow. Bottom, 

2D-heat map of 4C-seq analysis showing significant reduction in contact frequency between 

Sox2 TSS and Sox2-SE in DKO cells relative to WT cells. The same genomic position is aligned 

with genome browser snapshot for ChIP-seq analysis. Panel SE, 4C-seq with viewpoint at Sox2 

super-enhancer locus, highlighted by yellow bar. Panel TSS, 4C-seq viewpoint at Sox2 TSS 

locus, highlighted by yellow bar. Black arrows emphasize the main interacting partner with the 

viewpoint. Heatmap shows the median genomic coverage using different sizes of sliding 

windows between 2 kb (top row) and 50 kb (bottom row). The gray shade above the heatmap 

shows the genomic coverage between 20th and 80th quantile values using a slide window of 5 kb. 

The black trend line indicates the median genomic coverage using a slide window of 5 kb. 

(B) 3D FISH microscopy images showing that physical distance between Sox2 SE and promoter 

becomes larger in DKO mESC, relative to WT. Top, schematic showing relative genomic 

positions for 3D FISH probes. Bottom, 3D FISH images showing overlay signals for probe set 

combinations in representative WT and DKO mESC. Nucleus was stained with DAPI. Insets 

show the zoom in of probe-detected foci for clearance. Red color, probes hybrid to SE locus, 

Green color, probes detecting promoter locus; Cyan color, probes detecting a region (RP23) that 

is located 100 kb downstream from SE. Note that Promoter is approx. 100 kb upstream of SE.  

(C) Summary of FISH data from approximately 80 individual cells for both WT and DKO cell 

types. y-axis shows the distance between the centers of two foci represented by two colors. Scale 

bar is shown at the bottom right corner of each image. Note that distance between promoter and 

SE was significantly larger in DKO than WT. S-R, distance between RP23 and SE; P-R, distance 
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between RP23 and Promoter; P-S, distance between Promoter and SE. Stars indicate statistical 

significance tested with Mann-Whitney-U test (** p<0.01; *** p<0.005). 

(D) Expression of Sox2 decreased upon Mll3/4 DKO. FPKM is shown in y-axis. Error bars are 

derived from three biological replicates. 

See also Figure S1, Figure S2 

 

Figure 2. MLL3/4-dependent H3K4me1 Show Reduced Chromatin Interactions in DKO 

mESC 

(A) Heatmap showing the chromosomal contacts near the Sox2 locus, as determined in in situ 

HiC experiments. The upper panel shows the WT cells and lower panel shows the DKO cells. 

Sox2 gene is indicated by the violet box and an arrow. Color key shows the normalized contact 

frequency. 

(B) Histogram showing the distribution of differential FIRE scores across 10-kb bins (DKO-WT). 

Red, bins classified as FIRE regions in WT cells. Grey, non-FIRE bins in WT cells. 

(C) Genome browser track shows correlation between the change of FIRE scores (bottom) 

associated and changes of H3K4me1 ChIP-seq RPKM (middle) upon MLL3/4 knockout. Partial 

loss of SOX2 expression is also shown (top). For comparison, FXR1 or DNAJC19 expression is 

stable, consistent with the stable FIRE structure. The light green shades indicate the FIRE 

regions. Dashed lines label the cutoff for FIRE. 

(D) Boxplots comparing FIRE scores in WT (blue) and DKO (red) for bins containing different 

classes of cis-regulatory elements (TE, SE and TSS). SE, super-enhancer. TE, typical enhancer. 

TSS, transcription starting site. Other, bins with increased FIRE scores in DKO relative to WT. 

The p value below each category was computed by two-tail paired Welch t-test. Asterisk 

indicates that the difference is statistically significant. Note that SE displays the highest FIRE 

score among all elements tested here and SE, TE and TSS generally have higher FIRE score than 

the average genome. 
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See also Table S1, Figure S3, Figure S4 

 

Figure 3. MLL3/4-Dependent H3K4me1 Facilitates Cohesin Binding to Chromatin 

(A) Genome browser tracks showing loss of Cohesin (Rad21) and Mediator (Med12) binding at 

the Sox2 gene and Sox2 super-enhancer (SE, indicated in violet shade) in MLL3/4 DKO cells. 

Top, relative genomic positions of the Sox2 gene and Sox2 SE. Middle, RNA-seq tracks show 

Sox2 expression for reference, quantified in Figure 1D. Bottom, Normalized ChIP-seq signals of 

H3K4me1, Rad21 and Med12 at the Sox2 locus. 

(B) ChIP-seq analysis showing binding of Cohesin and Mediator complexes to MLL3/4-

dependent H3K4me1 peaks. ChIP-seq signals are centered around H3K4me1 peaks and extended 

4kb upstream and downstream along the genome. X-axis indicates relative coordinates to peaks 

center. Y-axis indicates z-score of input-normalized ChIP-seq RPKM value. Blue, aggregated 

ChIP-seq signal in WT cells. Red, aggregated ChIP signal in DKO cells. Note that Cohesin 

(Rad21) and Mediator (Med12) are affected at MLL3/4-dependent H3K4me1 regions in MLL3/4 

DKO cells, coinciding with the loss of H3K4me1.  

