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Although all human tissues carry out common processes, tissues are distinguished by gene expres-
sion patterns, implying that distinct regulatory programs control tissue-specificity. In this study,
we investigate gene expression and regulation across 38 tissues profiled in the Genotype-Tissue Ex-
pression project. We find that network edges (transcription factor to target gene connections) have
higher tissue-specificity than network nodes (genes) and that regulating nodes (transcription fac-
tors) are less likely to be expressed in a tissue-specific manner as compared to their targets (genes).
Gene set enrichment analysis of network targeting also indicates that regulation of tissue-specific
function is largely independent of transcription factor expression. In addition, tissue-specific genes
are not highly targeted in their corresponding tissue-network. However, they do assume bottleneck
positions due to variability in transcription factor targeting and the influence of non-canonical reg-
ulatory interactions. These results suggest that tissue-specificity is driven by context-dependent
regulatory paths, providing transcriptional control of tissue-specific processes.

1. INTRODUCTION

Although all human cells carry out common processes
that are essential for survival, in the physical context of
their tissue-environment, they also exhibit unique func-
tions that help define their phenotype. These common
and tissue-specific processes are ultimately controlled by
gene regulatory networks that alter which genes are ex-
pressed and control the extent of that expression. While
tissue-specificity is often described based on gene expres-
sion levels, we recognize that, by themselves, individual
genes, or even sets of genes, cannot adequately capture
the variety of processes that distinguish different tissues.
Rather, biological function requires the combinatorial
involvement of multiple regulatory elements, primarily
transcription factors (TFs), that work together and with
other genetic and environmental factors to mediate the
transcription of genes and their protein products [11 2].

Gene regulatory network modeling provides a mathe-
matical framework that can summarize the complex in-
teractions between transcription factors, genes, and gene
products [3H6]. Despite the complexity of the regulatory
process, the most widely used network modeling methods
are based on pairwise gene co-expression information [7-
10]. While these correlation-based networks may provide
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some biological insight concerning the associations be-
tween both tissue-specific and other genes [I1], 12], they
do not explicitly model key elements of the gene regula-
tory process.

PANDA (Passing Attributes between Networks for
Data Assimilation) is an integrative gene regulatory net-
work inference method that models the complexity of
the regulatory process, including interactions between
transcription factors and their targets [13]. PANDA
uses a message passing approach to optimize an initial
network between transcription factors and target genes
by integrating it with gene co-expression and protein-
protein interaction information. In contrast to other net-
work approaches, PANDA does not directly incorporate
co-expression information between regulators and tar-
gets. Instead, edges in PANDA-predicted networks re-
flect the overall consistency between a transcription fac-
tor’s canonical regulatory profile and its target genes’
co-expression patterns. A number of studies have shown
that analyzing the structure of the regulatory networks
estimated by PANDA can help elucidate the regulatory
context of genes and transcription factors and provide
insight in the associated biological processes [14HIT].

The transcriptomic data produced by the Genotype-
Tissue Expression (GTEx) consortium [I8] provide us
with an unprecedented opportunity to investigate the
complex regulatory patterns important for maintaining
the diverse functional activity of genes across different
tissues in the human body [19, 20]. These data include
high-throughput RNA sequencing (RNA-Seq) informa-
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tion from 551 research subjects, sampled from 51 post-
mortem body sites and cell lines derived from two tissue
types.

In this study, we apply PANDA to infer gene regu-
latory networks for thirty-eight different tissues by inte-
grating GTEx RNA-Seq data with a canonical set of tran-
scription factor to target gene edges (based on a motif
scan of proximal promoter regions) and protein-protein
interactions. We then use these tissue-networks to iden-
tify tissue-specific regulatory interactions, to study the
tissue-specific regulatory context of biological function,
and to understand how tissue-specificity manifests itself
within the global regulatory framework. By studying the
structure of these networks and comparing them between
tissues, we are able to gain several important insights into
tissue-specific gene regulation. Our overall approach is
summarized in Figure

2. RESULTS
2.1. Identifying Tissue-Specific Network Edges

We started by reconstructing genome-wide regulatory
networks for each human tissue. We downloaded GTEx
RNA-Seq data from dbGaP (phs000424.v6.pl, 2015-10-
05 release). The RNA-Seq data were preprocessed and
then normalized in a sparse-aware manner [2I] so as to
retain genes that are expressed in only a single or small
number of tissues. After filtering and quality control,
our RNA-Seq data included expression information for
30, 243 genes measured across 9,435 samples and 38 dis-
tinct tissues (Supplemental Materials and Methods). For
each tissue, we used PANDA to integrate gene-gene co-
expression information from this data set with an ini-
tial regulatory network based on a genome-wide motif
scan of 644 transcription factors [22] and pairwise tran-
scription factor protein-protein interactions (PPI) from
StringDb v10 [23] (Figure [I] and Supplemental Mate-
rials and Methods). This resulted in 38 reconstructed
gene regulatory networks, one for each tissue. Data
and code to reconstruct these networks can be found
at http://goo.gl/DElabB. The reconstructed networks
are also available on Zenodo [24].

We used these reconstructed networks to identify
tissue-specific network edges. Each PANDA network
contains scores (or weights) for every possible transcrip-
tion factor to gene interaction. We compared the weight
of each edge in a particular tissue to the median and
interquartile range of that edge’s weight across all 38
tissues. Edges identified as “outliers” in a particular
tissue (those with a weight in that tissue greater than
the median plus two times the interquartile range of
the weight across all tissues) were designated as “tissue-
specific.” Using this metric we identified just over five
million tissue-specific edges (26.1% of all possible edges,
Supplemental Figure , Supplemental Table . We
compared these tissue-specific edges with other available
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Figure 1: Schematic overview of our approach to character-
ize tissue-specific gene regulation using the GTEx expression
data. We started with gene expression for 9,435 samples
across 38 tissues; the relative sample size of each of the 38
tissues in the GTEx expression data is shown in the color bar.
We used PANDA to integrate this information with protein-
protein interaction and transcription factor target informa-
tion (based on a genome-wide motif scan that included 644
transcription factor motifs). This produced 38 inferred gene
regulatory networks, one for each tissue. We identified tissue-
specific genes, transcription factors, and regulatory network
edges and analyzed their properties within and across tissues.

sources of tissue-specific network relationships [25] (see
Supplemental Figure [S2| and Supplemental Material and
Methods) and found minimal overlap, indicating that
these edges may highlight important regulatory interac-
tions that have not been previously explored.

Figure[2A shows the number of edges identified as spe-
cific in each of the 38 tissues, colored based on their
“multiplicity,” or the number of tissues in which an edge
is identified as specific. We found that the majority of
tissue-specific edges (65.7%) have a multiplicity of one,
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meaning they are uniquely identified as specific in only a
single tissue.

Higher edge multiplicity is often indicative of shared
regulatory processes between tissues. For example, 92.2%
of sigmoid colon specific edges have a multiplicity greater
than one, meaning they are also called specific in other
tissues. Further investigation (Supplemental Figure[S2JA)
indicates that 81.0% of these edges are shared with the
transverse colon, 46.6% are shared with the small intes-
tine, and 19.3% are shared with the stomach. Similarly,
of those edges called specific in the basal ganglia subre-
gion of the brain, 13.3% and 43.3% are also identified
as specific in the cerebellum and other subregions of the
brain, respectively.

For other tissues the composition of shared edges is
quite complex. For example, 78.0% of edges identified
as specific in the aorta have a multiplicity greater than
one. Of these, the largest fraction is specific to the tibial
artery. However, this only includes 14.9% of the aorta-
specific edges; additional edges are shared with the testis
(12.2%), coronary artery (11.4%), ovary (8.9%), kidney
(8.0%), and other brain subregions (7.7%). This shows
that even in cases where many of the edges identified as
specific in a given tissue have a high multiplicity, as a set,
these edges are often distinct from the other tissues.

2.2. Identifying Tissue-Specific Network Nodes

Since most analyses of tissue-specificity have examined
gene expression, we wanted to know whether the patterns
that we observed for the tissue-specific network edges
could also be found in tissue-specific expression informa-
tion. We identified tissue-specific network nodes (TFs
and their target genes) using a process analogous to the
one we used to identify tissue-specific edges. Specifically,
we identified a gene (or TF) as tissue-specific if its me-
dian expression in a tissue was greater than the median
plus two times the interquartile range of its expression
across all tissues. This process identified 12,586 genes
as tissue-specific (41.6% of all genes, see Supplemental
Figure 7C and Supplemental Table ; 558 of these
genes code for transcription factors (30.6% of TFs in our
expression data, this includes 222, or 34.5%, of the 644
TFs that we used in constructing our network models, see
Supplemental Material and Methods and Supplemental
Table .

We find that the number of genes and transcription
factors identified as tissue-specific based on expression
is not correlated with the number of tissue-specific edges
(Figure fC, Supplemental Figure. We also observe
much higher multiplicity levels for network nodes than
for the edges (p < 107! for both genes and TFs by
two-sample Chi-squared test), indicating that genes and
transcription factors are more likely to be identified as
“specific” in multiple tissues than are regulatory edges.

As with the edges, node-multiplicity provides insight
into shared functions among the tissues. Consistent with

3

previous findings, testis has the largest number of tissue-
specific genes [26, 27] and we find that many of the genes
identified as specific in other tissues are also identified as
specific in the testis (Supplemental Figure ) Other
shared patterns of expression mirror what we observed
among the network edges. For example, genes identified
as specific in the basal ganglia brain subregion include
those that are also identified as specific in the cerebel-
lum (41.1%), other brain subregions (67.9%), and the
pituitary gland (24.6%). Similarly, 50.4% and 31.3% of
sigmoid colon specific genes are shared with the trans-
verse colon and the small intestine, respectively. How-
ever, these genes also include those identified as specific
in the prostate (23.5%), esophagus (22.6% in the muscu-
laris and 14.8% in the gastroesophageal junction), uterus
(18.3%), kidney (14.8%), vagina (13.0%), and stomach
(13.0%).

