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Abstract 

A bilateral network of frontal and parietal domain-general brain regions – the multiple demand 

(MD) system (Duncan, 2010, 2013) – has been linked to our ability to engage in goal-directed 

behaviors, solve novel problems, and acquire new skills. Damage to this network leads to deficits 

in executive abilities and lower fluid intelligence (e.g., Woolgar et al., 2010), and aberrant 

functioning of this network has been reported in a variety of neurological and psychiatric 

disorders (e.g., Cole et al., 2014). However, prior attempts to link MD activity to behavior in 

neurotypical adults have yielded contradictory findings. In a large-scale fMRI study (n=140), we 

found that stronger up-regulation of the MD activity with increases in task difficulty, as indexed 

by larger differences between responses to the harder vs. easier condition, was associated with 

better behavioral performance on the working memory task performed in the scanner, and overall 

higher fluid intelligence measured independently. We further demonstrate how small samples, 

like those used in some earlier studies, could have led to the opposite patterns of results. Finally, 

the relationship we observed between MD activity and behavior was selective: neural activity in 

another large-scale network (the fronto-temporal language network) did not reliably predict 

working memory performance or fluid intelligence. Our study thus paves the way for using 

individual fMRI measures to link genetic and behavioral variation in executive functions in 

healthy and patient populations. 
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Significance statement 

A distributed frontoparietal Multiple Demand (MD) network has long been implicated in 

intelligent behavior, and its damage has been associated with lower intelligence and difficulties 

in problem solving. Yet prior studies have not yielded a clear answer on how individual 

differences in MD activity translate into differences in behavior. Across a large number of 

participants, we find that stronger up-regulation of the MD network’s activity robustly and 

selectively predicts higher intelligence scores and better task performance. We demonstrate how 

small samples, along with other shortcomings, could have led to contradictory results in previous 

studies. Thus, MD activity up-regulation can serve as a robust individual measure to link genetic 

and behavioral variation in executive functions in healthy and patient populations. 
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Introduction 

A bilateral network of frontal and parietal domain-general brain regions – the multiple 

demand (MD) system (Duncan, 2010, 2013) – has been has been linked to our ability to engage 

in goal-directed behaviors, solve novel problems, and acquire new skills (Duncan and Owen, 

2000; Fedorenko et al., 2013; Hugdahl et al., 2015). Damage to this network as a result of stroke, 

degeneration or head injury leads to poorer executive abilities (attention, working memory, and 

inhibitory control) and lower fluid intelligence (Glascher et al., 2010; Roca et al., 2010; Woolgar 

et al., 2010). Furthermore, aberrant functioning of this network, as measured with fMRI, has 

been reported in a variety of cognitive and psychiatric disorders (Cole et al., 2014). 

Given the fundamental importance of flexible thought and behavior for humans, a deeper 

understanding of the individual differences in this network’s activity would have critical 

implications for medicine, providing an intermediate link between behavioral and genetic 

variability, as well as yield a deeper understanding of basic cognitive and neural architecture 

(Braver et al., 2010; Dubois and Adolphs, 2016). Critically though, the potential usefulness of 

neural measures of MD activity is contingent on our ability to link such activity to behavior. Yet 

previous attempts to do so have yielded contradictory findings: some studies have reported 

stronger MD responses associated with worse behavioral performance and lower IQ (Haier et al., 

1988; Rypma and Esposito, 2000; Rypma et al., 2006), others – with better performance and 

higher IQ (Gray et al., 2003; Lee et al., 2006; Tschentscher et al., 2017). 

These discrepancies may be due to a number of shortcomings that characterize many 

prior studies that have probed the relationship between MD neural responses and behavioral 

measures. First, many studies have used small numbers of participants and/or transformed 

continuous behavioral measures into categorical variables (e.g., high- vs. low-performing 
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participants), both of which can produce inflated or spurious relationships (Rypma and Esposito, 

2000; Wager et al., 2005; Lee et al., 2006; Rypma et al., 2006; Tschentscher et al., 2017). 

