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Abstract 

Background: Single-cell RNA sequencing (scRNA-seq) is an increasingly 

popular platform to study heterogeneity at the single cell level. 

Computational methods to process scRNA-seq have limited accessibility to 

bench scientists, as they require significant amount of bioinformatics skills. 

Results: We have developed Granatum, a web browser based scRNA-seq 

analysis pipeline to make analysis more broadly accessible to researchers. 

Without a single line of programming code, a user can click through the 

pipeline, setting parameters and visualizing results via the interactive 

graphical interface. The pipeline conveniently walks the users through 

various steps of scRNA-seq analysis. It has a comprehensive list of modules, 

including plate merging and batch effect removal, outlier sample removal, 

gene filtering, gene expression normalization, cell clustering, differential 

gene expression analysis, pathway/ontology enrichment analysis, protein 

network interaction visualization, and pseudo-time cell series construction. 

Conclusions: Granatum enables much widely adoption of scRNA-seq 

technology by empowering the bench scientists with an easy to use 

graphical interface for scRNA-seq data analysis. The package is freely 

available for research use at: http://garmiregroup.org/granatum/app 

Keywords: single-cell; gene expression; graphical; normalization; clustering; 

differential expression; pathway; pseudo-time; software 
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Background  16 

The arrival of single-cell high-throughput RNA sequencing (scRNA-seq) has provided new 17 

opportunities for researchers to identify the expression characteristics of individual cells among 18 

complex tissues. This is a significant leap forward from bulk cell RNA expression analysis. In cancer, 19 

for example, scRNA-seq allows tumorous cells to be separated apart from healthy cells [1] and 20 

primary cells be differentiated from metastatic cells [2]. Single-cell expression data can also be 21 

used to describe trajectories of cell differentiation and development [3]. However, analyzing data 22 

from scRNA-seq brings new computational challenges, e.g., accounting for inherently high drop-23 

out (artificial loss of RNA expression information) [4]. 24 

Software that has been developed to address these challenges may have very limited accessibility 25 

for biologists with only general computer skills, as they typically require the ability to use a 26 

computing language like R [5,6]. Other existing workflows that can be used to analyze scRNA-seq 27 

data, such as Singular (Fluidigm, Inc., South San Francisco, CA, USA), Cell Ranger/ Loupe 28 

(Pleasanton, CA, USA), and Scater [7] all require some non-graphical interactions and they may not 29 

provide a comprehensive set of scRNA-seq analysis methods. To fill this gap, we have developed 30 

Granatum, a fully interactive graphical scRNA-seq analysis tool. Granatum is the Latin word for 31 

pomegranate, which bears many seeds, resembling single cells within the entity. This tool employs 32 

an easy-to-use web browser interface for a wide range of methods suitable for scRNA-seq analysis: 33 

removal of batch effects, removal of outlier cells, normalization of expression levels, filtering of 34 

under-informative genes, clustering of cells, identification of differentially expressed genes, 35 
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identification of enriched pathways/ontologies, visualization of protein networks, and 36 

reconstruction of pseudo-time paths for cells. Our software will empower a much broader 37 

audience of research communities to study single cell complexity, by allowing them to readily 38 

explore single-cell expression data from a graphical user interface. 39 

Implementation 40 

Overview 41 

Both the front-end and the back-end of Granatum are written in the R software language, and built 42 

with the Shiny framework [8]. Multiple concurrent users are handled by Shiny and each user works 43 

on its own data space. To protect the privacy of users, the data submitted by one user is not visible 44 

to any other user. The front-end is implemented as a web page with dynamically loaded pages, 45 

and is arranged in a step-wise fashion. The default theme uses the Bootstrap framework. ShinyJS 46 

[9] is used to power some of the interactive components. To allow users to redo a task, each 47 

processing step is equipped with a reset button.  48 

Interactive widgets 49 

The package visNetwork is used for the layout and physics simulation of the network modules [10]. 50 