(C) The in vitro pull-down assay showing that Cohesin (Smc3) preferentially associate to 

H3K4me1 and H3K4me2 mononucleosomes. Top, schematic showing assay workflow. Modified 

H3 histones are assembled into biotinylated DNA-bound nucleosomes in vitro. Nucleosomes 

were then incubated with HeLa nuclear lysate and the Streptavidin pull-down fractions were 

assayed for binding factors with Western blotting. Bottom, Western blots showing binding of 

SMC3 and SUPTH binding to H3K4 unmodified (K4me0), mono- (K4me1), di- (K4me2) and 

tri- (K4me3) methylated nucleosomes. The FACT complex subunit SUPT16H is used as a 

control to show that FACT binds preferentially to H3K4me3 mono-nucleosomes. Agarose gel 

staining for 601λ DNA was used as loading control for mononucleosomes. 

(D) Genome browser tracks showing knockdown of Cohesin complex (shRad21) does not cause 

overt change of H3K4me1 signals and 4C interactions at the Sox2 locus. Top, Normalized 

H3K4me1 ChIP-seq tracks for control and Rad21 knockdown cells. shGFP, control using 

shRNA against GFP sequences. SE, super-enhancer, indicated also by violet shade. Bottom, 4C-
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seq analysis showing that chromatin interactions between Sox2 SE and promoter are reduced 

upon Rad21 depletion by shRNA. shRad21-48h, shRNA knockdown targeting RAD21 mRNA 

48 hours after lentivirus infection. shRad21-96h, shRNA knockdown targeting RAD21 mRNA 

96 hours after lentivirus infection. Black arrows emphasize the main interacting partner with the 

viewpoint. Heatmap shows the median genomic coverage of the indicated position using 

different sizes of sliding windows between 2 kb (top row) and 50 kb (bottom row). The gray 

shade above the heatmap shows the genomic coverage between 20th and 80th quantile values 

using a slide window of 5 kb. The black trend line indicates the median genomic coverage using 

a slide window of 5 kb. Note that the interaction between Sox2 SE and gene body is dramatically 

lost at 96 hours post knock-down via lentivirus. 

(E) Bar chart showing reduction of Sox2 expression upon knockdown of RAD21 using shRNA 

in two biological replicate experiments. Sox2 mRNA levels were quantified by RT-qPCR and 

normalized to β-Actin mRNA levels. Y-axis, Sox2 mRNA levels relative to shGFP. Blue, first 

replicate. Red, second replicate.  

(F) Box plots showing FIRE scores for 10-kb bins that include and exclude Rad21 or Med12 

peaks. Note that both Rad21 and Med12 including bins show higher FIRE score over non-

including bins in average. p values are computed with paired t-tests. 

(G) Genome browser tracks showing increased H3K4me1 and Cohesin (RAD21) binding in the 

Sox2 SE locus in DKO cells expressing dCas9-MLL3SET. DKO cells were transfected with 

vectors co-expressing tiling CRIPSR guides targeting Sox2 SE and dCas9 proteins with or 

without MLL3SET domain fusion. Top, schematic of the loci assayed. Pink boxes indicate 

genomic regions of interest. SE(purple), Sox2 super enhancer. Bottom panels, genome browser 

tracks showing normalized ChIP-seq coverage in RPKM for H3K4me1, H3K27ac, RAD21 and 

CTCF at control region (Sox2 promoter) and the guide RNA targeted region of Sox2 SE. Y-axis, 

relative RPKM coverage was calculated by normalizing to the constant, CTCF-overlapping 

major peak right to the dashed box. Ctrl: dCas9 without MLL3SET domain. SET: dCas9-

MLL3SET fusion protein.  

See also Figure S5 
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Figure 4. Characterization of gene expression during NPC Differentiation in WT and DKO 

mESC 

(A) Scheme of differentiation protocol. Data was collected for RNA-seq and ChIP-seq at every 

12-hour time points and Hi-C at every 24-hour time points. 

(B) Single cell RNA analysis of NPC differentiation. Each panel represents 2-D t-SNE 

(Stochastic Neighbor Embedding) projection of the cells colored by the total UMI counts per cell. 

x-axis represents t-SNE-1 and y-axis shows t-SNE-2.  Red color indicates high expression of the 

gene that is noted on the left of each row. Each column represents a time point indicated by (A). 

Expression patterns of Nanog and Vimentin showed that the cell population is well synchronized 

and no overt subgroup was observed. Nanog, pluripotency marker in embryonic stem cells. 

Hoxd13 had slight increase in expression in DKO cells. Vimentin, marker for neural progenitor. 