The overlap of genes identified as specific in multi-
ple tissues is quite complex and there are many cases
of shared expression patterns between tissues that are
not reflected in the tissue-specific network edges we had
previously identified. This is especially true for the tran-
scription factor regulators in our network model (Sup-
plemental Figure ) For example, only a single tran-
scription factor (TBX20) was identified as tissue-specific
in the aorta based on our expression analysis. This tran-
scription factor [28] 29] has a high level of multiplic-
ity and was also identified as specific in the coronary
artery, testis, pituitary, and heart (both the atrial ap-
pendage and left ventricle regions; see Supplemental Ta-
bleand Supplemental Figure ) We find similar pat-
terns in many of the other tissues, including the coronary
artery, subcutaneous adipose, esophagus muscularis, tib-
ial nerve, tibial artery, and the visceral adipose. Each
of these tissues has only two or three associated tissue-
specific transcription factors and almost all of these tran-
scription factors have a multiplicity greater than one,
meaning that they were identified as having relatively
higher levels of expression in multiple different tissues.

Directly comparing the number of identified tissue-
specific transcription factors and genes reveals that there
are significantly fewer tissue-specific transcription factors
than one would expect by chance (p = 2.0-10~% by two-
sample Chi-square test). In addition, transcription fac-
tor multiplicity levels are significantly higher than those
of genes (p = 1.25 - 107!% by two-sample Chi-squared
test). In other words, TFs are less likely to be identified
as tissue-specific compared to genes based on expression
profiles. These results imply that tissue-specific regula-
tion may not be due to selective differential expression of
transcription factors between tissues.

It should be noted that the transcription factors we
identify as tissue-specific based on the GTEx expression
data are substantially different than those listed in a pre-
vious publication [2] (see Supplemental Figure fC)
and used in other GTEx network evaluations [11]. In
direct contrast to the results from this previous publi-
cation, we find that transcription factors are expressed
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Figure 2: Bar plots illustrating the number of edges (A), genes (B), and transcription factors (TFs, C) that were identified as
“specific” to each of the 38 GTEx tissues. The total number of tissue-specific elements identified for each tissue is shown to
the right of each bar (edges are shown as a multiple of 10*). Tissue-specificity for network elements was defined based on an
edge/node having increased weight /expression in one tissue compared to others, thus some edges, genes and TFs were identified
as specific to multiple tissues. This “multiplicity” value is indicated by the color of the bars. Note that an edge/gene/TF with
a given multiplicity across all tissues (top bar plots) will appear in that number of tissue-specific bar plots (lower bar plots).
We found fairly low levels of multiplicity for edges compared to nodes (TFs and genes). TFs also have substantially higher

multiplicity compared to genes.

at higher levels than non-TFs (compare Figure 3A in
[2] to Supplemental Figure [S4D). This is likely due to
technical differences in measuring the expression levels
of genes between the two studies. Although state-of-the-
art at the time, the data used in the previous publication
contained only two samples per tissue and was based on
a microarray platform that only assayed expression for a

subset of the genes used in our analysis (Supplemental
Figure ) The differences we find with this previous
work highlight the importance of the GTEx project and
the opportunity it gives us to revisit our understanding
of the role of transcription factors in mediating tissue-
specificity.
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2.3. Characterizing Relationships between
Tissue-Specific Network Elements

We tend to think about tissue-specificity in terms of
gene expression. However, we know that gene expression
arises from a complex set of regulatory interactions be-
tween transcription factors and their target genes. The
networks inferred from the GTEx data provide us with
a unique opportunity to characterize the relationship
between the tissue-specific elements—edges, genes, and
transcription factors—that help to define tissue pheno-
type and function.

To do this, we first determined the number of tissue-
specific nodes (genes and transcription factors) that are
connected to at least one tissue-specific edge. Overall,
we found approximately 56% of tissue-specific genes are
directly connected to at least one tissue-specific edge
(Supplemental Table |4)), meaning that tissue-specificity
in gene expression is generally associated with tissue-
specific changes in regulatory processes. In contrast,
tissue-specific transcription factors are always connected
to at least one tissue-specific edge, meaning that they are
always associated with a tissue-specific regulatory pro-
cess. In fact, we found that nearly every transcription
factor is associated with at least one tissue-specific edge
in all 38 tissues. This suggests that even transcription
factors that are similarly expressed across tissues, and
thus not identified as tissue-specific, may play an impor-
tant role in mediating tissue-specific regulation.

We next quantified the association of tissue-specific
edges with tissue-specific nodes. We did this by counting
the number of tissue-specific edges that target a tissue-
specific gene, summing over all 38 tissues, and dividing by
the number one would expect by chance (Supplemental
Materials and Methods). We found very high enrichment
for tissue-specific edges targeting tissue-specific genes, es-

pecially for the most specific edges those with lower mul-
tiplicity values (Figure ) We repeated this calculation
to evaluate whether tissue-specific edges tended to origi-
nate from tissue-specific transcription factors. Although
we again observed strong enrichment (Figure )7 this
was substantially lower than the enrichment we observed
between tissue-specific edges and genes.

Finally, because PANDA leverages multiple sources of
data to reconstruct its models, we analyzed tissue-specific
edges in the context of both the input co-expression
data and the canonical transcription factor-target gene
interactions (defined by the presence of a TF motif in
the promoter region of a target gene) we used to seed
our networks. We found that tissue-specific edges are
distinct from those identified using only co-expression
information (Supplemental Figure ) In addition,
tissue-specific edges are depleted for canonical transcrip-
tion factor interactions (Figure [3[C). Thus, many of the
tissue-specific regulatory interactions we identified using
PANDA would have been missed if we had relied solely
upon co-expression or transcription factor motif target-
ing information to define a regulatory network.

2.4. Evaluating Tissue-Specific Regulation of
Biological Processes

As noted previously, we find that transcription factors
are less likely than other genes to be identified as tissue-
specific based on their expression profile, and even those
identified as tissue-specific tend to have a high multiplic-
ity (are specific in multiple tissues). In addition, although
tissue-specific transcription factors are significantly asso-
ciated with tissue-specific network edges, this association
is much lower than the one between tissue-specific genes
and edges. These results led us to hypothesize that both
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tissue-specific and non-tissue-specific transcription fac-
tors (as defined based on expression information) play
an important role in mediating tissue-specific biological
processes.

We selected one of the brain tissue subregions (“Brain
other”) to test this hypothesis since this tissue had one
of the largest number of tissue-specific edges (after testis
and kidney) and the majority of genes and transcription
factors called as specific to this tissue are also specific
in other tissues (have high multiplicity, see Figure .
We ran a pre-Ranked Gene Set Enrichment Analysis
(GSEA) [30] on each transcription factor’s tissue-specific
targeting profile to evaluate the role of transcription fac-
tors in regulating particular biological processes (see Sup-
plemental Material and Methods).

Figure shows the Gene Ountology (GO) Biological
Process terms that were significantly enriched (FDR <
0.001; GSEA Enrichment Score, ES > 0.65) for tissue-
specific targeting by at least one transcription factor in
this brain tissue subregion. Among the significant pro-
cesses are many brain-related functions, including axono-
genesis, axon guidance, regulation of neurogenesis, reg-
ulation of neurotransmitter levels, and neurotransmitter
secretion. A hierarchical clustering (Euclidean distance,
complete linkage) of the GSEA enrichment profiles in-
dicates that transcription factor regulators are generally
associated with either an increased or decreased targeting
of genes involved in these brain-associated processes. To
our surprise, the transcription factors that are positively
associated with brain-related functions are not any more
likely to be expressed in a tissue-specific manner than
transcription factors that are not positively associated
with these functions.

To ensure this result was not due to the threshold we
used when identifying tissue-specific TF's, we selected the
ten transcription factors with the highest and lowest ex-
pression enrichment in this brain-tissue subregion (see
Supplemental Material and Methods) and performed a
detailed investigation of their GSEA profiles (Figure )
NEUROD2 and SP8 were the top tissue-specific tran-
scription factors with brain-function associated targeting
profiles; these TFs play important roles in brain func-
tion [31H33]. In addition, four of the highly non-tissue-
specific transcription factors (based on expression)—
GRHL1, KLF15, PAX3, and TET1—have positive en-
richment for targeting genes with relevant brain func-
tions. These non-brain-specific transcription factors have
been shown to play an important role in neuroblas-
toma [34], neuronal differentiation [35], brain develop-
ment [36], and neuronal cell death [37], respectively.

Finally, we identified 38 transcription factors that ex-
hibit highly significant (FDR < 0.001 and ES > 0.65)
differential targeting of the identified functions. Only one
of these transcription factors (RFX4) was also identified
as tissue-specific based on expression analysis. When we
repeated this analysis for all 38 tissues we found simi-
lar patterns, with low overlap between the transcription
factors identified as tissue-specific based on expression
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and those that have strong patterns of differential tar-
geting (Supplemental Figure and Supplemental Ta-
ble [5). These results indicate that transcription factors
do not have to be differentially expressed to play signif-
icant tissue-specific regulatory roles. Rather, changes in
their targeting patterns allow them to regulate tissue-
specific biological processes.