DataTables are used to preview user submitted data and to show tabular data in various modules 51 

[11]. Plotly is used for the interactive outlier identification step [12]. The package ggplot2 is used 52 

for the scatter-plots and box-plots, which is also used by the Monocle package for the Pseudo-time 53 

construction step [3,13]. 54 
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Back-end variable management 55 

The expression matrix and the metadata sheet are stored separately for each user. The metadata 56 

sheet can refer to groups, batches, or other properties of the samples in the corresponding 57 

expression matrix. These two types of tables are shared across all modules. Other variables shared 58 

across all modules include the log-transformed expression matrix, the filtered and normalized 59 

expression matrix, the dimensionally reduced matrix, species (human or mouse) and the primary 60 

metadata column. 61 

Batch-effect removal 62 

Batch-effect removal is done using the following procedure. First, we calculate the median 63 

expression of each sample, denoted as ����  for sample �. Second, we calculate the mean of ���� 64 

for each batch, denoted as ����	
���� for batch �, 65 

����	
���� � 
��������
�����������������. 

 Finally, each batch will be multiplied by a factor which pulls towards the global geometric mean of 66 

the sample medians, i.e., when � � ����	� and � is the number of samples, 67 

���������� � ���������� �

��������
������,..,�������

����	
����
. 

Where sampleNewi and sampleOldi  denote the expression levels (vector) for all genes within 68 

sample � before (old) and after (new) batch-effect removal. 69 
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Clustering methods 70 

The following description of clustering algorithms assumes � being the number of genes, � being 71 

the number of samples, and � being the number of clusters. 72 

Non-negative matrix factorization (NMF): the log-transformed expression matrix (�-by-�) is 73 

factorized into two non-negative matrices � (�-by-�) and � (�-by-�) with � being the expected 74 

number of clusters. The latter matrix is then used to determine the membership of each cluster by 75 

determining, for each column in �, which of the � entries has the highest value [14,15]. The NMF 76 

computation is implemented in the NMF R-package, as reported earlier [14,16]. 77 

K-means: K-means is done on either the log-transformed expression matrix or the 2-by-� 78 

correlation t-SNE matrix. The algorithm is implemented by the kmeans function in R [17]. 79 

Hierarchical clustering (Hclust): Hclust is also done on either the log-transformed expression 80 

matrix or the 2-by-� correlation t-SNE matrix. The algorithm is implemented by the hclust function 81 

in R [18]. The heatmap with dendrograms is plotted using the heatmap function in R. 82 

Correlation t-SNE 83 

Correlation t-SNE is implemented to assess heterogeneity of the data. It is calculated using a two-84 

step process. First, a distance matrix is calculated using the correlation distance. The correlation 85 

distance Di,j between sample � and sample � is defined as 86 

��,� � 1! Correlation�+� , +��, 
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where +�  and +�  are the �-th and �-th column (sample) of the expression matrix. 87 

Next, t-SNE is performed using this distance matrix, which reduces the expression matrix to two 88 

dimensions. We use the Rtsne R package for this calculation [19]. 89 

Elbow-point finding algorithm in clustering 90 

In the clustering module with automatic determination of the number of clusters, the 91 

identification of the optimum number of clusters is done prior to presenting the clustering results. 92 

First, we calculate the k-means clusters from � � 2 to � � 10. For each �, we calculate the 93 

percentage of the explained variance (EV). To find the elbow-point � � � where the EV plateaus, 94 

we fit the �-EV data points with a linear elbow function. This function consists of a linearly 95 

increasing piece from 0 to �, and a constant piece from � to 10. We iterate from � � 1 to 10 and 96 

identify � which gives the best coefficient of determination (/
) of linear regression as the "elbow 97 

point". 98 

Differential expression analysis 99 

We use SCDE (version 1.99.4) in our Differential expression (DE) analysis step. The minimum size 100 

entries parameter of the scde.error.models function is set to be the lesser of 2000 or the number 101 

of genes after filtering [20]. When more than two clusters are present, a pair-wise DE analysis is 102 

performed.  103 
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Gene-set enrichment analysis 104 