Hoxd13, posterior HOX transcription factor normally expressed in the posterior part of the body 

plan during development. 

(C) Clustering analysis of bulk RNA-seq from WT and DKO cells showing that genes could be 

clustered to 4 different groups depending on the panel of change along differentiation. Note that 

Group I and Group III genes are mostly MLL3/4-dependent in that they behave differentially 

between WT and DKO cells. Group II and Group IV are MLL3/4-independent genes and they 

are expressed in the same pattern in two cell types. 

(D) Gene ontology analysis showing that genes induced only in WT cells are mostly related to 

neuron function. Note that no GO terms could be detected in genes that are induced only in DKO 

cells. 

See also Table S7 

 

Figure 5. Characterization of H3K4me1, Cohesin and Chromatin Interactions during NPC 

Differentiation of WT and DKO mESC 
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 (A) Clustering analysis showing that H3K27ac peaks could be classified to 10 different groups 

per change in both H3K27ac and H3K4me1 signal in WT and DKO cells during differentiation. 

The color key shows the log2 transformed input normalized RPKM value of each peak. Green 

triangle shows the differentiation time, the thicker side representing later time points. Yellow 

box emphasizes the group that shows induced H3K27ac and H3K4me1 signal in WT cells along 

differentiation. The right bar charts show the averaged signal of H3K4me1 (top) and H3K27ac 

(bottom) of group III. D0, Day1; D2.5, Day2.5. 

(B) Heatmap showing the change of input normalized Mediator subunit Med12 (left) and 

Cohesin subunit Rad21 RPKM (right) at Group III H3K4me1 peaks emphasized in (A). Note 

that Cohesin and Mediator binding also tends to increase in WT cells but not in DKO cells. The 

right bar charts show the averaged signal of H3K4me1 (top) and H3K27ac (bottom) of group III.  

(C) Heatmap showing the change of FIRE score at Group III H3K4me1 peaks emphasized in (A). 

Note that FIRE score tends to increase in WT cells but not in DKO cells.  

See also Table S3 

 

Figure 6. Dynamic histone modification, Mediator and Cohesin Occupancy and Changes in 

Chromatin Interactions at Representative Loci 

(A) Genome browser track showing that at Sox2 SE locus, H3K27ac and H3K4me1 signals were 

enriched in WT cells but not in DKO cells on Day 0. Along cellular differentiation, H3K27ac 

and H3K4me1 signals gradually decreased, while Mediator and Cohesin binding were also 

alleviated. Note that Cohesin and Mediator started decreasing at Day 1.5 while H3K27ac and 

H3K4me1 both start decreased at Day 1. By contrast, none of the factors could be detected in 

DKO. Y-axis shows input normalized ChIP-seq reads per kilobase pair per million total reads 

(RPKM) 

(B) Bar chart showing change of chromatin interactions (FIRE score). Blue bars indicate FIRE 

score at each time point relative to Day 0. The 30-kb regions are enclosing the entire Sox2 super 

enhancer in (A).  The change of FIRE score in DKO (red bars) was mild compared to WT. 
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 (C) Genome browser track showing at a representative locus, H3K27ac and H3K4me1 signals 

gradually increased along cellular differentiation, starting from Day 1.5. Meanwhile, Mediator 

and Cohesin are also detected to be initiated at Day 2. By contrast in DKO cells, none of the 

factors could be detected until Day 2.5. Y-axis shows input normalized ChIP-seq reads per 

kilobase pair per million total reads (RPKM) 

(D) Bar chart showing change of chromatin interactions enclosed in (C) (FIRE score). Blue bars 

indicate FIRE score at each time point relative to Day 0. The 10-kb regions are enclosing the 

entire 5-kb region shown in panel (A).  Less change in FIRE score was observed in DKO (red 

bars) than in WT. 

 (E) A model depicting MLL3/4 and H3K4me1’s role in establishment of chromatin interactions 

at enhancers. When H3K4 is not methylated at distal enhancer, the promoter is physically 

separately in different nuclear territory (left). MLL3/4 are recruited to distal enhancers, leading 

to monmethylation of lysine 4 of histone H3 (middle). Subsequently, the Cohesin complex is 

recruited to mediate the looping interaction between gene promoter and enhancer. 

See also Figure S6 and Table S4 
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EXTENDED EXPERIMENTAL PROCEDURE 

 

4C-seq and Data Analysis 

 4C-seq experiments and analysis was performed as described previously(van de 

Werken et al., 2012a). Briefly, 5 million cells were cross-linked with 2% formaldehyde 

for 10 min at room temperature (RT) and quenched by adding 125 mM Glycine with 5 

min additional incubation at RT. Cells were lysed and nuclei were isolated and digested 

with Csp6I (Thermo Scientific) or Dpn II (NEB) over night (o/n). Enzyme was 

inactivated by heat at 65 °C for 20 min. The digested chromatin was subjected for 

ligation for 16 h with T4 ligase (Life Technologies). DNA was then purified with 

phenol/chloroform extraction and ethanol precipitation before the second digestion with 

NlaIII (NEB) or BfaI (NEB) at 37 °C o/n.  After enzyme inactivation, a second ligation 

was performed at 16 °C for 4 h and DNA was purified, of which 4.8 µg in total was used 

for PCR amplification using 4 different pairs of primers (Table S5) which were designed 

compatible for illumina Hiseq 2500 sequencer.  