Second, some studies have used BOLD estimates based on contrasts of task relative to fixation, 

which may fail to isolate MD activity from general state (e.g., motivation, sleepiness, caffeine 

intake) or trait (e.g., brain vascularization) variables (Rypma and Esposito, 2000; Gray et al., 

2003; Rypma et al., 2006). And third, most studies have failed to take into consideration inter-

individual variability in the precise locations of MD regions, which leads to losses in sensitivity 

and functional resolution (Nieto-Castañón and Fedorenko, 2012). This latter problem is 

compounded by the proximity of MD regions to language-selective regions (Fedorenko et al., 

2012), which are functionally distinct, showing no response to any demanding task other than 

language processing (Fedorenko et al., 2011; Monti et al., 2012). In addition to these limitations, 

prior studies have failed to establish, or even assess, the selectivity of the relationship between 

MD activity specifically (cf. any other neural measure) and behavior (Gray et al., 2003; Rypma 

et al., 2006; Dubois and Adolphs, 2016). 

To circumvent these limitations and rigorously test the relationship between MD activity 

and behavior, we conducted a large-scale fMRI study, where participants (n=140) performed a 

spatial working memory (WM) task that included a harder and an easier condition (Fig. 1). We 

then examined the relationship between the size of the Hard>Easy (H>E) BOLD effect across 

the MD network (defined functionally in each participant individually (Fedorenko et al., 2013); 

Fig. 3), and a) behavioral performance on the task (including in an independent run of data), as 

well as b) a measure of fluid intelligence (in a subset of participants, n=63). We further evaluated 

the selectivity of this brain-behavior relationship by examining neural activity in another large-
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scale brain network: the left fronto-temporal language network (Binder et al., 1997; Fedorenko et 

al., 2010). 

Materials and Methods 

Participants 

140 right-handed participants (age 22.8 ± 5.4, 47 males) with normal or corrected-to-

normal vision, students at Massachusetts Institute of Technology (MIT) and members of the 

surrounding community, participated for payment. All participants gave informed consent in 

accordance with the requirements of the Committee on the Use of Humans as Experimental 

Subjects at MIT. 

Experimental Design and Statistical Analysis 

Participants performed two tasks in the scanner (the critical spatial working memory task, 

and a language processing task used here to assess the selectivity of the relationship between MD 

activity and behavior). A subset of participants performed a behavioral IQ test after the scanning 

session. Neural measures were statistically estimated using the standard General Linear Model 

(GLM) in SPM5 (see the fMRI data preprocessing and first-level analysis and MD/Language 

fROIs definition and response estimation sections for details). The following statistical tests were 

used: A two-sample paired t-test was used to compare behavioral performance between the easy 

and hard conditions of the spatial working memory (WM) task. A one-sample t-test was used to 

test the reliability of the H>E effect size in the spatial WM task for each ROI separately, and 

across ROIs, across participants. Pearson and Spearman correlations were used: 1) to assess the 

stability of behavioral or neural measures across runs (Figures 2, 3C-E; for the results reported 

in Figure 3D, a Bonferroni correction for the number of ROIs, i.e., 18, was applied), 2) to test 
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the relationship between MD/language networks activities and behavioral measures (Figures 4, 

5B), and 3) to test the relationship between the BOLD H>E-behavior in different sample sizes 

(Figure 6). A partial correlation test was used to assess the unique variance in IQ scores that 

each network can predict after controlling for the other network’s responses (see The Selectivity 

of the MD BOLD predictions section). 

Experimental Paradigms 

Participants performed a spatial working memory task in a blocked design (Fig. 1). Each 

trial lasted 8 seconds: within a 3x4 grid, a set of locations lit up in blue, one at a time for a total 

of 4 (easy condition) or two at a time for a total of 8 (hard condition). Participants were asked to 

keep track of the locations. At the end of each trial, they were shown two grids with some 

locations lit up and asked to choose the grid that showed the correct locations by pressing one of 

two buttons. They received feedback on whether they answered correctly. Each participant 

performed two runs, with each run consisting of four 32-second easy condition blocks, four 32-

second hard blocks, and four 16-second fixation blocks. Condition order was counterbalanced 

across runs. 