The GSEA algorithm is implemented in the fgsea R-package which uses an optimized algorithm for 105 

fast calculation speed [21]. 106 

Pseudo-time construction 107 

We use Monocle (version 2.2.0) in our pseudo-time construction step. When building the 108 

CellDataSet required for monocle’s input, we set the expressionFamily to negbinomial.size(). The 109 

dimension reduction is done using the reduceDimension function with max_components set to be 110 

2. 111 
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Results 112 

Overview and comparison with scRNA-seq pipelines 113 

Granatum is by far the most comprehensive tool web browser based scRNA-seq analysis pipeline 114 

without any programming requirement (Table 1). We have systematically compared Granatum 115 

with 12 other existing tools, to demonstrate its versatile functions. Among other tools, methods 116 

such as SCDE / PAGODA and Flotilla, are developed for programmers and requires expertise in a 117 

particular programming language. In contrast, Granatum with its simple graphical interface 118 

requires no programming knowledge, and is very easy to navigate through. Current version of 119 

Granatum neatly presents nine modules, arranged as steps and ordered by their dependency 120 

(Figure 1). It starts with one or more user-supplied expression matrices and corresponding sample 121 

metadata sheet(s), followed by data merging, batch-effect removal, outlier removal, 122 

normalization, gene filtering, clustering, differential expression, protein-protein network, and 123 

pseudo-time construction.  124 

Comparing to other freely available tools, Granatum workflow has many superior functionalities 125 

that make it flexible (Table 1). Below we enlist some of them. (1) Unlike tools such as SCRAT 126 

(https://zhiji.shinyapps.io/scrat/), ASAP [22] and Sake (http://sake.mhammell.tools/), it is the only 127 

GUI pipeline that supports multiple dataset submission as well as batch effect removal; (2) at any 128 

point of the step, the user can reset the current step for re-analysis; (3) the user can bypass certain 129 

steps and still complete the workflow; (4) the user can select subsets of samples/data for their 130 

customized analysis need; (5) the user can identify outlier samples either automatically by a pre-131 
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set threshold, or manually by simply clicking the samples the PCA plot or the correlation t-SNE 132 

plot; (6) the user can specify multiple cores in the differential expression module for speed-up; (7) 133 

Both GSEA and network analysis can be performed for the differentially expressed genes in all 134 

pairs of subgroups, following clustering analysis; (8) Monocle pseudo-time construction can be 135 

performed to gain insights of relationships between the cells. In the following sections, we 136 

elaborate the details of each step in Granatum in chronological order.  137 

Upload data 138 

Granatum accepts one or multiple expression matrices as the input. Each expression matrix can be 139 

accompanied by a table describing the groups, batches, or other properties of the samples in the 140 

corresponding matrix. This accompanying table is called the metadata sheet. Multiple matrices 141 

may be uploaded sequentially. The user also specifies the species of the data, either human or 142 

mouse, for downstream functional analysis. After the input files are uploaded, preview tables for 143 

the matrix and metadata are displayed, providing the user an opportunity check that the data they 144 

have input is as expected. 145 

Batch-effect removal 146 

Samples obtained in batches can create unwanted technical variation, which confound the 147 

biological variation [23]. It is thus important to remove the expression level difference due to 148 

batches. Granatum provides a batch-effect removal step, where the batches are shown as 149 

different colors in the box-plot (Figure 2). If more than one datasets are uploaded, by default each 150 

dataset is assumed to be one batch. Alternatively, if the batch numbers are indicated in the sample 151 
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metadata sheet, the user may select the column in which the batch numbers are stored (blue 152 

circled in Figure 2). For datasets with a large number of cells, to maintain legibility of the box-plot a 153 

random selection of 96 sub-samples is shown in the box-plot, and can be re-sampled freely. 154 

