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Egocentric neural coding has been observed in parietal cortex (PC), but its topographical and 
laminar organization is not well characterized. We used multi-site recording to look for evi-
dence of local clustering and laminar consistency of linear and angular velocity encoding in 
multi-neuronal spiking activity (MUA) and in the high-frequency (300-900 Hz) component of 
the local field potential (HF-LFP), believed to reflect local spiking activity.  Rats were trained to 
run many trials on a large circular platform, either to LED-cued goal locations or as a spatial 
sequence from memory. Tuning to specific self-motion states was observed consistently, and 
exhibited distinct cortical depth-invariant coding properties. These patterns of collective local 
and laminar activation during behavior were reactivated in compressed form during post-ex-
perience sleep, and temporally coupled to hippocampal sharp wave ripples. Thus, PC neuron 
motion encoding is consistent across cortical laminae, and this consistency is maintained 
during memory reactivation. 
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Highlights:
• Parietal cortex MUA encodes specific movements coherently across laminae.
• This organizational scheme is maintained during subsequent memory reactivation 
• MUA and HF-LFP showed similar self-motion tuning and memory reactivation dynamics
• This establishes the utility of MUA and HF-LFP for human memory reactivation studies 

INTRODUCTION
A fundamental framework for neural coding in the 
parietal cortex is egocentric (e.g., Andersen et al., 
1985; McNaughton et al., 1994; Nitz, 2006; Save et al., 
2005; Save and Poucet, 2000; Schindler and Bartels, 
2013; Whitlock et al., 2012; Wilber et al., 2014; Wol-
bers et al., 2008). In addition, some studies have also 
found evidence for allocentric (world-centered) en-
coding in parietal cortex (Chen et al., 1994a, b; Chen 
and Nakamura, 1998; Wilber et al., 2014). Subjective 
assessment of head direction tuning in parietal cortex 
suggested common tuning across depth on a given 
tetrode (Chen et al., 1994a, b; Wilber et al., 2014). The 
existence of larger organizational structure of these 
single cells (e.g., large scale populations of cells) has 

been postulated by the theoretical or computational 
approaches (e.g., Byrne et al., 2007; McNaughton et al., 
1995; Xing and Andersen, 2000; Zipser and Andersen, 
1988), but has not been empirically confirmed. There-
fore, we set-out to look for evidence of population level 
organization of three types of previously reported ego-
centric and allocentric reference frames, body centered 
cue direction (Wilber et al., 2014), self-motion tuning 
(McNaughton et al., 1994; Whitlock et al., 2012), and 
head direction tuning (Chen et al., 1994a, b; Wilber et 
al., 2014).
 Behaviorally relevant neural activity patterns 
from single cells are reactivated during memory con-
solidation (Dupret et al., 2010; Lansink and Pennartz, 
2014). Thus, we hypothesized that the functional rel-
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evance of modular organizational structure would be 
supported if the modular structure is also reflected in 
reactivation during post-experience-sleep – a postu-
lated mechanism of memory consolidation originally 
demonstrated at the single cell level in hippocampus 
(Wilson and McNaughton, 1994) and subsequently 
shown for hippocampal-parietal interactions (Qin et 
al., 1997). There is now evidence that memory replay 
is tightly linked to plasticity at the level of single cells 
(Tavoni et al., 2015; van de Ven et al.; Yang et al., 2014).  
However, to our knowledge no study has looked for 
evidence of modular level reactivation.
 Assessing the large scale population-level 
activity in animals would be useful for establishing the 
connection between animal microelectrode recordings 
and methods typically used for human neuroimaging 
electrocorticography (ECoG) and functional magnet-
ic resonance imaging (fMRI), whose spatial and/or 
temporal resolution is usually limited to assessment 
of compound activity of large populations of cells. An 
increasing number of human ECoG studies provides 
a wide cortical coverage, but lack single neuron sepa-
rability. Therefore, linking spiking activity with local 
field potential (LFP) features has been a growing area 
of research, most often finding the correlation between 
the spiking levels and LFP envelope in high-gamma 
range (Crone et al., 2011; Liu and Newsome, 2006; Ray 
and Maunsell, 2011); however, the high-gamma range 
includes synaptic current oscillations (Colgin et al., 
2009; Fries, 2005) and not just spike-related currents. 
Therefore, we aimed to test whether the modular or-
ganization reflected in MUA is also detectable in high 
frequency LFP (>300 Hz), which to our knowledge 
has not been attributed any functional or physiological 
correlates other than spiking. The HF-LFP signal pro-
vides better temporal stability, relative to single neuron 
recording due to minor electrode drift, and therefore 
produces a more reliable readout for long-term studies 
and for brain machine interfaces (e.g., Gilja et al., 2012; 
Mazzoni et al., 2012). Similarly, recently an apparent 
connection between single unit recording studies in 
rodents (grid cells in rats; Hafting et al., 2005) to fMRI 
data in humans (Constantinescu et al., 2016; Doeller 
et al., 2010; Kriegeskorte and Storrs, 2016; Kunz et al., 
2015), suggest that collective recordings may reveal a 
larger organizational structure of encoding that had 
largely been described at the single cell level in rodents 
(i.e., 6-fold symmetry initially observed in human 

fMRI studies during virtual navigation tasks). Thus, 
study of modularity of neural coding in animals using 
collective measures of local neural activity can help to 
bridge the gap between human and animal studies of 
neural coding and dynamics.