 Sequencing data were analyzed using a custom pipeline ‘4Cseq’ as previously 

described(van de Werken et al., 2012b) with all default parameters. For consistency, all 

sequencing data involving E14 and DKO genomes in this work were mapped to mouse 

mm9 reference genome. Contact frequency was visualized for genomic regions in a 300 

kb window that includes both SOX2 gene and SOX2 SE (chr3: 34,448,927-34,765,152).  

 

Lentiviral Packaging and shRNA Knock-Down 

 Lentiviral particles were prepared using the Lenti-X single shot packaging system 

(Clontech), according to the manufacture’s guidelines. Control shGFP (Addgene #30323) 

and murine shRad21 (Sigma SHCLNV_NM009009 (TRCN0000176084)) plasmids 

(Target sequences see Table S5) were transfected to Lenti-X 293 cell line (Clontech) and 

viral supernatant were concentrated using the Amicon Ultra-15 100 kDa centrifugal 

filters (Millipore).  For shRNA knockdown, E14 cells were plated on a 6-well dish coated 

with 0.1% gelatin the day before transduction (2×105 cells per well). Concentrated viral 

supernatant were added to mouse ES medium containing 8 µg/mL polybrene (Sigma). 
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Media containing lentiviruses were replaced with fresh media 24 h post-infection. 

Infected cells were selected by puromycin (1 µg/mL) for 72 h.  

 

Chromatin Immunoprecipitation Followed by Sequencing (ChIP-seq) and Data 

Analysis 

 The ChIP-seq has been carried out as previously described (Jolma et al., 2013; 

Tuupanen et al., 2012; Yan et al., 2013). Briefly, 2 million cells were crosslinked with 

1% formadehyde for 10 min at RT. The reaction was quenched by adding 125 mM of 

Glycine and incubating for 5 min at RT. Cells were lysed in RIPA buffer (10 mM Tris-

HCl pH 8.0, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium 

deoxycholate) supplemented with protease inhibitor (Roche). And chromatin was 

sonicated into short fragments (300-700 bp). The fragmented chromatin was incubated 

with antibodies (Table S6) to pull down the specific DNA bound TFs or histones. After 

intensive wash, DNA was purified and prepared as sequencing library using illumina 

Truseq LT kit. Several samples with different indexes were pooled together for 50 or 100 

cycles single read sequencing with illumina Solexa sequencer or Hiseq 2500. 

 Sequencing reads were mapped to mouse mm9 reference genome using bowtie 

(Langmead et al., 2009). PCR duplicates were removed and peaks were called with 

MACS (Zhang et al., 2008) using input chromatin as control, with the parameter –m 5, 50 

otherwise default. RPKM was calculated for each peak by dividing the number of reads 

overlapping peak with the length of the peak and multiply 1000, and the resulted value 

would be multiplied with a scale factor as to normalize the total number of reads to 1 

million. The RPKM of each peak for samples was subtracted with the RPKM of that peak 

for input. If the subtracted number is less than 0, the RPKM of the peak for that sample 

will be assigned as 0. 

 In order to define Mll3/4 dependent H3K4me1 peaks, we merged H3K4me1 

peaks from both E14 and DKO cells and extended all peaks to 2 kb wide. We merged two 

close peaks if they were partially overlapping. According to the RPKM described above, 

we calculated RPKM for all the 2-kb peaks for both E14 and DKO cells. We sorted the 

peaks according to the difference of the RPKM between E14 and DKO. If the RPKM of a 

given peak in E14 is over 0.6 larger than DKO, that peak will be classified to 
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‘Decreased’. Similarly, if the difference is over 0.6 smaller than DKO, that peak will be 

classified as ‘Increased’. Other peaks will be classified as ‘Non-differential’. 

 The sequences from the top 300 decreased peaks were submitted to AME 

(MEME-suite (Bailey et al., 2009)), using the bottom 300 increased peaks as background. 

 GO analysis for different categories of H3K4me1 peaks was performed with 

GREAT (McLean et al., 2010). 

 

RNA-seq and Data Analysis 

 Total RNA from ES cells was extracted with Trizol® according to protocol 

(Thermo Scientific, 15596-026). PolyA+ RNA was purified with the Dynabeads mRNA 

purification kit (Life Tech.). The mRNA libraries were prepared for strand-specific 

sequencing using illumina TruSeq Stranded mRNA Library Prep Kit Set A (illumina, RS-

122-2101) or Set B (illumina, RS-122-2102). Libraries were sequenced with illumina 

Hiseq 2500 for 100 cycles single reads. 