2.5. Tissue-Specific Organization of Biological
Processes

Because of the high level of multiplicity that we pre-
viously observed, especially for transcription factors (see
Figure , we next examined shared functional regula-
tion based on tissue-specific targeting patterns. Specifi-
cally, we ran GSEA on the tissue-specific targeting pro-
file of each transcription factor in each of the 38 tissues
and selected GSEA results that represented highly signif-
icant positive enrichment for tissue-specific TF-targeting
(FDR < 0.001 and ES > 0.65; all results contained in
Supplemental Table @ We then clustered these asso-
ciations [38] (see Supplemental Material and Methods)
and identified 48 separate “communities,” or groups of
GO terms associated with TF /tissue pairs [39, 40] (Fig-
ure ) Properties of the identified communities, includ-
ing the number of terms, TF's, and tissues represented in
each, are included in Supplemental Table [7}

Nine communities had more than five associated GO
terms. Further inspection showed that these communi-
ties often included sets of highly related functions, such as
those associated with immune response (Community 1),
cell proliferation (Community 2), synaptic transmission
(Community 3), extracellular structure (Community 4),
cellular respiration (Community 5), ectoderm develop-
ment (Community 6), protein modification (Community
7), cellular response (Community 8), and the mitochon-
drion (Community 9).

We used word clouds to summarize this information
and provide a snapshot of the functions associated with
each of these nine communities (Figure ; Supplemen-
tal Materials and Methods). We also examined what
tissues were associated with each community and found
that communities were generally dominated by enrich-
ment for increased functional targeting in a select set of
tissues (Figure ) For example, Community 1 is highly
associated with the tibial and coronary arteries, Commu-
nity 3 is highly associated with two of the brain subre-
gions (“Brain other” and “Brain basal ganglia”) as well
as the adrenal gland and stomach, and Community 4 is
highly associated with skeletal muscle, as well as the kid-
ney cortex. Although some of the communities represent
sets of functions that are common to multiple tissues,
these associations make biological sense. For example,
some tissues, such as skin and whole blood, have higher
rates of proliferation compared to others and so we might
expect increased targeting of cell cycle functions in these
tissues.
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The remaining 39 communities had five or fewer GO
term members but often capture important associations
between tissues and biological function (Supplemental
Figure . For example, Community 17 contains two
GO Biological Processes term members, “spermatid de-
velopment” and “spermatid differentiation” and is en-
riched for positive tissue-specific targeting in the testis
(12 TFs). Community 21 contains exactly one term
member, “digestion” and is enriched for positive tissue-
specific targeting in the sigmoid colon (25 TFs). Com-
munity 25 also contains exactly one GO term, “hor-
mone metabolic process” and is enriched for positive
tissue-specific targeting in the pituitary (7 TFs, includ-
ing FEZF1, HOXA13, NRL, POU3F4, SIX3, SOX2, and
SRY). The GO term and TF /tissue members of all com-
munities are contained in Supplemental Table [7}

In addition to identifying tissue-specific function, we
identified several transcription factors that appear to me-
diate similar biological functions across multiple tissues
(Figure ; Supplemental Materials and Methods). For
example, Community 1 (immune response) includes tar-
geting profiles from 340 different TFs and 23 tissues (Sup-
plemental Table E[) Further inspection reveals that five
of these transcription factors have significantly more as-
sociations in Community 1 than one would expect by
chance. These transcription factors include RFX5, which
plays an essential role in the regulation of the major his-
tocompatibility complex class II (MHC-II), a key com-
ponent of the adaptive immune system [41], and YY1,
which was recently reported to inhibit differentiation and
function of regulatory T cells [42].

: regulation, fam.: family,

2.6. Maintenance of Tissue-Specificity in the
Global Regulatory Framework

The analysis we have presented thus far has focused
primarily on tissue-specific network edges, or regulatory
interactions that have an increased likelihood in one, or
a small number of tissues, compared to others. How-
ever, we know that these tissue-specific interactions work
within the context of a larger “global” gene regulatory
network, much of which is the same in many tissues.
Therefore, we investigated how tissue-specific regulatory
processes are reflected in changes to the overall structure
and organization of each tissue’s “global” gene regulatory
network.

To begin, we analyzed the connectivity of nodes sepa-
rately in each of the 38 tissues’ gene regulatory networks
using two measures: (1) degree, or the number of edges
connected to a node, and (2) betweenness [43], or the
number of shortest paths passing through a node (Fig-
ure[6jA). Although both of these measures are well estab-
lished in the field of network science, betweenness in par-
ticular has only occasionally been used to analyze biologi-
cal networks [I1[44], and, to our knowledge, has not been
used to assess tissue-specific gene regulatory networks.
Because of the complete nature of the networks estimated
by PANDA, we used algorithms that account for edge
weight when calculating these measures [45] (see Supple-
mental Materials and Methods). For each tissue, we then
compared the median degree and betweenness values of
tissue-specific genes to the median degree and between-
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Figure 5: (A) Heatmap depicting communities of GO terms that were significantly targeted (FDR < 0.001, GSEA Enrichment
Score ES > 0.65) based on a GSEA analysis run on all possible tissue-transcription factor pairs. Tissue-transcription factor
pairs were also clustered and identified with each community. (B) Word clouds summarizing the processes contained in
each community. (C) An illustration of the tissues associated with each community. Edge width indicates the number of
transcription factors that were identified as differentially targeting at least one signature in the community in a particular
tissue. For simplicity we only illustrate the top nine communities (left) and connections to tissues that include five or more
transcription factors. For an interactive version of figure C, see Supplemental File (D) Heatmap of the top transcription
factors involved in targeting the nine largest communities; the grayscale gradient represents the probability that a transcription
factor would be associated with a community by chance given a random shuffling of community assignments (see Supplemental
Materials and Methods).

ness values of non-tissue-specific genes (Figure )
This analysis showed that tissue-specific genes gener-
ally have a lower degree than non-tissue-specific genes.
This may initially seem contradictory to our observation
that tissue-specific genes are highly targeted by tissue-
specific edges (Figure [BJA). However, we also found that
tissue-specific edges tended to be associated with non-
canonical regulatory events (Figure ), which generally
have lower weights in our network models. The analysis
presented here considers all regulatory interactions (both
tissue-specific and non-tissue-specific) leading to a net-
work whose structure is largely dominated by canonical
regulatory events. Thus, we can conclude that tissue-
specific genes gain targeting from tissue-specific edges,
consistent with our previous finding. However, in the
context of the global gene regulatory network, the tar-

geting of these tissue-specific genes is much lower as com-
pared to other, non-tissue-specific genes [47].

These findings are consistent with the notion that pro-
cesses required for a large number of (or all) tissues need
to be stably regulated. Thus one might expect these to be
more tightly controlled and therefore central to the net-
work. Indeed, when we examine the distributions of de-
gree values (Figure Ep) we find the largest differences are
between tissue-specific and non-tissue-specific genes with
high degree (network hubs), with a bias for non-tissue-
specific genes to have high degree values. In other words,
we observe a depletion of tissue-specific genes among the
gene regulatory network hubs.

Our analysis also showed that tissue-specific genes
have higher median betweenness compared to non-tissue-
specific genes. This indicates that tissue-specific func-
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Figure 6: (A) An example network illustrating the difference between high degree and betweenness. Transcription factors are
shown as circles and target genes as squares. The color of each node indicates its centrality based on the relevant measure. An
example node is shown with low degree but high betweenness. (B) Difference in the median centrality of tissue-specific genes
compared to non-tissue-specific genes in each of the 38 networks. (C) Distribution of centrality values for all non-tissue-specific
genes (black), genes specific in a particular tissue (red), and genes called tissue-specific in some tissue, but not the tissue of
interest (gray dashed line). (D) The median and interquartile range across tissues of the percentile-rank of genes (based on
their centrality, as in panel C) that have an eQTL association in that tissue (QTLs-in-tissue), have an eQTL association with
a GWAS variant in that tissue (GWAS-QTLs-in-Tissue), have an eQTL association in another tissue (QTLs-in-other) or have
an eQTL association with a GWAS variant in another tissue (GWAS-QTLs-in-Other). For comparison, the median rank of
tissue-specific and non-tissue-specific genes across these tissues is indicated by a red and black line, respectively. Note that
the analysis shown in this panel is limited to 19 tissues and the 29,155 genes considered in both this analysis and the eQTL

analysis described in [46].

tion may be mediated by tissue-specific regulatory paths
through the global network structure, creating new av-
enues by which information can “flow” through tissue-
specific genes (as measured by betweenness) despite their
relatively low overall connectivity (as measured by de-
gree). Indeed, when we examine the distribution of be-
tweenness values (Figure Ep), we find that tissue-specific
genes are significantly enriched for small but measurable
values, while non-tissue-specific genes are more likely to
have no shortest paths running through them (p < 10715
by one-sided Kolmogorov-Smirnov test). We note that
the signals we observe here are absent in a network con-
structed solely based on canonical transcription factor-
target gene interactions (Supplemental Figure sug-
gesting that these regulatory paths are most likely the
result of the inclusion of tissue-specific edges in the global
regulatory network structure.

2.7. Implications of Tissue-Specific Regulation

One important reason for modeling tissue-specific reg-
ulatory networks is to provide a baseline that can be used
to better understand how regulatory processes might be
perturbed by disease, or in the presence of other biolog-
ical factors, such as a genetic variant. To evaluate the
utility of our tissue-specific networks in the context of
this type of information, we leveraged information re-

garding tissue-specific, cis-acting expression quantitative
trait loci (eQTLs) that we had previously identified us-
ing the GTEx data [40], together with information from
Genome Wide Association Studies (GWASes), as curated
in the GWAS catalog (http://www.ebi.ac.uk/gwas/).
For this analysis, we focused on 19 tissues for which we
had reliable estimates of cis-eQTLs, and the 29, 155 genes
that were considered when performing the eQTL analysis
and that were included in our network models. For more
information see Supplemental Materials and Methods.