METHODS
Male Fisher-Brown Norway hybrid rats (n=6), 5-10 
months of age, underwent surgery for implantation 
of bilateral stimulating electrodes aimed at the medial 
forebrain bundle (MFB; 2.8 mm posterior from breg-
ma, 1.7 mm from midline, 7.8 mm ventral from dura). 
Prior to surgery rats were housed 2-3 per cage.  After 
recovery from surgery, rats were trained to nose poke 
for MFB stimulation. Then brain stimulation param-
eters (200 μs half cycle, 150 Hz biphasic 70-110 μA 
current applied for 300-450 ms) were adjusted to find 
the minimal intensity and duration that was sufficient 
for maintaining maximal responding. Next, rats with 
optimal MFB stimulation (N=3 of the 6 with stim-
ulating electrodes) underwent surgery to implant a 
custom 18-tetrode bilateral “hyperdrive” or 18-tetrode 
unilateral hyperdrive aimed at the left parietal cortex 
(n=3; similar to: Kloosterman et al., 2009; Nguyen et 
al., 2009).
Controls for MFB stimulation effects.  MFB stimula-
tion was necessary to obtain sufficient trials for some 
analyses. To ameliorate concerns about MFB effects 
on parietal cortex neural activity, data were removed 
for the brain stimulation duration plus an additional 
post-stimulation 20 ms blackout period (n=1; identical 
to: Kloosterman et al., 2009; Nguyen et al., 2009). The 
minimum post-stimulation blackout period of 20 ms 
was only applied for self-motion analyses, for memo-
ry replay analyses a longer (500 ms) blackout period 
applied because this was the time between trials when 
the cue light remained off for all trial and task types. 
In addition, MFB stimulation was delivered in one 
hemisphere and recordings were obtained from both 
hemispheres from most rats (n=2 of 3). For these rats 
we compared the proportion of tetrodes (pooled across 
sessions) that met the criteria for self-motion tuning in 
the same versus opposite hemisphere to brain stimu-
lation. Similar to our previous report of no effect on 
proportion of any single cell types we measured (Bow-
er et al., 2005; Euston and McNaughton, 2006; Euston 
et al., 2007; Johnson et al., 2010; Wilber et al., 2014), 
there were no differences in proportion of signifi-
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cantly self-motion tuned sessions (p<0.01) between 
hemispheres when self-motion tuning was measured 
with MUA (χ2(1)=2.29, p=0.13) and HF LFP signal 
(χ2(1)=0.28, p=0.60). Further, in previous experiments 
where it was possible to obtain sufficient coverage 
for analyses using food reward, identical results were 
obtained using MFB stimulation and food reward, 
suggesting that the results obtained from MFB exper-
iments are generalizable (Euston and McNaughton, 
2006). This suggests MFB stimulation did not directly 
influence the activity patterns we observed. 
Surgical Procedure. Recording arrays consisted of 18 
tetrodes and 3-4 reference electrodes. Each tetrode 
consisted of four polyimide-coated, nichrome wires 
(12.5μm diameter) twisted together (Kanthal Palm 
Coast). The recording arrays were positioned over 
the parietal cortex (centered 4.5mm posterior from 
bregma and +/-2.95mm from midline) arranged in 
1 or 2 closely packed guide-tube bundles with cen-
ter-to-center tetrode spacing of ~300 μm. The arrays 
were positioned to target the average parietal cortex 
region for which we recently thoroughly characterized 
the connection densities (Mesina et al., 2016; Wilber 
et al., 2015) and also simultaneously record from the 
CA1 field of the hippocampus. These recording coordi-
nates are likely to correspond to the intersection of the 
mouse anteriormedial, posteriormedial, and medio-
medial areas (Wang and Burkhalter, 2007; Wang et al., 
2012)
Behavior. Training and testing took place on a large 
(1.5 m diameter) circular platform with 32 light cues 
evenly distributed around the perimeter (similar 
to the 8-station task; Bower et al., 2005). A custom 
computer program (interfaced with the maze via a 

field-programmable gate arrays (FPGA card, National 
Instruments) controlled maze events, delivered MFB 
stimulation rewards via a Stimulus Isolator (World 
Precision Instruments A365) when the rat entered a 10 
cm diameter zone in front of the active cue light, and 
generated a coded timestamp in the Neuralynx system 
for each maze event (e.g., light onset for a particular 
zone). First, alternation training was achieved using 
barriers to restrict the movement of the rat to alternat-
ing between a pair of cue lights on opposite sides of 
the maze. To ensure cues were visually salient, lights 
were flashed at ~3 Hz (with equal on/off time) when 
activated. The first light was activated until the rat 
reached that reward zone and received MFB stimula-
tion and then the cue light in the opposite reward zone 
was activated. Alternation training continued until 
rats reached asymptote performance (rat 1 = 27 days 
and rat 2 = 9 days; rat 3 = 20 days). The data reported 
here for rats #1 and #2 comes from the next, random 
lights, task, in which sequences of up to 900 elements 
were drawn randomly with replacement from the 32 
light/reward zones, with each LED remaining active 
until the rat reached it. For rats #1 and #2, 25 record-
ing sessions and 23 recording sessions were obtained, 
respectively. A different random sequence was used 
for each behavioral session to ensure that learning 
effects did not contributing to the activity patterns. 
The data reported here for rat #3 comes from the last, 
spatial sequence, task that followed training on the 
random lights task. For the spatial sequence task, rats 
were trained to navigate through an 8-item repeating 
element sequence of reward zones (Fig. 1). This task 
consisted of 3 traversals through the sequence with cue 
lights illuminated immediately (cued) and 3 travers-
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Rat # Task Type
Light/Dark Cycle Phase

During Testing
Number of Recording

Sessions

1

2

3

Up to 900-item fully random

Up to 900-item fully random

Spatial Sequence Task

Light 25

23

16

Light

Dark

Table 1. Training and Testing Conditions
Recording sessions refers to daily sessions that were typically split into two 50 min behavioral
sessions separated by a 50 min rest session.
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als with a 5s delay (delay-cued), thus demonstrating 
sequence memory (Bower et al., 2005). For delay-cued 
trials, trained rats completed the trial before the ap-
pearance of light cues ≥ 90% of the time on average.
 Rats #1-2 were housed in a vivarium with lights 
on between 07:30 and 19:30 and were tested during 
the light cycle. Rat #3 was housed in a reverse light/
dark cycle vivarium and tested during the dark cycle. 
For rat #3, prominent distal cues were arranged around 
the perimeter of a large room (~4.5 m x 6 m). For the 
remaining rats, prominent cues (strips of white cur-
tain) were displayed on 1-2 walls of a square curtain 
that hung ~1m beyond the edge of the apparatus. For 
all rats and sessions, dim ambient light illuminated the 
maze from above. All experiments were carried out 
in accordance with protocols approved by the Uni-
versity of Lethbridge Animal Welfare Committee and 
conformed to NIH Guidelines on the Care and Use of 
Laboratory Animals.
Recording Procedures. A custom electrode interface 
board attached to the recording array with inde-
pendently drivable tetrodes connected 3 unity-gain 
headstages (HS-27, Neuralynx) to the recording 
system (Neuralynx). Tetrodes were referenced to an 
electrode in the corpus callosum and advanced as 
needed, up to 60μm/day, while monitoring the audio 
and visual signal of the unit activity, but adjustments 