 The single cell RNA-seq was carried out using Chromium™ Single Cell 3’ v2 

Library (10XGenomics). For each time point, 2000-5000 cells were analyzed. 

 Sequencing was mapped to mouse mm9 reference genome with Tophat (Trapnell 

et al., 2009). The differential expression was analyzed with Cuffdiff (Trapnell et al., 

2012). We plotted the differentially expressed genes if the fold change of adjusted fpkm 

value between E14 and DKO is larger than 2. 

 Gene Ontology analysis was carried out using DAVID release 6.7 with default 

parameters (Huang da et al., 2009). 

 

RNA Extraction and qPCR 

 Total RNA was isolated from harvested cells using the RNeasy columns (Qiagen) 

according to the manufacturers instructions. cDNA were synthesized from 400 ng of total 

RNA using  High Capacity cDNA Reverse Transcription kit (Applied Biosystems). qPCR 

was performed in triplicates using SYBR FAST qPCR master mix (KAPA biosystems) 

on the LightCycler 480 (Roche). Two independent sets of qPCR primers for mouse Actb 

and Sox2 were used: customer synthesized primers (Table S5) and commercially 

available primer sets for mouse Actb (Qiagen, catalogue no. PPM02945B) and Sox2 
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(Qiagen, catalogue no. PPM04762E), and a set of primers for Rad21 (Qiagen, catalogue 

no. QT00141204). 

Nucleosome Assembly and Pull down assay 

 Histones are expressed using E.coli strain BL21 (DE3) transformed with cDNA of 

wild type H2A, H2B, H3, H4 and a mutant H3 C110A K4C contruct (a generous gift 

from Dr. M. Carey). In order to make methyl-lysine analogs, we used a previously 

described protocol (Simon et al., 2007). Briefly, 5 mg of H3 was incubated and mixed 

with (2-hal-oethyl) amines under reducing conditions, followed by being quenched with 

β-mercaptoethanol. The methylated histone was dialyzed against water overnight, and 

spun to remove precipitant. Equimolar amounts of histones were mixed under denaturing 

conditions and dialyzed overnight to assemble octamers followed by size selection 

(Luger et al., 1999). 

 Biotin tagged double stranded 601λ positioning DNA sequence was prepared as 

previously described (Dyer et al., 2004). The mono-nucleosomes were produced via 

serial salt dialysis (Carruthers et al., 1999). The H3 lysine 4 methylation was tested by 

western blotting with antibodies specifically recognizing various H3K4me states.  

 The different modified mono-nucleosomes were immobilized to streptavidin-

coated beads (Invitrogen MyOneT1) as per manufacturers instructions and used as baits 

in following binding studies. Briefly, three micrograms of mono-nucleosomes were pre-

bound to MyOneT1 beads. Immobilized nucleosomes were incubated with rotation with 

HeLa Nuclei Extract (200 µl of ~5 mg/ml) for 1 hour at room temperature. Beads were 

washed 3 times with wash buffer containing 250mM NaCl, 25mM Tris pH 8.0, 1mM 

EDTA, 0.2% NP40, and 1mM DTT and resuspended in equal volume of 2X Laemmli 

Sample Buffer (Bio-Rad). Binding was tested via western blotting using antibodies listed 

in Table S6. 

 

Hi-C FIRE Score Clustering 

 We used R function 'hclust' with the complete linkage to carry out hierarchical 

clustering analysis. In specific, we first perform log2 transformation to the FIRE score, 

and then calculated the Euclidean distance between any two samples.  
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Topological Associating Domain and Boundary calling 

 Topological domains were called based on the directionality index (DI) score 

using a Hidden Markov Model (HMM) as previously described (Dixon et al., 2012). The 

software used can be downloaded at Hi-C Domain Caller. According to the domain 

patterns, the genome is partitioned as follows: domains are marked as domains; gaps 

between domains that are larger than 100 kb were marked as unstructured regions; gaps 

between domains that are smaller than 100 kb were marked as boundaries; if two 

domains are consecutive, the 10 kb window centered at the boundary is marked as  a 

boundary. 

 

Support Vector Machine for FIRE Classification 

 We first partitioned the genome into non-overlapping bins of the same length 

(10kb) and filtered those with poor mappability. Bins with z-score greater than 1.65 (P < 

0.05) were selected as positive hits, same amount of bins with smallest z-score were 

chosen as negative set. With 8 features, Support Vector Machine (SVM) implemented by 

R package ‘1071’  was applied to classify positive FIRE bins from the negative ones with 

default model setting (gamma=1, epsilon=0.1 and radical kernel), prediction performance 

was evaluated by AUC (Area Under ROC curve) using 5-fold cross validation. To further 

evaluate the importance of each variable, we made prediction based on the same setting 

but using one feature each time. AUC estimated by 5-fold cross validation for each 

feature reflects its decimation power. 