To begin, for each tissue, we identified which genes had
at least one significant (FDR < 0.05) eQTL association.
25,819 genes (88.6%) had at least one eQTL association
in at least one of the tissues (from 3,317 in brain-other
to 10,997 in thyroid). As a group, these QTL-associated
genes were significantly enriched for transcription factors
(p = 9.09-10~° by hypergeometric probability), but sig-
nificantly depleted for tissue-specific genes (p < 1071
by hypergeometric probability). However, when we eval-
uated whether genes that are specific to a particular tis-
sue are also more likely to have an eQTL association in
that same tissue, we observed a significant enrichment
(p = 1.69 - 10~'* by hypergeometric probability). This
indicates that, although tissue-specific genes as a group
are less likely to have associations with genetic variants,
when they do, it is within the context of their tissue en-
vironment.

Next, to understand if these findings might have dis-
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ease relevance, we focused on the subset of genes that had
a significant cis-eQTL association with one of the genetic
variants listed in the GWAS catalog. Only 308 genes
(1%) had one or more eQTL associations with a GWAS-
variant (Supplemental Table. Of these 308 genes, only
39 (12.7%) were also identified as tissue-specific (signifi-
cantly depleted; p = 1.51 - 10~* by hypergeometric prob-
ability). In contrast to the QTL-associated genes, the
GWAS-associated subset were neither enriched nor de-
pleted for transcription factors. In addition, when we in-
vestigated whether the eQTL associations for these genes
tended to occur in the same tissue in which those genes
were identified as specific, we observed significant deple-
tion (p = 5.46 - 10~* by hypergeometric probability).

Finally, to understand how these findings might be re-
flected in the context of our gene regulatory networks, we
evaluated the centralities of these genes, both within the
tissue for which they had the identified association(s),
and across all other tissues (those in which they did not
have any significant eQTL associations). Specifically,
we ranked genes in each tissue based on their central-
ity, found the median rank of the QTL-associated and
GWAS-QTL-associated genes in both the tissue where
they had a significant association, and in each of the other
tissues. We plot the range of these median values across
the 19 examined tissues in Figure [6D.

We see a clear signal for variant-associated genes in
both their degree and betweenness. In particular, genes
that are associated with a GWAS variant have lower de-
gree and higher betweenness in their corresponding tissue
network as compared to the set of genes that have any
eQTL association in that tissue. Furthermore, this be-
havior is distinct in their corresponding tissue-network
as opposed to other tissue-networks. We note that this
increase in betweenness coupled with a decrease in de-
gree is exactly the same pattern as we observed for
tissue-specific genes. However, interestingly, as we noted
above, GWAS-QTL-associated genes are highly depleted
for tissue-specificity. This may help explain why many
GWAS loci are associated with multiple diseases. It also
suggests that our network models are capturing impor-
tant routes of regulatory information flow beyond those
necessary for the maintenance of tissue-specific processes
and thus have the potential to be used to understand
disease-related regulatory information.

3. DISCUSSION

We used gene expression data from GTEx, together
with other sources of regulatory information, to recon-
struct and characterize regulatory networks for 38 tissues
and to assess tissue-specific gene regulation. We used
these networks to identify tissue-specific edges and used
the gene expression data to identify tissue-specific nodes
(transcription factors and genes). We found that, al-
though tissue-specific edges are enriched for connections
to tissue-specific transcription factors and genes, they are
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also depleted for “canonical” interactions (defined based
on a transcription factor binding site in the target gene’s
promoter). In addition, edges are often uniquely called
as specific in only one tissue while tissue-specific genes
often have a high “multiplicity,” meaning that they were
identified as specific in more than one tissue.

In particular, we found that genes that encode for
transcription factors were especially likely to be identi-
fied as specific in multiple different tissues. This sug-
gests that the notion of a “tissue-specific” transcription
factor based on expression information should be con-
sidered with care, especially in the context of transcrip-
tional regulation. Indeed, analysis of tissue-specific tar-
geting patterns in our regulatory networks indicated that
transcription factor expression is not the primary driver
of tissue-specific functions. Our network analysis found
many transcription factors that are known to be involved
in important tissue-specific biological processes that were
not identified as tissue-specific based on their expres-
sion profiles. These findings are consistent with what we
might expect [48]. There are approximately 30,000 genes
in the human genome, but fewer than 2,000 of these en-
code transcription factors [2] (of which we analyzed only
644—those with high quality motif information). Given
the large number of tissue-specific functions that must be
regulated, it makes sense that changes in complex regu-
latory patterns are responsible for tissue-specific gene ex-
pression, not the activation or deactivation of individual
regulators.

Our results suggest that transcription factors primarily
participate in tissue-specific regulatory processes via al-
terations in their targeting patterns. To understand the
regulatory context of these tissue-specific alterations, we
investigated the topology of each of the 38 global tis-
sue regulatory networks (containing information for all
possible edges). We found that tissue-specific genes gen-
erally are less targeted (have a lower degree) than non-
tissue-specific genes. However, tissue-specific genes ex-
hibit an increase in the number of regulatory paths run-
ning through them (have a higher betweenness) as com-
pared to non-tissue-specific genes. These results suggest
that tissue-specific regulation does not occur in dense
portions of the regulatory network, or by the formation of
tissue-specific hubs. Rather, tissue-specific genes are cen-
tral to the regulatory network on an intermediate scale
due to the influence of tissue-specific tissue-specific reg-
ulatory paths [47]. We believe this result supports the
notion that tissue-specific function is largely driven by
non-canonical interactions. Such interactions could, for
example, be interactions through TF complexes (no di-
rect binding between a TF to the promoter of its target
gene), binding of a TF to an alternative motif, or interac-
tions outside of a gene’s promoter (for example binding
to an enhancer) [49].

Overall, our analysis provides a more comprehensive
picture of tissue-specific regulatory processes than re-
ported previously. Our comparison of global gene regula-
tory network models across a large set of human tissues
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provided important insights into the complex regulatory
connections between genes and transcription factors, al-
lowed us to identify how those structures are subtly differ-
ent in each tissue, and ultimately led us to better under-
stand how transcription factors regulate tissue-specific
biological processes. One important result from our anal-
ysis is that transcription factor expression information
is very poorly correlated with tissue-specific regulation
of key biological functions. At the same time, we find
that alterations in transcription factor targeting cause a
shift in the structure of each tissue’s regulatory network,
such that tissue-specific genes occupy central positions by
virtue of tissue-specific regulatory paths that run through
the global network structure.

Taken together, these results support the notion
that tissue-specificity likely arises from adjusting and
adapting existing biological processes. In other words,
tissue-specific biological function occurs as a result of
building on an existing regulatory structure such that
both common and tissue-specific processes share the
same underlying network core. Ultimately, our work
suggests that regulatory processes need to be analyzed
in the context of specific tissues, particularly if we hope
to understand disease and development, to develop more
effective drug therapies, and to understand the potential
side effects of drugs outside of the target tissue. It
also establishes a framework in which to think about
the evolution of tissue-specific functions, one in which
new processes are integrated into an established gene
regulatory framework.
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SUPPLEMENTAL MATERIALS AND METHODS
S.1. GTEx RNA-Seq Data

We downloaded the Genotype-Tissue Expression
(GTEx) version 6.0 RNA-Seq data set (phs000424.v6.p1,
2015-10-05 released) from dbGaP (approved protocol
#9112). GTEx release version 6.0 sampled 551 donors
with phenotypic information and included 9,590 RNA-
Seq assays. GTEx assayed expression in 30 tissue types,
which were further divided into 53 tissue subregions
(51 tissues and two derived cell lines) After re-
moving tissues with very few samples (fewer than 15),
we were left with 27 tissue types from 49 subregions.
Using YARN (http://bioconductor.org/packages/
release/bioc/html/yarn.html) we performed quality
control, gene filtering, and normalization preprocess-
ing. Briefly, we performed principal coordinate analy-
sis (PCoA) using Y-chromosome genes to test for sample
sex misidentification; we identified and removed GTEX-
11ILO which was annotated as female but clustered with
the males and was later confirmed to be an individ-
ual who underwent sex reassignment surgery (Kristin
Ardlie, Broad Institute, private communication). We
also used principal coordinate analysis on autosomal
genes to group related body regions that had highly sim-
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ilar gene expression profiles. For example, skin samples
from the lower leg (sun exposed) and from the suprapubic
region (sun unexposed) shared gene expression profiles
and were grouped as “skin,” while the transverse and de-
scending colon were very different and were retained as
distinct tissues. Gene expression data were then normal-
ized using gsmooth which performs a sparsity aware
normalization that provides comparable expression pro-
files across all tissues. This preprocessing resulted in a
dataset of 9,435 gene expression profiles assaying 30, 333
genes in 38 tissues from 549 individuals. More detailed
information on the normalization process and a complete
description of the 38 final tissues and the associated sam-
ples are described elsewhere Consistent with GTEx,
genes are denoted by their Ensembl IDs.

S.2. Regulatory Network Reconstruction

We used the PANDA (Passing Attributes between
Networks for Data Assimilation) network reconstruction
algorithm to estimate gene regulatory networks in
each of the 38 GTEx tissues (see Section [S.I)). PANDA
incorporates regulatory information from three types of
data: gene expression (used to create a co-expression net-
work), protein-protein interaction, and a “prior” network
based on mapping transcription factors to their putative
target genes (used to initialize the algorithm).

Additional Gene Expression Data Processing: We fil-
tered the normalized GTEx gene expression data (see
above) to retain only the 30,243 genes that also had a
significant motif-hit in their promoter region (see below).
These genes were used when constructing our regulatory
network models.