In addition to the spatial working memory task, all participants performed a language 

localizer task (Fedorenko et al., 2010), used here to test the selectivity of the relationship 

between MD network’s activity and behavior. The majority (n=113, 81%) passively read 

sentences and lists of pronounceable nonwords in a blocked design. The Sentences>Nonwords 

contrast targets brain regions sensitive to high-level linguistic processing (Fedorenko et al., 2010, 

2011). Each trial started with 100ms pre-trial fixation, followed by a 12-word-long sentence or a 

list of 12 nonwords presented on the screen one word/nonword at a time at the rate of 450ms per 

word/nonword. Then, a line drawing of a hand pressing a button appeared for 400ms, and 
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participants were instructed to press a button whenever they saw the icon, and finally a blank 

screen was shown for 100ms, for a total trial duration of 6s. The button-press task was included 

to help participants stay awake and focused. Each block consisted of 3 trials and lasted 18s. Each 

run consisted of sixteen experimental blocks (eight per condition), and five fixation blocks (14s 

each), for a total duration of 358s (5min 58s). Each participant performed two runs. Condition 

order was counterbalanced across runs. The remaining 27 participants performed similar versions 

of the language localizer with minor differences in the timing and procedure. (We have 

previously established that the localizer contrast is robust to such differences (e.g., Fedorenko et 

al., 2010; Scott et al., 2016). 

Finally, most participants completed one or more additional experiments for unrelated 

studies. The entire scanning session lasted approximately 2 hours. 

A subset of 63 participants performed the non-verbal component of KBIT (Kaufman and 

Kaufman, 2013) after the scanning session. The test consists of 46 items (of increasing difficulty) 

and includes both meaningful stimuli (people and objects) and abstract ones (designs and 

symbols). All items require understanding the relationships among the stimuli and have a 

multiple-choice format, requiring the participant to select the correct response. If a participant 

answers 4 questions in a row incorrectly, the test is terminated, and the remaining items are 

marked as incorrect. The test is scored following the formal guidelines to calculate each 

participant’s IQ score. 

fMRI data acquisition 

Structural and functional data were collected on the whole-body 3 Tesla Siemens Trio 

scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging Center at the 

McGovern Institute for Brain Research at MIT. T1-weighted structural images were collected in 
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128 axial slices with 1mm isotropic voxels (TR=2530ms, TE=3.48ms). Functional, blood 

oxygenation level dependent (BOLD) data were acquired using an EPI sequence (with a 90° flip 

angle and using GRAPPA with an acceleration factor of 2), with the following acquisition 

parameters: thirty-one 4mm thick near-axial slices, acquired in an interleaved order with a 10% 

distance factor; 2.1mm x 2.1mm in-plane resolution; field of view of 200mm in the phase 

encoding anterior to posterior (A > P) direction; matrix size of 96mm x 96mm; TR of 2000ms; 

and TE of 30ms. Prospective acquisition correction (Thesen et al., 2000) was used to adjust the 

positions of the gradients based on the participant’s motion one TR back. The first 10s of each 

run were excluded to allow for steady-state magnetization. 

fMRI data preprocessing and first-level analysis 

fMRI data were analyzed using SPM5 and custom MATLAB scripts. Each subject’s data 

were motion corrected and then normalized into a common brain space (the Montreal 

Neurological Institute (MNI) template) and resampled into 2mm isotropic voxels. The data were 

then smoothed with a 4mm Gaussian filter and high-pass filtered (at 200s). The task effects in 

both the spatial WM task and in the language localizer task were estimated using a General 

Linear Model (GLM) in which each experimental condition was modeled with a boxcar function 

(corresponding to a block) convolved with the canonical hemodynamic response function (HRF). 