were carried out only after a given day’s recording to 
allow overnight stabilization. Once a large number of 
units in the parietal cortex were obtained, alternation 
training commenced. Thresholded (adjusted prior to 
each session) spike waveforms were filtered 0.6 to 6 
kHz and digitized at 32 kHz.  A continuous trace was 
simultaneously collected from one of the tetrode wires 
(filtered 0.1 to 9 kHz, and digitized at 2034.75 Hz and 
referenced to an electrode in corpus callosum) for pro-
cessing as a local field potential (LFP) and timestamps 
were collected for up to 18 tetrodes. Rat position and 
head direction were tracked using colored domes of 
reflective tape, which were created by covering ½ Sty-
rofoam balls with reflective tape (Fig. 1), and on-line 
position information was used to trigger MFB stimu-
lation rewards. Position and head direction data were 
collected at 60Hz as interleaved video (rats 1 & 3) or 
30Hz (rat 2) and co-registered with spikes, LFPs, and 
stimuli.
 Spike data were automatically overclustered 
using  KlustaKwik then manually adjusted using a 
modified version of MClust (A.D. Redish). All spike 
waveforms with a shape and across tetrode cluster 
signature suggesting that they were likely multi-unit 
activity (MUA) and not noise, were manually selected 
and merged into a single MUA cluster. Thus, MUA 
clusters included both well-isolated single units and 
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Figure 1. Apparatus, reference frames, and learned motion sequence
Left. Apparatus. Rats #1 and #2 were trained to run a random spatial sequence to 32 light locations. This task requires the 
rat to learn to execute a stereotyped motion sequence, and covers the full range of headings and body-centered cue light 
directions at a wide range of spatial locations.  Middle. Single segment from the random lights task (red) overlaid on 99% 
transparent subset (1/5th) of the trials from that session (blue). Note, that in the later training phases the route to the goal 
becomes a series of stereotyped motion sequences. Right. Schematic of the spatial sequence task. The rat starts at zone 
12 and continued to zone 28 8 20 4 28 8 20 & 12. Rat #3 learned to execute this spatial sequence from memory (without 
cueing).
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poorly isolated single units. MUA clusters were not 
treated as unique unless a) the tetrode was moved 
>100 μm from the previous session and b) the distribu-
tions of spike clusters were clearly unrelated between 
the two sessions (http://klustakwik.sourceforge.net; 
Harris et al., 2000).
  LFP analyses were performed using cus-
tom-written Matlab code (Mathworks, Nattick, MA) 
or Freely Moving Animal (FMA) Toolbox (http://fma-
toolbox.sourceforge.net/). The LFP signal was collected 
at 2034.75Hz and subsequently resampled to 2000 Hz 
for further analysis, using the Matlab resample func-
tion. The amplitude of the high frequency (HF) LFP 
signal was obtained by digitally filtering the raw signal 
in the 300-900 Hz range using a 4-th order zero-phase 
Chebyshev filter and calculating the absolute value of 
the Hilbert transformed filtered signal.
Parietal Cortex Data. Data recorded from a subset of 
the sessions (47 sessions) included MUA clusters that 
were assessed because the tetrode had moved at least 
100 μm from the previous session. Data from these 
47 sessions (rat #1 = 14 sessions, rat #2 = 18 sessions, 
rat #3 = 15 sessions) included 176 potentially unique 
MUA clusters (number of putative unique MUA clus-
ters for rat #1 = 46, rat #2 = 55, and rat #3 = 75). Each 
recording session (except for 12 sessions of the 47 total 
sessions presented here) consisted of three 50 min 
rest sessions intermixed with two 50 min behavioral 
sessions on the apparatus. The remaining 12 sessions 
consisted of one behavioral session between two rest 
sessions, followed by a 4h break during which the ani-
mal was returned to the vivarium before returning for 
a second round of a 50 min behavioral session between 
two more 50 min rest sessions. For these 12 sessions 
only 1 of the rest-task-rest sessions was analyzed for a 
given day.
Self-Motion Analyses. Position and head direction data 
were utilized to map the self-motion reference frame 
for each MUA cluster. For these analyses, position 
data were interpolated and smoothed by convolution 
with a Hamming window that was 1s long. In addi-
tion, head direction data gaps <1s were transformed 
using directional cosines for interpolation using the 
interp1 function in Matlab, then transformed back to 
polar coordinates (Gumiaux et al., 2003). Next, head 
angular velocity, linear velocity and MUA activity rate 
were calculated for each video frame using a 100ms 
sliding window. Finally, the occupancy and number of 

MUA spikes for each 3 cm/s by 20°/s bin were calcu-
lated and converted to firing rate for each bin with 
>0.5 s of occupancy. For illustrative purposes (not cell 
classification analyses), the self-motion activity rate 
maps were smoothed by convolving with a Gaussian 
function for the 2 x 2 bins surrounding each bin (Chen 
et al., 1994a). The self-motion colormaps represented 
a range of MUA (or HF) activity rates from 0 (blue) to 
the maximum (maroon). No adjustments were made 
to the standard, evenly spaced colormap. MUA clus-
ters were classified as having a preferred-self motion 
state if the common points with sufficient occupancy 
(i.e., >0.5 s) from the self-motion maps for the first 
and second daily session (or split ½) were significantly 
positively correlated (p<0.01). This was generally the 
most conservative criterion for self-motion cells of the 
three criteria reported by Whitlock et al. (Whitlock et 
al., 2012). Specifically, for each MUA cluster, to deter-
mine if cells had “significant” self-motion properties, 
the map from the first daily behavioral session was 
shuffled, a correlation coefficient was computed be-
tween the first session (shuffled map) and the second 
session (unshuffled map), and this process was repeat-
ed 500 times. Then, the second behavioral session map 
was shuffled, the correlation coefficient was computed 
between the second session (shuffled map) and the first 
behavioral session (unshuffled map), and this process 
was repeated 500 times (total 1000 shuffles/cell). The 
entire shuffled data set for each cell was used to cal-
culate a critical r-value for the 99th percentile. For the 
day recording sessions with two behavioral sessions, 
stability was assessed by comparing across the two 
sessions and for the five recording sessions where a 
single behavioral epoch was available, split ½ measures 
of stability were used (i.e., a single session was split in 
½ based on time and the first ½ was compared to the 
second ½).