Prior Regulatory Network Based on Transcription
Factor Motif Information: To create a “prior” regula-
tory network between transcription factors and genes,
we downloaded Homo sapiens transcription factor mo-
tifs with direct/inferred evidence from the Catalog of
Inferred Sequence Binding Preferences CIS-BP (http:
//cisbp.ccbr.utoronto.ca, accessed: July 7, 2015).
For each unique transcription factor, we selected the
motif with the highest information content, resulting in
a set of 695 motifs. We mapped these transcription
factor position weight matrices (PWM) to the human
genome (hgl9) using FIMO [[5]| and retained highly sig-
nificant matches (p < 107°) that occurred within the
promoter regions of Ensembl genes (GRCh37.p13; an-
notations downloaded from http://genome.ucsc.edu/
cgi-bin/hgTables, accessed: September 3, 2015); pro-
moter regions were defined as [—750,+250] around the
transcription start site (T'SS). After intersection to only
include genes and transcription factors with expression
data (see above) and at least one significant promoter
hit, this process resulted in an initial map of potential
regulatory interactions involving 644 transcription fac-
tors targeting 30, 243 genes.
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Prior Protein-Protein Interaction Network: We esti-
mated an initial protein-protein interaction (PPI) net-
work between all transcription factors (TFs) in our mo-
tif prior using interaction scores from StringDb v10
(http://string-db.org, accessed: October 27, 2015).
PPI interaction scores were divided by 1,000 and self-
interactions were set equal to one.

Recontructing Networks using PANDA: For each of the
38 tissues, we used the GTEx gene expression data to
calculate pairwise co-expression levels (based on Pear-
son correlation) between the 30,243 target genes. We
then used PANDA to combine this information with the
prior regulatory network and protein-protein interaction
network. This produced 38 regulatory networks, one for
each tissue, with edges predicted between 644 transcrip-
tion factors and 30,243 target genes. PANDA returns
complete, bipartite networks with edge weights similar
to z-scores that represent the likelihood of a regulatory
interaction. We transformed these z-scores to positive
values using:

t) _ w®
Wi;» =ln(e"s +1) (S1)

where wg) is the edge weight calculated by PANDA be-
tween a TF (i) and gene (j) in a particular tissue (¢), and
w; ;) is the transformed edge weight. These transformed
edge weights are positive and so avoid issues related to

calculating centrality measures on graph with negative

edge weights (see Section [S.10]).

S.3. Quantification of Tissue-Specificity vs
Generality of Network Edges

Each of the 38 reconstructed PANDA networks con-
tains scores, or “edge weights,” for every possible tran-
scription factor-to-gene interaction (see Section. We
used these edge weights to identify tissue-specific net-
work edges. To do this, we compared the weight of an
edge between a transcription factor (i) and a gene (j)
in a particular tissue (t) to the median and interquartile
range (IQR) of its weight across all 38 tissues:

0 _ Wy 5
Sij = (all) (52)
IQR(w;; )

)

— med(w

We then defined an edge with an edge specificity score

SS) > N as specific to tissue t. We varied the cutoff N
from 1 to 3, by steps of 0.25. Supplemental Figure
shows the fraction of edges that are identified as tissue-
specific at each cutoff. We selected a cutoff of N = 2
to define tissue-specific edges in order to be consistent
with the cutoff used to define tissue-specific nodes (see
Section . We also defined the “multiplicity” of an

edge as:

mi; =y (s} > N) (S3)

t
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This value represents the number of tissues in which an
edge is identified as specific. The overlap in edges iden-
tified as specific to each tissue can be found in Supple-
mental Figure [S2A.

S.4. Quantification of Tissue-Specificity vs
Generality of Network Nodes

We wished to know if the tissue-specific edges were a
direct reflection of the underlying gene expression data,
or if the networks might be providing additional insight
into the tissue-specific regulation of genes. Therefore, we
identified tissue-specific network nodes (TFs and their
target genes) by applying an analogous definition as we
used to define tissue-specific edges to the GTEx gene
expression data. We compared the median expression
level e§t) of a gene (j) in a particular tissue (t), to the
median and interquartile range of its expression across
all samples:

S _ med(egt)) - med(e§all))

sS4
! IQR(e\™) (54)

We then defined a gene with gene specificity score
sy) > N as specific to tissue t. We varied the cutoff N
from 1 to 3, by steps of 0.25. Supplemental Figure [S1|B
shows the fraction of tissue-specific genes identified at
each cutoff. Based on this analysis, we selected a cutoff
of N = 2 because with that cutoff approximately half of
all genes are identified as tissue-specific. We also defined
the “multiplicity” of a gene as:

mj =Y (s > N) (S5)

t

This value represents the number of tissues in which a
gene is identified as specific. In Supplemental Figure [STIC
we show some examples of non-tissue-specific and tissue-
specific genes with different levels of multiplicity. We
observe that the term “tissue-specific” is largely a mis-
nomer. Many genes have a multiplicity greater than one,
meaning that they are not actually “specific” to a par-
ticular tissue, but rather have a relatively higher level
of expression in a subset of tissues compared to the oth-
ers. Information regarding the tissue-specificity and mul-
tiplicity of genes can be found in Supplemental Table
The overlap in genes identified as specific to each tissue
can be found in Supplemental Figure [S2B.

To identify tissue-specific network nodes, other ap-
proaches, such as a differential expression analysis us-
ing Limma or ANOVA, could have been used. We de-
cided to use the approach described in Equations [S4}-
for two reasons. First, this allowed us to link the
tissue-specificity of network nodes to the specificity of
network edges (Equations S3). While multiple ex-
pression samples were available for each tissue (ranging
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Supplemental Figure S1: Identification of tissue-specific edges and nodes. (A) Number of edges of a given multiplicity at various
cutoffs (V). (B) Number of genes of a given multiplicity at various cutoffs (V). (C) Examples of genes with various multiplicity
levels. For each tissue we show the median (dot) and interquartile range (IQR, range) of a gene’s expression in samples from
that tissue. The dashed line indicates the cutoff used to define a gene as tissue-specific (the median plus two times the IQR of
expression levels across all samples). A gene is identified as tissue specific if its median expression across samples in a particular
tissue is above the cutoff.
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Supplemental Figure S2: Percentage of (A) edges, (B) genes, and (C) TFs that were identified as specific in the tissue listed
along the Y-axis, that are also identified as specific to the tissue listed along the X-axis. (D) Comparison of the tissue-specific
edges identified using PANDA-networks to those that would have been identified using a network defined based on co-expression
information. (E) Comparison of the tissue-specific edges identified using PANDA-networks to functional edges identified by
GIANT-networks.

from 36 to 779 samples, with a median of 210.5 sam- differentially expressed between different conditions. In
ples), we only had one network available per tissue. We addition, these approaches assume normality. Because
therefore could not use a statistical test that would com- the GTEx expression data are not normally distributed,

pare groups of network edges. Second, approaches such and because we observed global expression differences in
as Limma or ANOVA assume that most genes are not expression between the different tissues (with large global
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expression differences in, for example, testis), these un-
derlying null assumptions are likely not well founded.

Identifying Tissue-Specific Transcription Factors:
Each of our network models includes information about
the targeting profiles of 644 transcription factors (see Sec-
tion . In analyzing tissue-specific transcription fac-
tors (Figure |2 in the main text) we focus on this subset
of 644 transcription factors. However, other transcription
factors that do not have a corresponding DNA-binding
motif are included in our GTEx expression data. To eval-
uate these transcription factors we compared the genes
in our GTEx expression data with a list of 1,987 genes
that encode transcription factors as reported in a previ-
ous publication[@} This list of 1,987 transcription factor
genes includes 1,798 that have expression information in
the normalized GTEx RNA-seq data (see Section
and 1,795 that are among the 30,243 target genes used
in our network analysis (see Section[S.2). Of these 1,795
TFs, 1,178 do not have DNA-binding motifs, while 617
have a DNA-binding motif and are part of the set of 644
TFs we used in our regulatory prior. We compared the
tissue-specificity and multiplicity levels of the 644 TFs
with DNA-binding motifs and the 1,178 TFs without
motifs (Supplemental Figure . TFs with a motif were
more likely to be identified as tissue-specific than TFs
without motifs (34.5% versus 28.5%, Chi-squared test
p=9.2-1073) and also tended to have higher multiplic-
ity levels (Chi-squared test p = 6.1 - 10~'%). Multiplicity
levels of TF without motifs are comparable to those of all
target genes (see Figure . Thus, while TFs with DNA-
binding motifs are often shared among multiple tissues,
TFs without such motifs are more often specific to only
a single tissue, and appear to behave, at least in terms
of their expression levels, more like non-TF genes. We
note that although these differences may reflect biases in
motif databases, they also potentially indicate that there
are particular chemical and/or biological properties that
have allowed certain transcription factors to be associ-
ated with known DNA-binding sequences.

S.5. Comparison of PANDA and Correlation-Based
Networks

Since co-expression networks have been widely used to
analyze gene expression data, including in another net-
work analysis of tissue-specificity in GTEx we com-
pared the tissue-specific edges defined based on PANDA-
networks to those defined based on co-expression. For
each of the 38 GTEx tissues analyzed we created co-
expression networks by calculating the Pearson corre-
lation between the 644 TFs and 30,243 genes included
in our network model (see Section . We identified
tissue-specific edges in these correlation-based networks
using same protocol we used for genes and PANDA edges
(Equation with N = 2). When we compared the
edges identified as tissue-specific using the correlation-
based networks to those identified based on the PANDA-
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reconstructed regulatory networks we found very little
overlap (Supplemental Figure [S2D).
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Supplemental Figure S3: Bar plots illustrating the number of
TFs with (A) and without (B) DNA-binding motifs that were
identified as “specific” to each of the 38 GTEx tissues. The
total number of tissue-specific TFs identified for each tissue
is shown to the right of each bar. Tissues are ordered on
the number of edges specific to each tissue, as in Figure
Tissue-specificity for TFs was defined based on a TF having
increased expression in one tissue compared to others, thus
some TFs were identified as specific to multiple tissues. This
multiplicity value is indicated by the color of the bars. We
found that TFs with DNA-binding motifs have substantially
higher multiplicity levels compared to TFs without motifs.