 

Neural Progenitor Cell Differentiation 

 NPC differentiation protocol is adapted from previously published methods with 

modification (Bibel et al., 2004; Hon et al., 2014; Wang et al., 2012). Briefly, mouse 

embryonic stem cell line WT and DKO cells were grown on γ-irradiated Mouse 

Embryonic Fibroblast feeder cells before seeding. Cells were split and seeded to 10-cm 

petri-dish coated with 0.2% Gelatin type-A one day before differentiation in ES culture 
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medium supplemented with LIF. On Day 0, LIF was deprived from the culture medium 

and cells were continued to be cultured for 24 hours. From Day 1 to Day 3, cells were 

cultured in LIF-deprived ES medium supplemented with 5 µM retinoic acid (RA). Cells 

were harvested every 12 hours and aliquoted for further assays. One million cells were 

collected for RNA-seq, two millions cells were collected for in situ Hi-C experiments, 

fixed 1% formaldehyde (sigma). Five million cells were collected for 4C-seq and ChIP-

seq, fixed with 2% and 1% formaldehyde, respectively. 

 

Super-enhancer Analysis 

 Super-enhancer is defined using H3K27ac ChIP-seq data, similar to (Hnisz et al., 

2013). Briefly, MACS was used to call narrow peaks of H3K27ac with input as controls. 

The peak file was then used as a guide file to define Super-enhancer, using published 

algorithm ROSE (Hnisz et al., 2013; Loven et al., 2013). For each ChIP-seq library 

including H3K27ac and input at each time points, the number of uniquely mappable reads 

of 15 million was set as a minimum requirement for super-enhancer call. 

 

HiCNormCis and FIRE calling 

 We developed a novel computational approach, named as HiCNormCis (Schmitt 

et al, manuscript under minor revision at Cell Reports), to remove systematic biases in 

total cis intra-chromosomal interactions. We first filtered out all intra-chromosomal 

interactions with 15kb since they are very likely to be self-ligation artifacts. Next, we 

divided the mouse reference genome (mm9) into 10kb bins, and for each 10kb bin, 

calculated the total cis intra-chromosomal interactions within 200kb. Consistent with the 

previous study (Yaffe and Tanay, 2011), we observed that the raw total cis intra-

chromosomal interactions contain biases from three local genomic features, including 

restriction enzyme fragment length, GC content and mappability score. We applied a 

Poisson regression approach to remove three systematic biases. In specific, let 𝑦" 

represent the raw total cis intra-chromosomal interactions at the 𝑖  th 10kb bin. In 

addition, let 𝐹" , 𝐺𝐶"  and 𝑀"  represent the effective fragment size, GC content and 

mappability score at the 𝑖 th 10kb bin, respectively. The definition of these three local 

genomic features is described in our previous work (Hu et al, 2012). Assume 𝑦" follows a 
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Poisson distribution with mean 𝜃" , we fitted a Poisson regression model log 𝜃" = 𝛽. +

𝛽0𝐹" + 𝛽12𝐺𝐶" + 𝛽3𝑀" , where 𝛽0 , 𝛽12  and 𝛽3  are regression coefficients of the 

effective fragment size, GC content and mappability score, respectively. Here 𝛽.  is a 

Poisson offset to account for total sequencing depth. After fitting this Poisson regression 

model, we obtained the estimate of the unknown parameters 𝛽., 𝛽0, 𝛽12, 𝛽3 . Next, for 

each 𝑖 th 10kb bin, we defined residual 𝑟𝑒𝑠" = 𝑦"/ exp{𝛽. + 𝛽0𝐹" + 𝛽12𝐺𝐶" + 𝛽3𝑀"} as 

the FIRE score. We further converted FIRE score into z-score and corresponding one-

sided p-value. 10kb bins with one-sided p-value less than 0.05 are determined as FIRE 

bins. We have shown that the raw total cis intra-chromosomal interactions 𝑦" show strong 

correlation with three local genomic features 𝐹" , 𝐺𝐶"  and 𝑀"  (Supplemental Figure 

S3E). After applying HiCNormCis, the FIRE score 𝑟𝑒𝑠" show negligible correlation with 

these genomic features (Supplemental Figure S3F), indicating that HiCNormCis has 

successfully removed such biases. As a comparison, we also implemented two popular 

matrix balancing based Hi-C data normalization approaches, Vanilla Coverage (Rao et al, 

2014) and ICE (Imakaev, et al, 2012). However, both Vanilla Coverage and ICE 

normalized total cis intra-chromosomal interactions still show high correlation with 𝐹", 

𝐺𝐶" and 𝑀" (Supplemental Figure S3G, S3H). Therefore, we conclude that VC and ICE 

are not optimal for correcting biases buried in total cis intra-chromosomal interactions, 

and decide to use HiCNormCis for Hi-C data normalization. 
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Supplemental Figure Legends 

 

Figure S1. Mll3/4 Deficient mESCs Reveal Lost Interaction between Sox2 Gene 

Body and SE, Related to Figure 1    

(A) Super-enhancer call using H3K27ac ChIP-seq data in WT cells. x-axis shows the 

rank of enhancers, and larger number represents higher rank of peaks with H3K27ac 

signals. y-axis is the input normalized H3K27ac ChIP-seq coverage within the peak.   