Memory Replay Analyses. 
 First, still periods were extracted from the rest 
sessions as described previously (Euston et al., 2007; 
Johnson et al., 2010). The raw position data from 
each video frame was smoothed by convolution of 
both x and y position data with a normalized Gauss-
ian function with standard deviation of 120 video 
frames. After smoothing, the instantaneous velocity 
was found by taking the difference in position between 
successive video frames. An epoch during which the 
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velocity dropped below 0.78 pixels/s for more than 
2 minutes was judged to be a period of motionless-
ness. All analyses of rest sessions were limited to these 
motionless periods. Slow wave sleep (SWS) and rapid 
eye movement (REM) sleep were distinguished using 
automatic K-means clustering of the theta/delta pow-
er ratio extracted from the CA1 pyramidal layer LFP 
recorded during the ‘stillness’ periods (Girardeau et 
al., 2009). Sharp-wave ripples (SWR) were detected 
from the CA1 LFP digitally filtered in the 75-300 Hz 
range. Events with peaks > 5 standard deviation (SD) 
above the mean and duration less than 100 ms were 
considered SWRs. The SWR duration included the 
contiguous periods surrounding the peak and exceed-
ing 2 SD above the mean. The SWR detection accuracy 
was visually validated on the subset of each analyzed 
dataset.
Template Matching Memory Replay Analyses. 
We performed template matching analysis, previously 
used to show the simultaneous reactivation of isolat-
ed single neuron ensembles in the medial prefrontal 
cortex (Euston et al., 2007; Louie and Wilson, 2001a). 
The criteria for the inclusion of a dataset in the tem-
plate matching analysis was at least 12 min of SWS and 
600 SWRs during both pre- and post-task-sleep, and at 
least 50 trials during the task. Template matrices (num-
ber of tetrodes x number of time bins; Fig.2A) were 
generated from the trial-averaged multiunit activity 
(MUA template) or Hilbert-transformed high frequen-
cy amplitude (HF template), extracted from a 2 s/trial 
windows that preceded the arrival at the reward site, 
and binned to 100 ms bins. Only trials longer than the 
template duration (2 s) were included. The time win-
dow was chosen based on evidence that reactivation of 
the hippocampal activity patterns is more prominent 
for the task phase immediately preceding the reward 
(Diba and Buzsaki, 2007; Foster and Wilson, 2006; Mc-
Namara et al., 2014; Singer and Frank, 2009). The time 
bin choice was based on previous reports of template 
matching using isolated single unit neuron activity 
(Euston et al., 2007; Johnson et al., 2010), where a 100 
ms bin was deemed optimal for capturing task-related 
neuronal dynamics. In order to eliminate tetrodes with 
sparse and/or poorly approach-motion-modulated ac-
tivity, only the tetrodes with average MUA > 1 Hz and 
binned spike train coefficient of variation > 0.25 during 
reward approach period were included in the template, 
which resulted in elimination of 0-17% of tetrodes. 

Only the templates containing 6 or more tetrodes were 
retained in the analysis. To allow comparison between 
the MUA and HF template matching, all the HF tem-
plates were constructed from the same set of tetrodes 
that passed the MUA-based screening. To eliminate 
the influence of the MUA or HF amplitude variability 
between tetrodes, the binned signal was Z-scored for 
each tetrode separately.
 MUA and HF amplitude from the sleep periods 
was processed in the same way, except that the bin size 
was adjusted according to the compression factor (bin 
size = 100 ms / compression factor; e.g. for the 4x com-
pression, the sleep bin size was 25 ms), to capture the 
compressed nature of neural reactivation during sleep. 
An evenly spaced range of compression factors (4x, 6x, 
8x, 10x), as well as the ‘no-compression’ (nc) control 
were used. Only slow wave sleep periods were included 
in the analysis. 
      To test the matching of a given template and the 
pattern of activity during sleep (matching significance), 
each template was shuffled repeatedly to generate 100 
shuffled templates. The shuffling procedure consisted 
of randomly permuting the position of each column 
in the template (population vector), preserving the 
overall activity levels and instantaneous correlations 
between the MUA or HF signals on different tetrodes, 
but scrambling the sequential patterns. A Pearson cor-
relation coefficient was calculated between each tem-
plate and the series of candidate matches, generated by 
sliding the template-size window over the sleep epoch 
(Fig. 2B). This resulted in a matrix of Pearson correla-
tion coefficients r, where the element ri,j   corresponded 
to the correlation coefficient between the i-th template 
and j-th candidate match. The correlation matrices 
were Z-scored across individual time bins (columns), 
and the resulting Z-score values reflected the template 
similarity to the corresponding sleep segment at given 
time step, relative to the distribution that included the 
original and 100 shuffled templates. Z-score values 
above 3 were considered matches. The threshold for 
matching significance was that the number of matches 
from the original template had to exceed the number 
of matches from all of the 100 shuffled templates for a 
given sleep epoch (i.e., p < 0.001).
 For comparison of template matching between 
the pre- and post-task-sleep, match percentage was 
obtained by dividing the number of matches by the 
number of SWS time bins for each sleep epoch. For the 
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Figure 2. Template matching method. 
A. Shuffling procedure. Above. Example original template. Multiunit activity (MUA) or high-frequency (HF) am-
plitude on each tetrode (row) is averaged over all the trials, binned at 100 ms and Z-scored. Below. Template 
shuffling procedure. Position of each column (instantaneous MUA or HF amplitude over all the tetrodes) was 
randomly permuted, in order to produce 100 shuffled templates while preserving the overall MUA or HF levels, 
as well as the instantaneous correlation between tetrodes.
B. Template matching procedure. Above. MUA data segment from post-task sleep. Note, firing during sleep is 
sparse, so samples are more variable. Activity on each tetrode (row) was binned at a bin size of 100 ms / com-
pression factor and Z-scored. Below Left. Example match window from the sleep epoch (above) and template 
(below). Pearson correlation coefficient was calculated between the template and equally sized slow-wave 
sleep (SWS) segments of the sleep session, which were produced by sliding the template-size window over 
the sleep epoch with a 1-bin step size. This creates the correlation matrix (number of templates x number of 
time bins during sleep epoch).  Each column of the correlation matrix is Z-scored, the Z-score value reflecting 
the degree of similarity of a given template to sleep activity at given sleep time window, relative to the distribu-
tion across the original and all the shuffled templates. Bottom right: Example original template matching trace. 
Z-score values above 3 are considered matches.
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1994a; Wilber et al., 2014), and we did not find evi-
dence for MUA tuning to egocentric cue light location 
(not shown). It is possible the lack of head direction 
tuning for MUA but presence with single cells means 
that the head direction tuned cortical columns are 
present but are very narrow and thus not detected with 
MUA. Next, we determined if parietal cortex MUA had 
a preferred self-motion state (e.g., right turn) by plot-
ting firing rate as a function of the rat’s current linear 
and angular velocity. MUA was classified as having a 
preferred self-motion state if the self-motion rate maps 
for two behavioral sessions were significantly positive-
ly correlated (i.e., self-motion rate maps; Chen et al., 
1994a; Whitlock et al., 2012; Wilber et al., 2014). We 
found that the MUA recorded on a single tetrode was 
frequently significantly tuned to a specific self-motion 
state (i.e., specific combination of linear and angular 
velocity). In fact, nearly every tetrode was significantly 
tuned for at least one recording depth (41 of 44 te-
trodes; 93%) of the tetrodes that were positioned in 
parietal cortex for at least one session.
 Interestingly, the tuning appeared to be in-
variant across depth. To quantify this observation, we 
collected all of the pairs of sessions where the tetrode 
was at least 100 μm from the comparison location and 
the self-motion maps for both sessions were significant 
(p<0.01). For each of these pairs we tested the two 
maps for significant similarity versus a random shuffle 
distribution using the same method as for within-day 
behavioral sessions. Interestingly, self-motion tun-
ing appeared to be consistent across cortical laminae 
because tuning was consistent on a single tetrode when 
recordings were compared even for very large spacing 
between recording depths (Fig. 3B). In fact, a large 
majority of comparisons were significant (Fig. 3C; 
73%), indicating significant correlation in modular 
self-motion tuning across a range of cortical depths 
for a particular tetrode. In addition, as a control we 
performed depth correlations across tetrodes (instead 
of within tetrode) in the same manner (i.e., we took 
each pair of sessions that was separated by at least 100 
μm) and found significantly more correlations with an 
r-value < 0 (χ2(1)=5.09, p<0.05) and significantly fewer 
significant cross-tetrode map correlations (χ2(1)=5.68, 
p<0.05). As an additional control we compared the 
separation of significant and non-significant depth 
spacing for comparison pairs. The distribution of 