This low level of overlap means that PANDA and Pear-
son correlation networks capture fundamentally different
aspects of each tissue’s gene expression program. The
co-expression networks are based on measured expres-
sion correlations between TF's and their targets. In con-
trast, PANDA uses co-expression between target genes,
not TFs and their targets. In particular, PANDA inte-
grates target co-expression information with a prior reg-
ulatory network structure and TF-TF protein-protein in-
teraction data, iteratively updating the likelihood of in-
teractions between TF's and target genes based on shared
patterns across these data.

We believe that PANDA more accurately captures
tissue-specific regulatory processes. Indeed, when devel-
oping PANDA, we compared it to other methods, includ-
ing co-expression networks, and found that the PANDA
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networks were better supported by confirmatory data,
such as ChIP experiments Although no ChIP data
are available for GTEx, PANDA does find biologically
relevant associations that help elucidate the link between
expression and tissue phenotype.

S.6. Comparison of PANDA and Functional
Networks

We also systematically explored what, if any, informa-
tion is shared between the PANDA tissue-specific regu-
latory networks we estimated from the GTEx data and
other published tissue-specific functional networks |[8]|
In particular, we compared our networks to those es-
timated by GIANT (Genome-scale Integrated Analysis
of gene Networks in Tissues; http://giant.princeton.
edu/)). This resource aims to capture tissue-specific
functional interactions by using tissue-specific knowl-
edge from the literature to selectively upweight particular
datasets within a compendium of gene expression infor-
mation and perform a tissue-ontology aware regularized
Bayesian integration.

To begin, we identified which of the 144 distinct tissue-
networks available on the GIANT web-resource are most
likely to correspond to each of the 38 tissues we analyzed
in the GTEx data. In some cases, we identified multiple
tissue-networks available from GTANT to compare with a
single tissue-network in our GTEx analysis. For example,
in constructing the GTEx networks we combined gene
expression samples from anatomically close regions of the
brain when those samples were indistinguishable using
principal component analysis (see Section and .

Next, we downloaded the top edges identified by
GIANT, which represent interactions with a posterior
probability greater than 0.1 in that tissue, for each
of these identified corresponding tissues. As with the
co-expression networks analyzed in Section [S.5 these
GIANT networks are undirected, with edges extending
between pairs of genes. Therefore, we next matched
the nodes and dimensions between these functional net-
works and the GTEx regulatory networks. Specifically,
of the 25,824 Entrez genes found across the GIANT net-
works, we identified 18,431 that were uniquely associated
with the Ensembl and Gene Symbol annotations for the
30,243 genes that we had used to reconstruct the GTEx
regulatory networks. This represents 91% of the unique
Entrez gene annotations in the GTEx data (10, 122 of the
GTEx genes did not have a corresponding Entrez anno-
tation). This set of 18,431 genes included 635 of our 644
transcription factors. We subsetted both the downloaded
GIANT networks and our GTEx networks to only con-
sider tissue-specific edges that extend from one of these
635 TF's to one of these 18,431 genes.

Finally, we determined the number of distinct and
common edges between these subsetted GIANT and
GTEx networks. We note that the number of top edges
in the downloaded GIANT tissue-networks tended to be
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much greater than the number of tissue-specific edges we
had identified from the GTEx PANDA networks. Even
so, we found very little overlap between these functional
networks and the gene regulatory networks (Supplemen-
tal Figure )7 highlighting that the regulatory infor-
mation contained in our GTEx regulatory networks is
distinct from the type of information that is included in
other tissue-network resources.

S.7. Comparison with a Previously Published
Tissue-Specific TF Resource

We also compared the transcription factors we identi-
fied as tissue-specific based on the GTEx expression data
(see Section with those reported as tissue-specific in
a previous publication [@] (hereafter referred to as NRG,
standing for the journal in which it was published: Na-
ture Reviews Genetics) and which were used in other
GTEx network evaluations The results of this anal-
ysis are shown in Supplemental Figure [S4}

To begin, we downloaded the gene expression data
used for the calling of tissue-specific transcription fac-
tors in the NRG publication from the Gene Expression
Omnibus (GSE1133). We RMA-normalized these expres-
sion data using the justRMA() function in the affy Ver-
sion 1.52.0 library from Bioconductor in R and used a
custom-CDF for the Affymetrix GeneChip HG-U133A
array (hgul33ahsensgedf_20.0.0) [@]] in order to normalize
with respect to current Ensembl genes IDs. This RMA-
normalized version of the expression data contained ex-
pression information for 11,900 different Ensembl genes
across 158 total samples, 64 of which correspond to the
“32 healthy major tissues and organs” used in the NRG
analysis. 11,363 of the genes in this RMA-normalized
NRG expression data set also appeared in the normal-
ized GTEx data (see Section and Supplemental Fig-
ure [S4A).

We next downloaded the supplemental data that ac-
companied the NRG manuscript. The “supplemental in-
formation S3” file contained information for 1,987 genes
that encode transcription factors, including their “En-
sembl gene IDs (release 51), HGNC identifiers, IPI IDs,
associated DNA-binding Interpro domains and families,
and tissue specificity if any.” Of the 1,987 transcription
factors in this supplemental data file, 1,130 were included
in the RMA-normalized expression data we had down-
loaded from GEO and 1,798 had expression information
in the normalized GTEx data.

1,120 of these transcription factors had gene expres-
sion values in both the RMA-normalized NRG data and
the normalized GTEx data (Supplemental Figure [S4A).
We evaluated how many of these transcription factors
had the same tissue-specific designation in both the NRG
supplemental data file and based on our analysis (see
Section . To do this we created a map between the
38 tissues used in our current GTEx analysis with the
32 tissues analyzed in the NRG paper. In several cases
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Supplemental Figure S4: Analysis comparing the results of from a previous publication (NRG) with those obtained in this
analysis using the GTEx RNA-seq data. (A) An overview of the overlap in the genes included in the NRG gene expression
data, the TFs included in the NRG supplemental data file, and how those sets overlap with the 30,333 genes in the normalized
RNA-seq data we used in this analysis (see Section . (B) An analysis comparing the overlap of TFs identified as specific
based on the NRG publication and those identified based on the GTEx data (see Section . An asterisk () indicates that
the overlap is nominally significant (p < 0.01 by Fisher’s exact test). (C) The distribution of expression values in the GTEx
data for several example TFs. These TFs were chosen to illustrate a range of possibilities, including some overlap (FGR4,
GATA4, ESR1), as well as opposing (XBP1), identical (PAXS8), or distinct (RFX4, ZNF106, EGR1, TBXS5) tissue-specific calls
based on using either the NRG or the GTEx analysis. As there was little overlap between NRG and GTEx, the four plots with
distinct tissue-specific calls are the most representative. (D) The expression of transcription factors versus non-transcription
factor genes in both the NRG and GTEx expression data and using various criteria. (E) Information regarding the types of
genes that are common between the set on the NRG microarray and in the GTEx RNA-seq data, and the types of genes that
we have included in our GTEx expression analysis that were not on the NRG microarray.

multiple different GTEx tissue subregions (eg the atrial Figure [S4C. In some cases, such as for XBP1 and TBX3,
appendage and left ventricle of the heart) were mapped the fact that a TF was only identified as specific by NRG
to the same, more general tissue-designation in the NRG and not GTEx appears to be a function of the cutoff
data (eg “heart”). We then directly compared the set of  we used for defining tissue-specificity (see Section [S.4).
transcription factors that were identified as specific to a However, we note that relaxing this criterion would have

given tissue in our GTEx analysis, with the set of tran- significantly changed the number of TFs we identified as
scription factors that were identified as specific to that tissue-specific (see Supplemental Figure [S1B) and ulti-
tissue in the NRG analysis. mately would not affect the relatively low level of overlap

We find that the overlap between these sets of TFs is ~ We see here. In addition, there are many examples where
nominally statistically significant in most cases (p < 0.01 our GTEx analysis clear'ly identifies tissue-specific signals
in 14 of the 20 comparisons). However, the actual number that are not reflected in the NRG data set (ZNE 106,
of TFs identified as specific to a particular tissue in both X4, GATA@’ and also examples where there is no
the NRG and our GTEx analysis is quite low (Supple- apparent .tlssue—spe(nﬁc signal for a TF desplte' it being
mental Figure [§4B). For example, the lung, ovary, and called so in the NRG data (EGRJ, ESR1I). Given that
pancreas contained no common tissue-specific TFs be- the NRG expression data contains only two samples per
tween our GTEx designation and the NRG-designation. tissue, we believe that the tissue-specificity calls for TFs
In addition, when we restrict this analysis to the 478 of ~ Made in our analysis are more reliable.
these 1,120 TFs that were also included as regulators in

. ) s This low level of overlap in the identified tissue-specific
our network model, even this nominal significance goes

) TFs led us to more closely investigate the expression data
away for many tissues. used in the NRG analysis. Using the RMA-normalized

To better understand this result, we examined the dis-  NRG data (and focusing on the 11,363 genes and 1,120
tribution of expression values in the GTEx data for these TF's that are common between the NRG and GTEx data
1,120 TFs. A few examples are included in Supplemental sets), we reproduced the plots from Figure 3 in the NRG
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publication. Consistent with that analysis, we find that
in the NRG expression data set transcription factors are
expressed at lower levels than non-TFs (compare Figure
3A in to Supplemental Figure ) We then re-
peated this same analysis using the GTEx data. To our
surprise, the difference in expression between TFs and
non-TFs largely disappeared when performing this anal-
ysis in the GTEx data. Finally, we repeated this analysis
using all 30,333 genes in our GTEx expression data set.
This actually resulted in the opposite conclusion as the
analysis presented in the NRG paper, with TFs expressed
at higher levels than non-TFs.