MD fROIs definition and response estimation 

To define the MD and language (see below) functional regions of interest (fROIs), we 

used the Group-constrained Subject-Specific (GSS) approach (Fedorenko et al., 2010). In 

particular, fROIs were constrained to fall within a set of “parcels”, areas that corresponded to the 

expected gross locations of activations for the relevant contrast. For the MD fROIs, following 

Fedorenko et al. (Fedorenko et al., 2013) and Blank et al. (Blank et al., 2014), we used eighteen 
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anatomical parcels (Tzourio-Mazoyer et al., 2002) across the two hemispheres. These parcels 

covered the portions of the frontal and parietal cortices where MD activity has been previously 

reported, including bilateral opercular IFG (L/R IFGop), MFG (L/R MFG), orbital MFG (L/R 

MFGorb), insular cortex (L/R Insula), precentral gyrus (L/R PrecG), supplementary and 

presupplementary motor areas (L/R SMA), inferior parietal cortex (L/R ParInf), superior parietal 

cortex (L/R ParSup), and anterior cingulate cortex (L/R ACC) (Figure 3A). Within each parcel, 

we selected the top 10% of most responsive voxels in each individual participant based on the t-

values for the Hard>Easy spatial WM contrast. This top n% approach ensures that a fROI can be 

defined in every participant, and that the fROI sizes are identical across participants. 

To estimate the fROIs’ responses to the Hard and Easy conditions, we used an across-run 

cross-validation procedure (Nieto-Castañón and Fedorenko, 2012) to ensure that the data used to 

identify the ROIs are independent from the data used to estimate their response magnitudes 

(Kriegeskorte et al., 2009). To do this, the first run was used to define the fROIs and the second 

run to estimate the responses. This procedure was then repeated using the second run to define 

the fROIs and the first run to estimate the responses. Finally, the responses were averaged across 

the left-out runs to derive a single response magnitude estimate for each participant in each fROI 

for each condition. Finally, these estimates were averaged across the 18 fROIs of the MD 

network to derive one value per condition for each participant. (An alternative approach would 

have been to examine fROI volumes – number of MD-responsive voxels at a fixed significance 

threshold – instead of effect sizes. However, first, effect sizes and region volumes are generally 

strongly correlated; and second, effect sizes tend to be more stable within participants than 

region volumes (Mahowald and Fedorenko, 2016). 
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Language fROIs definition and response estimation 

To define the language fROIs, we used a set of functional parcels that were generated 

based on a group-level representation of data from a large set of participants. In particular, we 

used six parcels derived from a group-level representation of data for the Sentences>Nonwords 

contrast in 220 participants. These parcels included three regions in the left frontal cortex: two 

located in the inferior frontal gyrus, and one located in the middle frontal gyrus; and three 

regions in the left temporal and parietal cortices spanning the entire extent of the lateral temporal 

lobe and going posteriorly to the angular gyrus. Within each parcel, we selected the top 10% of 

most responsive voxels in each individual participant based on the t-values for the 

Sentences>Nonwords contrast. To estimate the fROIs’ responses to the Sentences and Nonwords 

conditions, we used an across-run cross-validation, as for the MD fROIs. 

Results 

Behavioral measures 

Behavioral performance on the spatial WM task was as expected: individuals were more 

accurate and faster on the easy trials (accuracy=92.86%; RT=1.19s) than the hard trials 

(accuracy=78.11%, t(139)=-18.64, p<0.0001; RT=1.51s, t(139)=23.45, p<0.0001). Behavioral 

measures were stable within individuals across runs for overall (averaging across the Hard and 

Easy conditions) accuracies (r=0.59, p<0.001) and RTs (r=0.83, p<0.001) (Figure 2), which 

suggests they can be meaningfully related to neural measures. Further, higher IQ scores, as 

measured by KBIT, correlated with overall accuracies (r=0.29, p=0.018) and RTs (r=-0.33, 

p=0.008), but not with the difference scores (accuracies H>E (r=-0.06, p=0.63); RTs H>E 

(r=0.08, p=0.53)). 
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In the critical brain-behavior analyses below, we used overall accuracies and RTs rather 

than the Hard>Easy measures, because the former i) are more stable within individuals (r=0.59 

vs. r=0.28 for the accuracies, and r=0.83 vs. r=0.41 for the RTs) (Figure 2), ii) are more 

intuitively interpretable, and iii) correlate with IQ (the Hard>Easy measures do not). 