ripple-triggered average analysis, the original template 
Z-score traces +/- 1 s around each SWR peak time 
were averaged, obtaining the ripple-triggered averaged 
Z-score for a given sleep epoch.
Statistical Analyses. Two-way repeated measures 
ANOVA (both variables are repeated measures) was 
used to assess the main effect of sleep session (pre- ver-
sus post- task sleep), the main effect of compression 
factor (nc, 4x, 6x, 8x, and 10x), and interactions (sleep 
session x compression factor) on template matching 
measures. Significant interactions were followed up 
by planned comparisons (F-tests) comparing pre-task 
versus post-task-sleep for each compression factor. 
Except where noted otherwise, p < 0.05 was considered 
statistically significant. For example, one exception was 
for self-motion map correlations, for these analyses we 
used the historical critical value of 0.01 (Whitlock et 
al., 2012; Wilber et al., 2014).
Histology. After the final recording session, rats were 
deeply anesthetized with Euthasol and transcardially 
perfused with 0.1M phosphate buffered saline followed 
by 4% paraformaldehyde. The whole head was post-
fixed in 4% paraformaldehyde with electrodes in place 
for 24h, then brains were extracted and cryoprotected 
in 30% sucrose. Frozen sections were cut (40μm) using 
a sliding microtome or custom block-face imaging 
system (Leica vibratome), mounted on chrome al-
um-subbed slides, stained with cresyl-echt violet, and 
imaged using a NanoZoomer Imaging system (Hama-
matsu).

RESULTS
       Results from MUA and HF-LFP analyses were 
largely similar. Therefore, we report the MUA results 
here and provide the corresponding HF-LFP data and 
some comparisons in Supplemental materials. 
Modular Tuning to Motion State. We looked for 
evidence of population level encoding in egocentric 
coordinates in the rat parietal cortex. To do this, we as-
sessed MUA recorded on single tetrodes as a function 
of either head direction, egocentric cue light location, 
or linear, and angular velocity in rats that had been 
trained to either run 1) the cued random spatial se-
quence (rats 1 & 2) or 2) a complex repeating element 
spatial sequence from memory (rat 3). In contrast to 
our previous single unit analysis we did not find evi-
dence for MUA tuning to head direction (Chen et al., 
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Figure 3. Self-Motion tuning in parietal cortex is invariant across cortical laminae. See also Figure S1. 
A. Left Two Plots. Multi-unit activity recorded for a single day’s recording session and from a single tetrode were classified 
as having a preferred-self motion state if the self-motion maps for two behavioral sessions (from the whole day recording 
session) were significantly positively correlated. Self-motion maps from two behavioral sessions and corresponding cor-
relation value are shown for one multi-unit module. Occupancy data and number of spikes are binned according to linear 
velocity (vertical axis) and head angular velocity (horizontal axis; positive head angular velocity corresponds to a right 
turn), then converted to activity rate (number of multi-unit spikes per second). Right. The shuffled distribution and critical 
r-value corresponding to the 99th percentile is shown. The map from the first behavioral session was shuffled 500 times 
and a correlation coefficient was computed between the shuffled and unshuffled maps. Then, this process was repeated 
to shuffle the map for the second session 500 times (total 1000 shuffles) in order to calculate a critical r-value for the 99th 
percentile (p<0.01). See Materials and Methods for additional details. 
B. Same as in A; however, data came from two separate recording sessions obtained when the tetrode was at two differ-
ent depths (700μm, above and 1400μm, below). Black outline on lower motion rate map illustrates that for cross-depth 
comparisons behavior can vary considerably, and this analysis is limited to common data points. 
C. The sorted correlation value for each MUA cluster for each pair of depths where the tetrode was moved at least 100 
μm and the session data for each depth met the significance criteria described in A. Pairs of depths with significantly cor-
related motion maps (as described in B, p<0.01) were colored red indicating significant correlation in modular self-motion 
tuning across a range of cortical depths for a particular tetrode. Data comes from all tetrodes that met this criteria from all 
3 rats.
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depths for significant versus non-significant depth 
correlations was highly overlapping: significant Mean 
± SEM = 280 μm ± 25 and non-significant Mean ± SD 
= 241 μm ± 31. There was no significant difference in 
the difference in depths between the two samples for 
significant depth correlations (t(72)=0.85, p=0.40), sug-
gesting that closer spacing was not responsible for the 
significant depth correlations.
 Finally, if we substituted the amplitude of the 
HF-LFP envelope (300-900Hz) for MUA firing rate, 
similar tuning maps were observed and were often sig-
nificantly correlated with the corresponding MUA map 
(Fig. S1), consistent with the theory that the HF-LFP 
signal reflects neuronal spiking. Further, when we took 

each data set with significant within-session MUA mo-
tion map stability and compared the correlation values 
for single recording session (behavioral session 1 vs 
behavioral session 2 maps) obtained using HF-LFP 
signal to the correlation values obtained when gener-
ating the same maps with MUA, we found that these 
correlation values are significantly correlated (r=0.29, 
p<0.01). It should be noted that although correspon-
dence can be quite good for these two measures and 
often subjectively appears very impressive (as shown in 
Fig. S1), during behavior at least, the HF signal tends 
to produce poorer tuning on average.  We quantified 
this slight difference by taking all of the self-motion 
maps that were ‘significant’ at two different thresholds 

Figure 4. Illustration of patchy modularity of MUA behavioral correlates in parietal cortex. Rows A and B represent 
behavioral correlate maps for three nearby electrodes in left and right hemispheres respectively from rat 1.  Row 3 is from 
the left hemisphere of rat 2. The relative positions of the electrodes are shown on the right, where the minimum distance 
represented is about 300 μm.  In Row A, the correlates change abruptly from position to position, whereas in the Row B, 
the correlates are quite similar from position to position.  Row C illustrates a combination of these effects.   As shown in 
Figure 3, the correlates were highly consistent in the laminar dimension for each location.  For illustration, the session 
with the most significant behavior map was selected for each electrode.  Thus, sessions were different for the examples 
shown in A and B (and as a result the map shape varied), but was the same for the examples shown in C.
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(p<0.05 and p<0.01) and comparing the number of 
instances where a self-motion map is significant at 
p<0.05 (but not p<0.01) versus significant at the higher 
p<0.01 level for HF vs MUA. Significantly more MUA 
data sets were significant at the higher (p<0.01) level 
(χ2(1)=5.03, p<0.05).
Patchy, modular topographical organization of motion 
correlates. In contrast to the high degree of laminar 
consistency of behavioral correlates, the topographic 
organization was patchy and modular:  sometimes, a 
tuning pattern was consistent across several near-by 
sites, but there were also abrupt transitions between 
some neighboring sites.  Illustrations of this organiza-
tion are provided in Figure 4.
Modular Interactions During Sleep. The random 
lights task required the animals to execute a series 
of actions in a relatively stereotyped manner (i.e., a 
motion sequence), something the rats learn to do over 
the course of training (see Fig. 1 for an example of a 
path that has become stereotyped). Thus, we set out to 
explore the possibility that this learned behavior may 
be reflected at the neural level in the form of memory 
reactivation involving self-motion modules during 
sleep periods.