One advantage of using RNA-sequencing data over mi-
croarrays is that sequencing can capture mRNA from
many different types of genes and is not limited by the set
of probes included on a given array. To better understand
whether differences in technology (microarray versus
RNA-sequencing) may be influencing the results shown
in Supplemental Figure [S4D, we determined the annota-
tions for the 30,333 genes included in our GTEx anal-
ysis using Biomart (dec2013.archive.ensembl.org). Sup-
plemental Figure [S4E shows the distribution of these an-
notations across the 11,363 genes that are common be-
tween the NRG microarray and the GTEx RNA-seq data,
and across the 18,970 genes that are only contained in
our GTEx RNA-seq data. It is immediately clear that
the microarray genes are almost completely composed of
protein-coding genes whereas the genes captured only in
the GTEx data contain many types, including antisense,
lincRNAs, and pseudogenes. Thus the fact that we see
TFs expressed at higher levels than non-TFs when eval-
uating the full 30,333 genes in the GTEx data is largely
a consequence of the fact that all TFs are, by definition,
protein-coding genes, and that protein-coding genes are
expressed at higher levels than non-protein-coding genes.

Overall, this analysis highlights the importance of the
public availability of data and reproducible research, as
we were able to faithfully reproduce many of the re-
sults from the NRG paper using their original data. It
also highlights the need to revisit previous analyses as
new data becomes available. The differences in tissue-
specificity and TF-expression based on the NRG analy-
sis and the GTEx data are a perfect demonstration of
the opportunity the GTEx data gives us to revisit our
understanding of tissue-specificity and gene regulation.

S.8. Calculating Enrichment of Tissue-Specific
Edges

To quantify the relationship between various tissue-
specific edges and nodes, we explicitly evaluated the ex-
tent to which tissue-specific edges are more (or less) likely
to target tissue-specific genes (or TFs) as compared to
chance. For each of the 38 tissues we counted the number
of edges called as specific to a tissue (¢, see Equation,
and of a given multiplicity (M, see Equation that
also target a gene identified as specific to that tissue (see
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Equation :

N Z§7 [(sgf; > 2) & (my; == M) & (s > 2)}
4,7
(S6)
We then summed these numbers over all 38 tissues:

N =3 (N M) (S7)

t

We also calculated the number of tissue-specific edges
of a given multiplicity that one would expect to target
tissue-specific genes by chance:

1
(N = — S > 2)

g9

<Y [(sgy >2) & (my == M)|  (38)

<N(]VI)> _ Z<N(t,1\/f)>

t

Where Ny = 30,243 (the number of genes in our model).
Finally, we defined the enrichment for tissue-specific
edges of a given multiplicity targeting tissue-specific
genes as:

Observed NG

EM) — [ogo =0 o
092 FExpected 092 (N(M))

(59)

We found very high enrichment for tissue-specific edges
targeting tissue-specific genes, especially in edges with
lower multiplicity values (Figure )

S.9. Gene Set Enrichment on TF Targeting Profiles

Gene Set Enrichment Analysis to Quantify the

Functions Associated with Tissue-Specific TF-targeting:

Although tissue-specific transcription factors are more
likely to be associated with tissue-specific network edges
than one would expect by chance, we found that this
association is much lower than the association between
tissue-specific edges and target genes. This led us to
the hypothesis that both tissue-specific and non-tissue-
specific transcription factors play an important role in
mediating tissue-specific biological processes. To test this
hypothesis, for each transcription factor (i), we quanti-
fied its tissue-specific targeting profile in a given tissue
(t) as sgt) (see Equation . We then ran a pre-ranked
Gene Set Enrichment Analysis (GSEA) [[10] on the scores
in this profile to test for enrichment for Gene Ontology
(GO) terms. In total we performed 24,472 GSEA analy-
ses, one for each of the 644 transcription factors included
in the network for each of the 38 tissues. The detailed
results of this analysis for each tissue are given in Sup-
plemental Tables [4] and
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Selection of TFs with Highest and Lowest Expression
Enrichment: In order to better understand the relation-
ship between tissue-specific transcription factor expres-
sion patterns and their tissue-specific targeting of bio-
logical functions, we selected ten transcription factors
with the highest expression enrichment based on Equa-
tion [S4] More specifically, for the analysis presented in

Figure[dB in the main text, we selected the ten transcrip-
tion factors with the highest S§Bmm other) value, and the
ten transcription factors for which the absolute value of
S(Brain other)

was closest to zero.

’ Identifying Differentially Targeted Biological Processes
and Differentially Targeting TFs for Each Tissue: For
each tissue, we identified GO terms that were signifi-
cantly enriched (FDR < 0.001; GSEA Enrichment Score,
ES > 0.65) for tissue-specific targeting by at least one
transcription factor. This allowed us to define 38 sets of
differentially targeted biological processes, one for each
tissue. For each tissue, we used the corresponding set
of differentially targeted GO terms to identify differ-
entially targeting TFs. More specifically, for each tis-
sue we determined the set of TFs that were specifically
significantly-enriched (FDR < 0.001; GSEA Enrichment
Score, EIS > 0.65) for differential targeting of at least
one of the members in the complete set of differentially
targeted biological processes. This allowed us to define
38 sets of differentially targeting TF's, one for each tissue.
Interestingly, these TF's were not associated with the sets
of differentially expressed (tissue-specific) TFs identified

in Section (Supplemental Figure [S5| and Supplemen-
tal Table [5]).

Community Structure Analysis to Identify Related
Sets of TFs/Tissues and GO terms: To gain a more
holistic understanding of the patterns of tissue-specific
targeting across all 38 tissues, we combined the GSEA
analysis results into a single large matrix that contained
the enrichment results across all 24, 472 transcription fac-
tor and tissue pairs. This matrix contained all the tested
GO terms in the rows, and each of the 24,472 GSEA
analyses in the columns. We selected elements of this
matrix that represented highly significant positive en-
richment for tissue-specific targeting (F DR < 0.001 and
ES > 0.65), creating a bipartite network where nodes
were either GO terms or TF-tissue pairs (the pairs used
for the GSEA analyses). We then ran the fast greedy
community structure detection algorithm to iden-
tify “communities,” or sets of GO terms associated with
TF-tissue pairs, in this bipartite network. The benefit
of this type of analysis over other clustering approaches,
such as hierarchical clustering, is that each “node” is as-
signed to exactly one community, aiding in our inter-
pretation of these highly complex results. This analysis
identified 48 separate communities (Figure and Sup-
plemental Figure , or clusters of GO terms associated
with TF-tissue pairs (representing the tissue-specific tar-
geting profile of a particular TF in a particular tissue).
All TF-tissue pairs with significant positive enrichment
tissue-specific targeting of a particular GO term can be
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=‘é§;ue Specific based on Expression Number of:

[ Tissue-Specific Pathway Targeting (GSEA) TS-TFs Common Pvalue
Testis 91 81 15 0.15
Kidney cortex 18 164 3 0.88
Brain other 24 38 1 0.77
Breast 4 77 0 1.00
‘Whole blood 13 251 5 0.62
Brain cerebellum 36 26 0 1.00
Colon transverse 25 48 0 1.00
Fibroblast cell line 10 88 1 0.77
Adrenal gland 8 126 2 0.48
Spleen 17 2 0 1.00
Heart left ventricle 7 174 5 0.02
Intestine terminal ileum 23 124 2 0.96
Brain basal ganglia 25 a5 2 0.53
Adipose visceral 2 69 0 1.00
Prostate 16 4 0 1.00
Lymphoblastoid cell line 44 66 7 0.15
Skin 16 a1 2 0.27
Esophagus mucosa 10 280 5 0.46
Stomach 17 86 3 0.40
4 7 68 1 054
Artery 2 275 0 1.00
Vagina 11 85 3 0.17
Pancreas 20 112 5 0.26
Lung 5 30 0 1.00
Colon sigmoid 14 31 0 1.00
Tibial nerve 3 1 0 1.00
Minor salivary gland 8 35 0 1.00
Pituitary 30 20 2 0.24
Uterus 6 26 0 1.00
Skeletal muscle 12 157 3 0.59
Liver 18 55 1 0.80
Esophagus muscularis 3 9 0 1.00
Heart atrial appendage 6 31 0 1.00
Adipose subcutaneous 3 30 0 1.00
Thyroid 8 25 0 1.00
Artery coronary 2 133 1 037
Gastroesophageal junction 4 56 0 1.00
Artery aorta 1 50 0 1.00

0 0.2 0.4 0.6 0.8 1
Percentage of TFs

Supplemental Figure S5: Comparison of TFs defined as
tissue-specific based on their expression profile, versus based
on their differential targeting profile. All TFs that have tissue-
specific differential targeting profiles can be found in Supple-
mental Table

found in Supplemental Table[6] Characteristics of the 48
communities found by clustering these relationships can
be found in Supplemental Table [7]

Word Clouds to Visualize the Functional Content
of Communities: Nine communities had eight or

more GO term members.  For these communities
we summarized their functional content using a
free word cloud making program (downloaded from:
http://www.softpedia.com/get/0ffice-tools/
Other-0ffice-Tools/IBM-Word-Cloud-Generator.
shtml). This program automatically configures the
orientation of words in the clouds, but we manually
assigned each word a relative size based on that word’s
statistical enrichment in the community Specifi-
cally, for a given community, we counted the number of
times an individual word appeared across all the GO
term members associated with that community (Nwc)
and then calculated its statistical enrichment in a given
community based on the hypergeometric probability:

min[Ny,Nc] (Nc) (Ntothc)

p= Z q Ny —1

q=Nuyec (IX;Z,t)

where N, is the number of individual words in a com-
munity, N,, is the number of times the word appears
across all term descriptions and Ny, is the total num-
ber of words included in all tested GO terms. We then

(S10)
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Supplemental Figure S6: Illustration of the communities of GO terms and TF-tissue pairs that had three or fewer GO-term

members.

scaled the sizes of the words in the word cloud based on
—log1o(p) such that words that have the lowest probabil-
ity of being in the community by chance are given the
largest size and words that are common across many bi-
ological functions and that one might expect to be in a
community by chance are given a very small size.