Furthermore, the Hard>Easy measures contain a non-linearity, such that smaller between-

condition differences can be observed in both high performers (when performance is closer to 

ceiling) and low performers (when performance is closer to chance). 

MD BOLD measure 

As expected (Fedorenko et al., 2013), each of the eighteen MD fROIs individually, as 

well as the average across fROIs, showed a highly reliable Hard>Easy effect across participants 

(ts(139)>11.5, ps<0.00001). MD Hard>Easy neural responses were also stable across runs for each 

MD ROI individually (rs=0.60–0.80, ps<0.0001) and collapsing across ROIs (r=0.73, p<0.0001) 

(Figures 3C,E). We used the Hard>Easy effect size for our neural measure (cf. task>fixation) to 

factor out variability due to state/trait differences and thus to hone in on the variability in the MD 

system’s activity given its functional signature of sensitivity to difficulty (Duncan and Owen, 

2000; Fedorenko et al., 2013; Hugdahl et al., 2015). For each participant, we averaged the size of 

the Hard>Easy effect across the 18 MD fROIs to derive a single measure because the MD 

network has been shown to be a highly functionally integrated system: the MD regions’ time-

courses show strong correlations during both rest and task performance (Dosenbach et al., 2007; 

Seeley et al., 2007; Hampshire et al., 2012; Blank et al., 2014). In line with these prior findings, 

the Hard>Easy effect sizes were strongly correlated across the 18 regions in the current dataset 

(Figure 3D; see also Mineroff et al., 2017). 
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MD BOLD predicts task performance and fluid intelligence 

For each participant, we used two behavioral measures from the spatial WM task (overall 

accuracies and RTs), and one neural measure (the size of the Hard>Easy effect averaged across 

the 18 MD fROIs). The critical analyses revealed that larger MD Hard>Easy responses were 

associated with better behavioral performance as reflected in both higher accuracies (r=0.33, 

p=0.0001) and fasters RTs (r=-0.23, p=0.0057; Figure 4A). To further test the predictive power 

of the MD Hard>Easy index, we cross-compared BOLD-behavior relationships across runs 

(Dubois and Adolphs, 2016) and found that the MD Hard>Easy effect size in Run 2 successfully 

predicted both accuracies (r=0.29, p=0.0004) and RTs (r=-0.21, p=0.012) in Run 1, and MD 

H>E effects size in Run 1 predicted accuracies (r=0.25, p=0.0027) and RTs (r=-0.21, p=0.013) 

in Run 2 (Figure 4B). 

Next, to test the generalizability of the relationship between MD activity and behavior, 

we asked whether the Hard>Easy MD index could explain variance in fluid intelligence, as 

measured with the Kaufman Brief Intelligence Test (KBIT) (Kaufman and Kaufman, 2013) in a 

subset of participants (n=63). Indeed, larger MD Hard>Easy responses were associated with 

higher intelligence quotient (IQ) scores (r=0.36, p=0.0035) (Figure 4A). It is worth noting that 

the strength of the BOLD responses to the Hard or Easy condition relative to the fixation 

baseline did not correlate with IQ (H>fix: r=0.17, p=0.2; E>fix: r=0.01, p=0.9). 