Template Matching
Parietal modular activation patterns during slow wave 
sleep resemble patterns observed during the task. All 
the template matching analysis was limited to SWS pe-
riods. First, we compared modular parietal activation 
patterns from the task to post-task-sleep. We analyzed 
results from 15 data sets (5 data sets from each rat), 
selected based on distribution across training, num-
bers of trials (>50), presence of sufficient quantity of 
slow-wave sleep (> 12 min / sleep epoch), number 
of sharp wave ripples (>600 / sleep epoch) and num-
ber of tetrodes in parietal cortex that met criteria for 
inclusion in the template (>5). A majority of these 
data, 12 data sets, had 3 sleep epochs (pre-, mid- and 
post- task-sleep interleaved with two task sessions) 
while the remaining 3 data sets had two sleep epochs 
(pre- & post- task-sleep with 1 task session). Consis-
tent with previous reports, we found that memory 
reactivation was more consistently stronger for the 
post-task-sleep session in data sets with two task and 
three sleep epochs (Euston et al., 2007; Johnson et al., 
2010). Therefore, we restricted our analysis to these 
data sets (12 sets of pre-task-sleep, task, and post-

task-sleep from 3 rats). Due to the time-compressed 
nature of re-activation reported previously for single 
cell memory reactivation studies (Euston et al., 2007; 
Peyrache et al., 2015; Wilson and McNaughton, 1994), 
we performed template matching for several evenly 
spaced compression factors: no-compression, 4x, 6x, 
8x, and 10x. The sleep sessions during which the origi-
nal approach template had significantly larger number 
of matches (ps < 0.001) relative to shuffled distribution 
was considered significantly matching. The 10x com-
pression produced the lowest (12/24, 50%), while the 
compression factor with largest proportion of signifi-
cantly matching sleep epochs was 4x (19/24, 79%). 
For the HF amplitude template the lowest proportion 
of significantly matching sleep epochs was found 
with no-compression (20/24, 83%), while the largest 
proportion was found with 4x and 10x compression 
(23/24, 96%). Overall, the proportion of significantly 
matching sleep sessions was higher for HF amplitude 
behavioral templates.
 In order to test the hypothesis that modular 
template matching during sleep is a part of memory 
consolidation process and does not simply reflect the 
reverberation of certain activity patterns during sleep, 
we compared the match percentages for ‘no compres-
sion’ and range of equally spaced compression factors 
(4-10x), between the pre-task-sleep and post-task-
sleep. For the MUA templates, post-task sleep had 
significantly higher template matching percentage 
(percentage of time bins with a match that exceeded 
Z-score value of 3) than pre-task sleep (Fig. 5A; main 
effect of sleep session, F(1, 11) = 11.34, p < 0.01) and this 
effect varied across compression factors (sleep ses-
sion x compression factor interaction; F(4, 44) = 11.18, 
p < 0.0001). In addition, there was a main effect of 
compression factor (F(4, 44) = 6.97, p < 0.001). Planned 
comparisons were conducted for pre- versus post- 
task-sleep for each compression factor. Post-task-sleep 
had significantly more template matches for 6x, 8x, 
and 10x (Fs(1, 22) > 4.73,, p < 0.05) but not 4x (Fs(1, 22) = 
3.98, p = 0.058) compression factors, while pre- and 
post- task-sleep match percentage did not differ for 
‘no-compression’ (F(1, 22)  = 0.75, p = 0.40). 
 Similar to MUA-based reactivation measures, 
HF amplitude post-task sleep had significantly higher 
template matching than pre-task-sleep (Fig. S2; main 
effect of sleep session, F(1, 11) = 21.51, p < 0.001) and 
this effect varied across compression factors (sleep 
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session x compression factor interaction; F(4, 44) = 9.20, 
p < 0.001). In addition, there was a main effect of com-
pression factor (F(4, 44) = 21.51, p < 0.0001). Planned 
comparisons for pre- versus post- task-sleep for each 
compression factor showed that for ‘no-compression’ 
pre-task-sleep did not significantly differ from post-
task-sleep (F(1, 22)  = 1.47, p = 0.24), while post-task-
sleep had significantly more matches than pre-task-

sleep for 4x – 10x compression factors (Fs(1, 22)  > 5.87, 
ps > 0.05).
 As illustrated for the MUA template example in 
Figure 5B, for ‘no-compression’, there is a high match 
density during the task, and low match density in post-
task-sleep. A dramatically different pattern is shown 
for 4x compression, where the match percentage was 
much higher in post-task-sleep, relative to both pre-
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Figure 5. Modular sequence reactivation occurs in parietal cortex and is compressed. See also Figure S2. 
A. Mean (±SEM) match percentage (number of matches/number of time bins) across the compression factors for multi-
unit activity (MUA,) templates for slow-wave sleep periods. Template matching increases between pre- (blue) and post-
task-sleep (red) for compressed data, but not for ‘no-compression’. For MUA and HF amplitude templates, reactivation 
measures peak at 4x compression. 
B. Example of MUA showing the match percentage (2 min bins) for ‘no-compression’ (no-compression, left) and 4x com-
pression (right), over the pre-task-sleep, task and post-task-sleep. For ‘no-compression’, there is a high match percentage 
during the task, and very low in post-task-sleep. For the 4x compression (right), match percentage is much higher in post-
task-sleep, relative to both pre-task-sleep and task. Only the SWS periods from each sleep epoch are shown. 
C. Mean of the pre-task-sleep, task and post-task-sleep as was calculated for each session and averaged across time 
bins that are shown in B. Then a mean for all sessions was calculated for each rat. Finally, the mean (±SEM) of the rat 
mean data is shows that across rats reactivation is stronger in post-task rest when a 4x compression factor is applied, but 
not for ‘no compression’. To avoid the possible contribution of awake reactivation to template matching during task, only 
the contiguous movement periods (>5 cm/sec) longer than 2 sec were used in quantifying the template matching during 
task.  
D. Normalized match percentage (number of matches / number of time bins divided by the peak value for that session) 
across the ‘no-compression’ (left) and 4x (right) compression factors for multi-unit activity (MUA) templates for slow-wave 
sleep periods for each session for each of 3 rats. Reactivation consistently increases between pre- and post-task-sleep for 
compressed data, but not for ‘no compression’. For MUA and HF amplitude templates, reactivation measures peak at 4x 
compression. Datapoints are normalized to pre-task-sleep values. * p<0.05.
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task-sleep and task. Next, the mean of the pre-task and 
post-task-sleep was calculated for each session and av-
eraged across the time bins shown in Figure 5B. Then 
a mean for all sleep and task sessions was calculated 
for each rat, for all the data like the example shown in 
Figure 5B. To avoid the possible contribution of awake 
reactivation to template matching during task, only 
the contiguous movement periods (>5 cm/s) longer 
than 2 s were used in quantifying the template match-
ing during task. This showed that reactivation strength 
for pre- vs post- task-sleep varied dramatically across 
compression factor (‘no compression’ & 4x compres-
sion; Fig. 5C) as a function of task phase. First, post-
task-sleep was greater than pre-task-sleep but only for 
4x compressed data. Second, the matches where much 
higher during the task phase for ‘no compression’ data 
than for 4x compression data, reflecting the fact that 
the templates do match well to the behavior session 
that was used to generate them. Stronger reactivation 
during post-task rest was not just observed for the ses-
sion means (Fig. 5A), individual time bins for individ-