Bipartite Network to Visualize the Relationships

between Communities and Tissues: Figure [5IC was made
using JavaScript library D3.js (http://bl.ocks.org/
NPashaP/fcb09e2cddbe104e209f457d44f 166cal).

Transcription Factor Enrichment in Communities: Be-
cause of the complex structure of the relationships rep-
resented between TF/Tissue pairs and the GO Terms in
our communities, we identified transcription factors that
were significantly enriched in a given functional commu-
nity by performing a permutation analysis. We began by
determining the number of times each transcription fac-
tor has a significant GSEA association with each of our
48 functional communities. Then, to determine whether
this value was greater than expected by chance, we per-
formed a supervised shuffling of the community labels
of the transcription factors. In particular, to perform a
community label shuffling that would correctly identify
enrichment among transcription factors, we first identi-
fied the set of community assignments associated with
each tissue, and shuffled these assignments only among
the TF/Tissue-pairs for that tissue. This approach al-
lowed us to conserve both the size of the communities
and the distribution of tissues within the communities.
After performing each shuffling, we counted the number
of times each TF had an association with each commu-
nity in this random assignment. We repeated this shuf-
fling 10,000 times and estimated the significance of en-
richment of a transcription factor in each community by
determining the percentage of times the counts from the
shuffled assignments were greater than the counts from
the original assignments.

S.10. Network Centrality Estimates of

Tissue-Specific Genes

We used the igraph Version 1.0.0 package in R to
calculate both the degree (using the graph.strength()
function) and betweenness centrality (using the between-
ness() function) of genes in each of the 38 complete,
weighted PANDA tissue networks (see Section and
Equation .

Degree: The degree of a node is defined as the num-
ber of edges connected to that node. Because we have
weighted graphs, we calculated the degree of a gene in a
given tissue (¢) by summing up the weights of all edges

connected to that gene (Wj(t) see Equation . Note
that because these are also complete graphs, each gene
had exactly 644 edges, one from each transcription factor.

Betweenness: The betweenness of a node is defined as
the fraction of non-redundant shortest paths in the net-
work that go through that node. In a weighted network,
the shortest path calculation uses edge weights to calcu-
late the cost of traversing each edge. In order to prefer
higher edge weights in calculating shortest paths, we used
1/ Wi(jt) (see Equation as the cost for determining the
shortest paths. In order to calculate the betweenness cen-
trality, we treated edges as undirected (meaning that an
edge exists both from a TF to its target gene and from
the target gene to the TF).

S.11. Network Centrality of PANDA’s Seed

Regulatory Network

PANDA builds its predicted regulatory network, in
part, by leveraging information from a prior “seed” net-
work constructed by mapping transcription factors to
genes based on genome sequence information (see Sec-
tion . We wanted test whether the differences in
centrality values that we observed between tissue-specific
and non-tissue-specific genes were due to the structure
of this input data or if they were identified primarily


http://bl.ocks.org/NPashaP/fcb09e2cddbe104e209f457d44f166ca
http://bl.ocks.org/NPashaP/fcb09e2cddbe104e209f457d44f166ca
https://doi.org/10.1101/110601
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/110601; this version posted August 11, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

through PANDA’s message passing network optimiza-
tion. Therefore, we calculated the degree and between-
ness centrality for genes based on the motif scan seed
network (see Section . We note that this seed net-
work is “unweighted,” meaning that the edges only take
two values: one if the motif for TF ¢ is found in the
promoter region of gene j, and zero if it is not.

In the motif prior network, we saw only minimal dif-
ferences between the centrality of tissue-specific and non-
tissue-specific genes, with tissue-specific genes having
slightly lower centrality values compared to non-tissue-
specific genes (Supplemental Figure . This is consis-
tent with our finding in the main text that tissue-specific
genes are generally of low betweenness and only see an
increase in their betweenness in their “specific” tissues,
and supports our interpretation that tissue specificity is
associated with increased centrality in the network as
genes gain new non-canonical regulatory paths.

Distribution of Centrality Values
(In Motif Prior Network)
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Supplemental Figure S7: Distribution of the (A) in-degree
and (B) betweenness centrality values of genes in the motif
prior network used to seed the PANDA algorithm. Genes
identified as tissue-specific are represented in the red line (all
multiplicities considered), while those that are not identified
as specific to any tissue are represented by the black line.
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S.12. S-12 Identifying Genes with eQTLs and

GWAS Variant Associations

To evaluate the potential role of genetic variants
in tissue-specific gene regulation, we identified tissue-
specific, cis-acting expression quantitative trait loci
(eQTLs), as described in Briefly, of the 38 tis-
sues for which we had reconstructed gene regulatory net-
work, 19 contained gene expression samples from at least
150 distinct individuals with imputed genetic data (note
that only tissues with at least 200 individuals were pre-
sented in[[T3]] but the data were processed the same way).
These 19 tissues included adipose subcutaneous, artery
aorta, artery tibial, brain other, breast, fibroblast cell
line, colon transverse, esophagus mucosa, esophagus mus-
cularis, heart atrial appendage, heart left ventricle, lung,
skeletal muscle, tibial nerve, pancreas, skin, stomach,
thyroid, and whole blood. For each of these tissues, we
identified single-nucleotide polymorphisms (SNPs) that
had a minor allele frequency greater than 0.05 across
the individuals with associated tissue-specific gene ex-
pression data and used Matrix eQTL to quantify
the statistical association of the expression of each of the
29,155 genes in GTEx with each of these genetic variants.
For this analysis we used a cis-acting window around the
gene of 1 mega-base, and adjusted for sex, age and the
three first principal components obtained using the geno-
typing data. Finally, we determined which genes had at
least one significant (FDR < 0.05) eQTL association in
each tissue.

We also determined which of these QTL-associated
genes might be important for disease or other pheno-
typic traits. To do this, we downloaded the NHGRI-EBI
GWAS Catalog (http://www.ebi.ac.uk/gwas/; access
date: 12/08/2015). We curated this information, exclud-
ing any entries in the catalog for which the variant did
not have an associated rsid. Then, we parsed our identi-
fied tissue-specific eQTL associations, pruning those that
were not with one of these GWAS genetic variants. Fi-
nally, we used this information to determine which genes
had at least one significant (FDR < 0.05) eQTL associ-
ation with a GWAS-SNP in each tissue. These genes are
listed in Supplemental Table

We compared the genes identified in these analyses
with information regarding tissue-specificity. In partic-
ular, since we only identified eQTL associations in 19
tissues, we identified a new set of “tissue-specific genes”,
which included those that had a multiplicity greater than
zero when applying Equation [55( and summing only over
the 19 tissues. 5,256 of the 29,155 genes were identified
as specific to at least one of these 19 tissues.

SUPPLEMENTAL TABLE LEGENDS

Supplemental tables are available online.

Supplemental Table 1: Table listing edges that are either
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in the regulatory network prior, or are identified as tissue-
specific.

Supplemental Table 2: Table listing the genes included
in our PANDA network models, including their multi-
plicity, tissue-specificity based on gene expression infor-
mation, and centrality values.

Supplemental Table 3: Table listing the transcription
factors included in our PANDA network models, includ-
ing their multiplicity, tissue-specificity based on gene ex-
pression information, and centrality values.

Supplemental Table 4: Table listing the percentage of
genes and TFs associated with a tissue-specific edge in
each tissue.

Supplemental Table 5: Table listing each of the 38 tis-
sues included in our analysis, the GO terms identified
as having significantly increased targeting in each tissue
(FDR < 0.001 and ES > 0.65 by at least one transcrip-
tion factor) and the TFs that are differentially targeting
these categories.

Supplemental Table 6: Table listing all significant GSEA
results (FDR < 0.001 and ES > 0.65) obtained in our
differential targeting analysis.

Supplemental Table 7: Table listing statistics for the 48
“communities” of GO-terms and TF-tissue pairs that
were identified when clustering the GSEA results. The
“top category” is the GO term with the largest number
of significantly associated TF-tissue pairs. The table also
includes all the GO-terms and TF-tissue-pair members in
each of the 48 “communities”.

Supplemental Table 8: Table listing the 308 genes that
had a tissue-specific eQTL with one of the genetic vari-
ants listed in the GWAS catalog. The tissue in which
these eQTLs were identified, the tissue(s) where the as-
sociated gene was identified as specific (among the 19 in
common between the eQTL and network analysis), and
any common tissues are also listed.

SUPPLEMENTAL FILES

Supplemental File 1: Interactive version of Figure [5C.
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