The selectivity of the MD BOLD predictions 

To test whether the brain-behavior relationship we observed is selective to the MD 

network, we considered another large-scale neural network: the fronto-temporal language-

selective network in the left hemisphere (Fedorenko et al., 2011) (Figure 5A). To the best of our 
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knowledge, none of the prior studies that have investigated the relationship between MD 

network’s activity and behavior have assessed the spatial selectivity of the observed relationship. 

Like the MD Hard>Easy responses, the size of the Sentences>Nonwords effect, used to 

define the language regions (Fedorenko et al., 2010), was highly stable across runs for each 

language ROI individually and collapsing across ROIs (r=0.82, p<0.0001), in line with prior 

work (Mahowald and Fedorenko, 2016). Critically, the Sentences>Nonwords effect only weakly 

correlated with the spatial WM task accuracies (r=0.19, p=0.02, cf. r=0.33, p<0.001 for the MD 

Hard>Easy effect), and not at all with RTs (r=-0.10, p=0.25) (Figure 5B). In an analysis parallel 

to the one we performed on the MD Hard>Easy effect, we tested the predictive power of the 

Sentences>Nonwords index by cross-comparing BOLD-behavior relationships across runs. The 

Sentences>Nonwords effect size in Run 2 showed a non-significant relationship with accuracies 

in Run 1 (r=0.15, p=0.068) and did not predict RTs (r=-0.11, p=0.21). Similarly, the 

Sentences>Nonwords effect size in Run 1 did not predict accuracies (r=0.15, p=0.074) or RTs in 

Run 2 (r=-0.06, p=0.47). 

We also found a weak and non-significant relationship between the Sentences>Nonwords 

effect size and IQ scores (r=0.22, p=0.090) (Figure 5B). Importantly, replicating (Mineroff et 

al., 2017), the MD Hard>Easy effect sizes and the Sentences>Nonwords effect sizes were only 

weakly and non-significantly correlated (r=0.12, p=0.14), suggesting that neural activity in the 

two networks explain largely non-overlapping variance in the IQ scores. Indeed, even after 

controlling for Sentences>Nonwords responses, the MD Hard>Easy effect sizes still significantly 

predicted IQ scores (rp=0.37, p=0.0035). Similarly, the relationship between the 

Sentences>Nonwords effect sizes and IQ was not affected by controlling for MD Hard>Easy 

responses (rp=0.22, p=0.086). 
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Discussion 

Across a large set of participants, we observed a robust relationship between neural 

activity in the domain-general fronto-parietal MD network and behavioral performance on a 

working memory (WM) task performed in the scanner, as well as an independent measure of 

fluid intelligence. A stronger up-regulation of the MD activity with increases in task difficulty 

(as indexed by larger Hard>Easy effect sizes) – a functional signature of this network (Duncan 

and Owen, 2000; Fedorenko et al., 2013) – was associated with higher accuracies, faster RTs, 

and overall higher intelligence. This relationship was selective to the MD network: neural 

activity in another large-scale network important for high-level cognition – the fronto-temporal 

language network – did not reliably predict WM performance or IQ scores, although larger 

Sentences>Nonwords effect sizes did exhibit weak associations with task accuracies and IQ 

scores. 

A number of earlier studies have investigated the relationship between neural activity in 

the MD network and behavioral task performance and/or general fluid intelligence. Yet a clear 

answer has failed to emerge. In particular, some studies have reported increases in activation 

with better performance and higher intelligence (e.g., Gray et al., 2003; Lee et al., 2006; 

Tschentscher et al., 2017). But others have observed the opposite pattern of results: lower neural 

activity for better performers (e.g., Haier et al., 1988; Reuter-Lorenz et al., 2000; Rypma and 

D'Esposito, 2000; Rypma et al., 2006). As noted in the Introduction, these studies have relied on 

small sample sizes (range 6-16). To illustrate how small samples could produce misleading 

results (Gelman and Carlin, 2014), we performed an additional analysis where we examined the 

relationship between the Hard>Easy effect size (as well as Hard>Fixation, and Easy>Fixation 

effect sizes because those are the measures used in some prior studies) and the overall accuracies 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/110270doi: bioRxiv preprint 

https://doi.org/10.1101/110270
http://creativecommons.org/licenses/by-nc/4.0/


Page 16 of 31 
 

on the spatial WM task in small samples. Different sample sizes (ranging from 10 to 130, in 

increments of 5) were randomly selected from our larger set of 140 participants. The correlation 

with totally accuracy was calculated for each sample size. This process was repeated 1000 times 

to produce 1000 correlations per sample size. 