(B) Similar to Fig. 1b, the 4C-seq data from different viewpoints shows that the 

interaction between Sox2 gene body and SE is lost upon Mll3/4 depletion in mESCs. 

(C) A 2D-heat map of 4C-seq analysis shows a significant reduction in contact frequency 

between Sox2 TSS and Sox2-SE in DEL cells compared to F123 WT cells. 

(D) Microscopy images of 3D FISH shows that physical distance between SOX2 SE and 

promoter becomes larger in DEL cells than F123 WT. Red dots, probes hybrid to SE 

locus, Green dots, probes detecting promoter locus; Cyan dots, probes detecting a region 

(RP23 locus) that is located 170 kb downstream from SE. 

(E) Summary of FISH data from 80 different cells for both cell types respectively. Note 

that distance between promoter and SE was significantly larger in DKO than WT. In WT 

cells, SE is significantly closer to promoter than to RP23 while the difference was not 

observed in DEL cells, indicating the loss of interaction between SE and Promoter in 

DEL cells. S-R, distance between RP23 and SE; P-R, distance between RP23 and 

Promoter; P-S, distance between Promoter and SE. Asterisks indicate statistical 

significance tested with student t-test (*** p<0.005). 

(F) 4C-seq shows that the enhancer interacts with Car2 gene in WT cells but not in DKO 

cells (lower). The H3K4me1 ChIP-seq tracks are shown as a reference (upper). Note that 

H3K4me1 signals at both Car2 enhancer and Car2 gene body are decreased in DKO 

cells. EN indicates the location of the enhancer. 

(G) RNA-seq data shows that except Sox2, transcription level of other pluoripoteny 

factors (labeled with red dot) is not changed. FPKM is computed using cufflink with 

three biological replicates. 
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Figure S2. Mll3/4 Are Required for Genome-wide Deposition of H3K4me1 at 

promoter-distal Enhancers, Related to Figure 1 

(A) Comparison of H3K4me1 ChIP-seq signals between WT and DKO cells at cis-

regulatory elements (TE and SE, defined by (Whyte et al., 2013) and within 2 kb of TSS. 

SE, super-enhancer. TE, typical enhancer. TSS, transcription starting site. Median values 

were shown as vertical lines in the box plots, the upper edge and lower edge show the 

25th and 75th quantile, and error bars indicate 10th and 90th quantile. p value was 

computed with two-tail Student t-test. 

(B) A Venn Diagram (left) shows the overlap of H3K4me1 ChIP-seq peaks between WT 

(blue) and DKO (red) cells. Numbers of Mll3/4-dependent H3K4me1 regions, Mll3/4-

independent H3K4me1 peaks and other H3K4me1 regions are shown. Heatmap (right) 

shows the distribution of H3K4me1 ChIP-seq signal within 10 kb of peak summits in WT 

and DKO cells respectively. Each row represents the same 10-kb window surrounding 

the peak summit in E14 and DKO cells. Color key shows the log2 transformed RPKM. 

(C) Distribution of H3K4me1 regions in different genomic positions relative to TSS.  

(D) Result of motif enrichment analysis performed with the top 500 Mll3/4-dependent 

H3K4m1 peaks as foreground and the bottom 500 Mll3/4-independent H3K4m1 peaks as 

background. Note that motif for Sox2, a master regulator of embryonic stem cell 

pluoripotency, has the lowest p value. 

(E) Shown is the result of Gene Ontology analysis using all Mll3/4-dependent H3K4me1 

regions as foreground and all H3K4me1 regions as background. 

 

Figure S3. H3K4me1 does not Affect Global Contact Frequency but is Required for 

FIREs, Related to Figure 2  

(A) Global contact frequency is not obviously affected by Mll3/4 depletion. x-axis shows 

the distance between two bins. Y-axis is the average value of normalized Hi-C contact 

frequency. Blue stars, data from WT cells. Red stars, data from DKO cells. Inset shows 

the subtracted values between two cell types. 

(B) Heatmap showing the difference in normalized intra-chromosomal contact frequency 

at various distance between WT and DKO cells for chromatin regions among different 

classes of H3K4me1 regions. Mll3/4-independent bins include only Mll3/4-independent 
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H3K4me1 regions; Mll3/4-dependent bins include only Mll3/4-dependent H3K4me1 

regions; Whole-Genome, all bins for comparison. Color key shows the normalized 

differential contact frequency. 

(C) Comparison of TAD boundaries between two biological replicates of WT cells. Note 

that the majority of TAD boundaries are shared by the two samples. 