ual data sets (Fig. 5B) and the rat means (Fig. 5C), but 
also when the pre-versus post task rest normalized (to 
post-task rest) was plotted for ‘no-compression’ versus 
4x compression data for each session for each rat (Fig. 
5D). Nearly identical results were obtained for HF 
amplitude (Fig. S2). Overall, MUA template – based 
reactivation measures increased in post-sleep.
Parietal cortex reactivation is increased during hip-
pocampal sharp wave ripples (SWRs). Finally, we 
explored the role of hippocampal-cortical interactions 
in modular memory reactivation by quantifying the 
strength of parietal cortex template matches as a func-
tion of SWR events in the hippocampus. We found 
that the strength of the SWR-triggered template match 
was greater during post-task sleep for MUA based 
templates (Fig. 6A), and also for HF amplitude based 
templates (Fig. S3). For both MUA and HF amplitude 
templates, the peri-SWR reactivation strength (maxi-
mum averaged ripple-triggered Z-value within +/- 500 
ms peri-SWR time-window) was significantly greater 
during post-task-sleep for (Fig. 6B; main effect of rest 
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Figure 6. Modular sequence reactivation in parietal cortex is enhanced around sharp-wave ripples (SWRs) in the 
hippocampus. See also Figure S3. 
Left. Example of sharp-wave ripple (SWR) triggered average Z-scores for pre-task-sleep (blue) and post-task-sleep (red) 
with 4x compression. SWR triggered peak amplitudes for multi-unit activity (MUA) templates, decaying to baseline within 
300-400ms after ripple peak. Right. Ripple-triggered average peak amplitudes across the compression factors for MUA 
templates.  Peak amplitudes varied significantly across compression (F(4, 44)  = 3.01, p < 0.05). Only slow-wave sleep peri-
ods were included in the analysis. * p<0.05.
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session; Fs(1, 11) >  16.69, ps < 0.01), and the significant 
effect of rest session varied across compression factors 
(Fs(4, 44)  > 3.01, ps < 0.05). The only difference between 
measures was that there was a significant main effect 
of compression factor for HF amplitude templates 
(Fig. S3B; F(4, 44) = 18.87, p < 0.001), but not MUA 
templates (F(4,44)=3.01, p = 0.25). To follow-up on the 
significant interaction for MUA and HF amplitude 
data, planned comparisons for pre- versus post- task 
rest were conducted for each compression factor. The 
ripple-triggered Z-score amplitude was significantly 
larger for all compressed data (4x-10x; Fs(1, 22)  > 4.77, 
ps < 0.05), but not for ‘no-compression’ (Fs(1, 22)<1.97, 
ps>0.17). Thus, for both MUA and HF signal tem-
plates the amplitude of ripple-triggered Z-value was 
significantly larger for post-task-sleep particularly for 
intermediate compression factors.
Sleep parameters. To assess the possible differences in 
sleep architecture between pre-task-sleep and post-
task-sleep we compared the durations of different 
sleep states (SWS, REM), as well as their ratios across 
these sleep epochs. There was not a significant effect 
of sleep epoch on the duration of REM sleep or REM/
SWS ratio (ts(11)<0.98, ps>0.35; Table 2). SWS duration 
was significantly greater in post-task-sleep (ts(11)>2.23, 
p<0.05); however, match percentage reflects the num-
ber of matches/time unit so more slow-wave sleep will 
not impact this measure.

DISCUSSION
 We have shown modular coding of movement 
in parietal cortex. Further, the coding is consistent 
across a range of cortical depths, strengthening the 

idea that this meso-scale coding is organized in a 
potentially modular fashion. In addition, we found 
that there are interactions between modules during 
post-task-sleep as measured by templates reflecting 
the task segments leading up to the reward zone. 
These modular memory reactivation events suggest 
that inter-modular interactions are involved in normal 
learning and memory. Finally, we demonstrated that 
the high frequency LFP amplitude signal from a given 
tetrode produces a result that is highly similar to the 
multi-unit activity for both modular motion tuning 
and memory reactivation.
 Single unit recording studies and behavioral 
studies have pointed towards an egocentric reference 
frame in parietal cortex. However, this is the first 
demonstration of mesoscale functional encoding from 
a local population of single cells organized around a 
specific motion preference. For example, coordinate 
transformation networks may exist embedded within a 
functional module for executing the appropriate action 
sequence (Byrne et al., 2007; McNaughton et al., 1995; 
Wilber et al., 2014; Xing and Andersen, 2000). In fact, 
the motion modules could possibly even serve as a 
common output reference frame to a brain network for 
decision related computations involving parietal cortex 
(Goard et al., 2016; Hanks et al., 2015; Harvey et al., 
2012; Licata et al., 2016). In other words this modu-
lar movement based encoding may be a fundamental 
coding framework in parietal cortex. This common 
tuning, likely reflecting high intrinsic connectivity 
among the single units (i.e., a module; Buxhoeveden 
and Casanova, 2002) suggestive of a cell assembly. 
Such a functional module may be precisely the effector 

Pre-Task-Sleep Post-Task2-Sleep

SWS duration (s)

REM duration (s)