These correlations were then examined for their sign, size, and significance. The results 

(Figure 6) clearly show that in small samples, like those used in some of the earlier studies, it is 

possible to observe a significant correlation of the opposite sign to that observed in a larger 

population. For example, using a sample size of 20, 5 of the 368 significant (p<0.05) correlations 

(1.4%) had this property when considering the relationship between the Hard>Easy effect size 

and accuracies. This problem is exacerbated when using task>fixation contrasts (3.5% for 

Hard>fix, 15.6% for Easy>fix) (Figure 6). 

In addition to the issue of small samples, some prior studies have used an overall measure 

of activation (e.g., response to some task vs. fixation) as their neural measure of interest instead 

of using the functional signature of the MD network, i.e., the difference between the response to 

a harder vs. an easier condition of a task (e.g., Duncan and Owen, 2000; Fedorenko et al., 2013; 

Hugdahl et al., 2015). Measures of overall activity relative to a low-level baseline incorporate 

variability related to general state (e.g., motivation or caffeine intake) or trait (e.g., brain 

vascularization) characteristics, and are thus necessarily noisier. Indeed, in our dataset, the latter 

measures are much less stable within individuals across runs compared to the measures that rely 

on the Hard vs. Easy contrast. 

 Finally, most prior studies have relied on the assumption of functional-anatomic 

correspondence across individuals in a common brain space (e.g., the MNI space), i.e., treating 

each voxel as functionally the same across participants. This assumption is problematic, 
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however, given the well-known inter-individual variability in the human association cortices 

(Frost and Goebel, 2012; Tahmasebi et al., 2012). Thus, prior studies risked “diluting” the neural 

measures by picking up signals from the nearby language regions, which have the opposite 

functional profiles (Fedorenko et al., 2012). We circumvented the issue of inter-individual 

variability in the precise locations of the MD regions by defining those regions functionally in 

each individual brain (e.g., Fedorenko et al., 2013). 

It is worth noting that some have tried to explain the discrepancies in the literature by 

alluding to differences in the age of participants across studies (Reuter-Lorenz et al., 2000; 

Rypma and Esposito, 2000), with the hypothesis that the relationship between MD activity level 

and behavior may vary between younger and older participants. The age range in our sample 

(25th-75th percentile = 20-23) is not sufficient to evaluate this hypothesis rigorously. Studies with 

large samples of participants of varying ages will be needed to test this idea. That said, many 

relevant prior studies a) used small sample sizes, b) used overall measures of neural activity, and 

c) did not take into account inter-individual variability in MD regions, which may be especially 

important given the increased variability in the functional architecture of older adults (Geerligs et 

al., 2017). As a result, it is not currently clear whether there exists any support for the hypothesis 

about age-related changes in how neural measures of MD activity relate to behavior. 

 To briefly return to the issue of selectivity of the relationship between MD system’s 

activity and task performance / intelligence: in our analysis of a control brain network (the 

fronto-temporal language network; e.g., Fedorenko et al., 2010), we observed a weak 

relationship between responses in that network and spatial WM task accuracies and intelligence. 