(D) Comparison of TAD boundaries between WT and DKO cells. Note that the 

difference is of the similar magnitude as biological replicates shown in panel (C). 

(E) Scatter plot shows that the raw counts of Hi-C libraries are correlated with fragment 

length (left), GC content (middle) and mappability (right). 

(F) Scatter plot shows after HiCNormCis normalization, the interaction frequency is no 

longer correlated with the three main bias factors mentioned in (E). 

(G)-(H) Similar to (F), Scatter plot shows after VC or ICE normalization, the interaction 

frequency is still correlated with the three main bias factors mentioned  

 

Figure S4. H3K4me1 is Required for FIREs, Related to Figure 2  

(A, B) Scatter plots show comparison of FIRE score between two biological replicates of 

WT cells (B) and DKO cells (C), respectively. Insets show the Pearson correlation 

coefficient r and p value. 

(C) Cluster analysis using Pearson correlation coefficient r between samples. The x-axis 

represents the maximum possible Euclidean distance between samples belonging to two 

different clusters. From the dendrogram, we observed that two biological replicates of the 

same condition first clustered together, indicating that the variation between two 

biological replicates of the same condition is less than the variation between wild type 

cells and mutant cells. 

(D) Jittered scatter plot shows FIRE score of different categories of FIREs. Note that in 

the shared FIREs, WT cells show higher FIRE score than DKO cells. The p value is 

computed with Mann-Whitney U test. 

(E) The gene density of expressed genes (FPKM>=1) per Mb DNA sequences in FIREs 

are significantly higher than the average genome. 

(F) Gene ontology analysis of genes located in WT and DKO specific FIREs 

repspectively. The genes in WT-specific FIREs are more functionally related to cell 
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differentiation and development. The Benjamini-adjusted p values are shown in each 

category. 

(G) Boxplot shows the correlation between the change of H3K4me1 and change of FIRE 

score throughout the genome. The change of H3K4me1 is classified in different quantiles 

according to the change of the input normalized RPKM value. Note that only 19% of bins 

that showed detectable change of H3K4me1 were included in the analysis. The other 81% 

of bins were indicated as ‘N.D.’ in the figure. The data of all the bins were included 

(WG) for comparison. Y-axis shows the change of FIRE score for the indicated bins. 

(H) The Boxplot shows that change of H3K27ac signal is correlated with change of FIRE 

scors. Similar to Figure 4D, the 10-kb bins were categorized to 4 groups: I, no H3K27ac 

peaks in either cell type; II, with WT specific H3K27ac peaks only; III, with DKO 

specific H3K27ac peaks only; IV, with shared H3K27ac peaks. y-axis shows Log2 

transformed fold change of FIRE score between WT and DKO cells. 

 

Figure S5. H3K4me1 Assisted Cohesin Binding to Chromatin, Related to Figure 3 

(A) Gel images show the quality of mononucleosome assembly. Western blot shows that 

the assembled nucleosomes are modified specifically at lysine 4 of histone H3 (right).   

(B) Barplot shows that Cohesin/Smc3 is associated with Mll3/4 dependent H3K4me1 

peaks. Cohesin is more enriched in the regions that are closer to Mll3/4 dependent 

H3K4me1 peaks than the distal regions. 

(C) qPCR confirms that Rad21 knock-down drops the mRNA level of Rad21 to less than 

10% in WT cells. 

(D) Heatmap shows Baz1a and Snf2h binding around Mll3/4 dependent H3K4me1 peaks 

are dramatically decreased but only mildly affected around Mll3/4 independent 

H3K4me1 peaks or other H3K4me1 peaks. Each row show 10-kb bin centered by 

H3K4me1 peak summit. 

 

Figure S6. Super-enhancer Call Using H3K27ac ChIP-seq Data, Related to Figure 6 

(A) Heatmap shows the overlapping of super-enhancers between cells at different time 

points during differentiation and between two cell types. Color key shows the fraction of 

overlapping. Green triangle shows the differentiation time, the thicker side representing 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2017. ; https://doi.org/10.1101/110239doi: bioRxiv preprint 

https://doi.org/10.1101/110239
http://creativecommons.org/licenses/by-nc/4.0/


14	
	

later time points. D0, Day1; D2.5, Day2.5. Note that cells of the same type tend to show 

higher overlapping than between two cell types and that cells at consecutive time points 

show high fraction of shared super-enhancer. 

(B) Fraction of super-enhancer located in FIREs that are defined in WT cells. Note that 

over 50% of super-enhancers are located at FIREs and they are decreased along the 

differentiation. DKO cells show low overlapping of super-enhancers in WT FIREs 

confirming its different characteristics and cell identity. 

(C) Genome browser tracks show the change of super-enhancer at Sox2 locus. Note that 

Sox2 super-enhancer is lost at Day 1.5. 

(D) Genome browser tracks show the change of FIRE at the same locus. Note that FIRE 

at Sox2 super-enhancer also gets lost at Day 1.5. 
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