REM/SWS ratio

1850  +/- 647 2484 +/- 349

200 +/- 226

0.09 +/- 0.11

141 +/-37

0.09 +/- 0.08

Table 2. Sleep architecture metrics for pre- versus post- task-sleep. For the REM duration and REM/SWS ratio, there 
were not significant differences in pre- versus post- task-sleep (ts(11)<0.98, ps>0.35). However, SWS duration was signifi-
cantly greater in post-task-sleep (SWS duration: t(11)=2.23, p<0.05).
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unit theorized to be critical for sufficient size to trig-
ger responses in target areas (Breitenberg and Schulz., 
1991; Bush and Sejnowski, 1994; Gabbott et al., 1987) 
either at the column (Mountcastle, 1997; Szentagothai, 
1975) or possibly even macrocolumn level (Mountcas-
tle, 2003).
 It should be noted that we did not examine 
all known encoding modes in parietal cortex. One 
encoding framework that seems likely to exist at the 
modular level is route-centered encoding, described 
in detail at the single unit level (Nitz, 2009; Nitz, 2006, 
2012). Unfortunately, the task we employed here is not 
optimal for detecting route-centered modulation. In 
contrast to our previous single unit analysis that sug-
gested consistent head direction tuning across depth, 
we did not find evidence for MUA tuning to head 
direction (Chen et al., 1994a; Wilber et al., 2014). It is 
possible the lack of head direction tuning for MUA but 
presence with single cells means that the head direc-
tion tuned cortical columns are present but are very 
narrow (e.g., microcolumn) and thus not detected with 
MUA. In addition to head direction encoding other 
types of world-centered (allocentric) encoding have 
been reported in parietal cortex that could exist at the 
modular level but were not assessed here (Nakamu-
ra, 1999). Similarly, outside of parietal cortex, there 
are numerous examples of local cell populations that 
share functional similarities, including primary visual 
areas, and the barrel cortex (Petersen, 2007; Roudi et 
al., 2015; Sincich and Horton, 2005). Local populations 
with functional similarity also exist in higher cortical 
areas, for example, grid cells in the medial entorhinal 
cortex (Moser et al., 2014; Roudi et al., 2015) or object 
feature columns in inferior temporal cortex (IT; Tsu-
noda et al., 2001). Presumably the current approach 
can be applied to further understanding of many of 
these brain systems.
 We demonstrated modular reactivation in 
parietal cortex at the ensemble levels, using template 
matching. This method was previously applied in 
memory reactivation studies of ensembles of isolated 
single neurons (Euston et al., 2007; Louie and Wilson, 
2001b; Pavlides and Winson, 1989; Skaggs and Mc-
Naughton, 1996; Tatsuno et al., 2006; Wilson and Mc-
Naughton, 1994). Although the resemblance between 
the behavioral and sleep activity patterns could be due 
to simple re-occurrence of the similar patterns across 
the sleep-wake cycle, multiple lines of evidence sup-

port the notion of modular memory reactivation in the 
present study. First, the behavioral template matching 
was more prevalent during post-task, relative to pre-
task sleep, an effect present after normalizing for the 
SWS duration in each sleep epoch (Fig. 5). This sug-
gests that the difference in probability of certain brain 
activity patterns between pre- and post-task-sleep is 
affected by intervening experience, one of the critical 
requirements for the detection of memory-related 
processes. Second, consistent with numerous reports 
of memory reactivation occurring at the temporally 
compressed timescale (Euston et al., 2007; Nadasdy et 
al., 1999; Peyrache et al., 2009; Wilson and McNaugh-
ton, 1994), we observed increased matching during 
post-task-sleep for the range of compression factors 
(4-10x) while no significant change was observed for 
non-compressed patterns. Temporal compression 
during memory consolidation is postulated to create 
the optimal conditions for spike-timing dependent 
plasticity (Lansink and Pennartz, 2014; Markram et al., 
1997). Finally, temporal coupling of modular reactiva-
tion in parietal cortex with SWRs suggests that, similar 
to reactivation in medial pre-frontal cortex (mPFC; 
Euston et al., 2007; Peyrache et al., 2009), this process 
is part of hippocampo-cortical communication during 
sleep, one of the hallmarks of memory consolidation 
(Maingret et al., 2016).
 We found a certain degree of significant match-
ing with pre-task-sleep activity, consistent with pre-
vious reports (Dragoi and Tonegawa, 2011; Peyrache 
et al., 2009). This is consistent with the idea that the 
information incoming during experience modifies the 
pre-existing patterns (Luczak et al., 2009), but does not 
completely perturb them. The reactivated patterns re-
semble the templates constructed based on the average 
activity during approach to reward locations randomly 
assigned on each trial, and therefore likely encode the 
behavioral sequence reinforced by subsequent reward. 
Reactivation of behavioral pattern averaged over many 
different spatial trajectories, containing a range of 
head direction, velocity and other tuning properties of 
parietal cortex, supports the abstraction role of mem-
ory consolidation (Lewis and Durrant, 2011; Tse et al., 
2007), as the regular aspects of episodic memory are 
extracted into the semantic domain.
 Finally, we showed that the HF-LFP signal has 
nearly identical reactivation dynamics compared to dy-
namics observed with MUA activity. Although the ex-
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act contribution of LFP generation mechanisms to dif-
ferent frequency ranges are a matter of debate (Buzsáki 
et al., 2012), correlation between the HF amplitude 
and MUA activity is highly correlated with the level of 
spiking activity recorded at the individual electrode, 
which suggests that the instances of low correlation be-
tween MUA and HF amplitude are due to spike subsa-
mpling on the individual electrode. Another factor that 
could decrease the MUA-HF amplitude correlation is 
that the spiking contribution to HF amplitude depends 
on the individual neuron type and recent spiking his-
tory, as during bursting activity, where the amplitude 
of subsequent spikes tend to decrease. Finally, detec-
tion of spikes that comprise MUA clusters were thresh-
olded and thus these clusters represent spiking activity 
within a more limited spatial range than HF amplitude 
which is not thresholded and thus could potentially 
detect more distant spiking activity.
 Consistent with numerous reports describing 
mostly cortical-hippocampal interactions (notably 
mostly the pre-frontal cortex), we found enhanced re-
activation of behavioral templates simultaneously with 
SWRs in the CA1 field of the hippocampus (Jung et al., 
1998; Peyrache et al., 2009; Peyrache et al., 2015; Siapas 
and Wilson, 1998; Singer and Frank, 2009; Wierzynski 
et al., 2009). Though a recent report found that equal 
numbers of prefrontal cortex single cells were excited 
or inhibited during hippocampal SWRs; while oth-
er single cells were not modulated by the SWR at all 
(Peyrache et al., 2009).  This suggests that the modular 
re-activation we observed may represent a subset of 
the single cells in that cortical region.
 In summary, we have shown modular self-mo-
tion tuning in rat parietal cortex. These motion mod-
ules also participate in memory re-activation as mea-
sured by templates constructed from the pre-reward 
task phase. Our findings suggest a potential fundamen-
tal level of organization in the rat in parietal cortex and 
open up a new avenue for bridging the gap between 
macro-level measures of brain activation in humans 
and unit recording studies in non-human animals.
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