Importantly, in line with prior work, the language network is functionally distinct from the MD 

network (e.g., Fedorenko et al., 2013; Blank et al., 2014; Mineroff et al., 2017), and so the two 
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networks explain independent variance in accuracies and IQ scores, as confirmed by partial 

correlation analyses. The relationship between activity in the language system and fluid 

intelligence is surprising in light of the prior literature: in particular, language brain regions do 

not respond to demanding executive tasks as assessed in fMRI (e.g., Fedorenko et al., 2011; 

Monti et al., 2012), and patients with even severe damage to the language network can retain 

high intelligence and the ability to perform challenging cognitive tasks, like arithmetic (Varley et 

al., 2005) and causal reasoning (e.g., Varley and Siegal, 2000; see Fedorenko and Varley, 2016, 

for a review). It is also worth keeping in mind that the correlations we observed in our dataset are 

relatively small in size (substantially lower than those between the behavioral measures and the 

MD network’s neural responses); further, we did not observe any relationship with the RT 

measure, and only the correlation with task accuracies, not IQ scores, reached significance at 

p<0.05 level. So, this observed suggestive relationship bears replication in another large set of 

participants before theorizing too much about its interpretation and significance. 

To conclude, the magnitude of the Hard>Easy effect for a working memory task in the 

MD network appears to be a stable measure, within an individual, that can be used to further 

probe variability in executive abilities between individuals both in the typical population and 

among individuals with cognitive and psychiatric disorders, many of which are characterized by 

decreases in fluid intelligence. Better task performers, and individuals with higher intelligence 

showed a larger Hard>Easy response. Thus, this marker can serve as a promising neural bridge 

(Braver et al., 2010) between behavioral variability and genetic variability associated with 

differences in fluid intelligence (Plomin and Spinath, 2004; Deary et al., 2006). 
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Figures 

Figure 1. Spatial working memory task 

 

Figure 1 caption: Sample easy and hard trials. 
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Figure 2. Stability of behavioral responses within individuals across 

runs

 

Figure 2 caption: acc (accuracy), RT (reaction time), H (Hard), E (Easy), H&E (average across 

Hard and Easy conditions), H>E (difference between Hard and Easy conditions). r (Pearson 

correlation), ** p<0.001 
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Figure 3. Stability of neural responses within individuals across runs 
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Figure 3 caption: 

a) MD anatomical parcels used to constrain individual fROI definition. 

b) Group-level representations of neural activity for the Hard>Easy contrast. Individual 

unthresholded t-maps were averaged across 140 participants. 

c) MD Network (average of all ROIs) Hard > Easy responses stability across runs (n = 140), r 

(Pearson correlation), ** p<0.001. 

d) H>E effect size correlation across MD ROIs. Range of correlations (0.44 – 0.87). Average 

correlation (0.66). All correlations are significant (p<0.05 Bonferroni-corrected for 153 tests). 

e) MD individual ROIs Hard > Easy responses stability across runs (n = 140). 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/110270doi: bioRxiv preprint 

https://doi.org/10.1101/110270
http://creativecommons.org/licenses/by-nc/4.0/


Page 29 of 31 
 

Figure 4. The Multiple Demand neural responses-behavior relationship 

 

Figure 4 caption: 

MD-behavior relationships: MD H>E effect size predicts (a) overall (average across both runs) 

accuracy (n = 140) (left) and reaction time (n = 140) (middle) in the spatial WM task, as well as 

IQ (n = 63) (right) as measured by an independent test (KBIT), and (b) performance for 

independent runs. r (Pearson correlation), rs (Spearman correlation), ** p<0.001, * p<0.05. 
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Figure 5. The left hemisphere language network and its neural responses-behavior relationship  

 

Figure 5 caption: 

Language-behavior relationships: Language S>N relationship with overall accuracy (n=140) 

(left) RT (n=140) (middle) and IQ scores (n=63) (right). r (Pearson correlation), rs (Spearman 

correlation), ** p<0.001, * p<0.05. 
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Figure 6: The effect of sample size on brain-behavior correlation 

 

Figure 6 caption: 

MD-total accuracy relationship for H>E (left), H>fix (middle) and E>fix (right) MD responses 

are shown on different sample sizes. Each sample size correlation analysis was repeated 1000 

times, randomly sampled from the original data (n=140) each time. 
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