Outlier identification 155 

Computationally abnormal samples pose serious problems for many down-stream analysis 156 

procedures. It is thus crucial to identify and remove them in the early stage. Granatum's outlier 157 

identification step features PCA plot and t-SNE plot, two connected interactive scatter-plots that 158 

have different computational characteristics. A PCA plot illustrates the Euclidean distance between 159 

the samples, and a correlation t-SNE plot shows the associative distances between the samples. 160 

The interactive mode of these plots is realized by the Plotly library [12] (Figure 3A). 161 

Outliers can be identified automatically by either using a z score threshold or setting a fixed 162 

number of outliers. In addition, the user can select or de-select each sample, by clicking, boxing or 163 

drawing a lasso on its corresponding points on either PCA or t-SNE plot (Figure 3A and 3B). This 164 

level of interaction from users is one of the many examples of thoughtful tool design, in order to 165 

empower them.  166 

To help users select sample of a particular property, Granatum also allows for mapping any of the 167 

columns in the metadata sheet onto the scatter-plots (circled blue in Figure 3A). The complete 168 

metadata information of the selected samples can be found in a table at the bottom of the page 169 

(circled red in Figure 3A). 170 
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Normalization 171 

Normalization is essential to most scRNA-seq data, except those with the UMI counts, before the 172 

down-stream functional analyses. The current version of Granatum has implemented three 173 

commonly used normalization algorithms: rescale to geometric mean, quantile normalization, and 174 

size-factor normalization [24,25]. A box-plot is shown post normalization, to help illustrate its 175 

effect to the median, mean, and extreme values across samples. As is the case in the batch-effect 176 

removal step, for a dataset with a large number of samples, 96 sub-samples are randomly chosen 177 

for the visualization purpose (Figure 3C). 178 

Gene filtering 179 

Due to scRNA-seq's relative high level of noise, it has been recommended to remove lowly 180 

expressed genes as well as lowly dispersed genes [4]. To this end, Granatum has a step to remove 181 

these genes. The user can interactively select both the average expression level threshold and the 182 

dispersion threshold (Figure 3D). The dispersion calculation and negative binomial model fitting 183 

are calculated by modifying the output of the Monocle package [3]. We have customized the 184 

visualization code to enhance integration with the other components, by setting up the threshold 185 

selection sliders and number of genes statistics message on the Granatum web page (Figure 3D). 186 

On the mean-dispersion plot, each gene is represented by a point, where the x-axis is the mean of 187 

the expression levels after log transformation, and the y-axis is the dispersion factor calculated 188 

from a negative binomial model. The preserved genes are highlighted as black and the genes to be 189 
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removed are labeled as gray colors. The number of genes before and after filtering are also 190 

displayed. 191 

Clustering 192 

Clustering is a routine heuristic analysis for scRNA-seq data. Granatum selects five commonly used 193 

algorithms: non-negative matrix factorization [14], k-means, k-means combined with correlation t-194 

SNE, hierarchical clustering (hclust), and hclust combined with correlation t-SNE. The number of 195 

clusters may be set manually, or automatically determined using an elbow-point finding algorithm 196 

(Methods, Figure 4A).  For the latter approach, the algorithm will attempt to cluster samples with 197 

number of clusters (�) ranging from 2 to 10, and determine the best number by finding the elbow-198 

point �. � indicates the starting point of plateau for explained variance (EV), above which EV 199 

creases only minimally. If hclust is selected, a heatmap with hierarchical grouping and 200 

dendrograms be shown in a pop-up window (Figure 4B). 201 

Next, the resulting cluster labels obtained above, are then super-imposed onto the two 202 

unsupervised PCA and correlation t-SNE plots (Figure 4A). The user can also represent user-defined 203 

labels in the sample metadata as different colors in these plots.  By comparing the two sets of 204 

labels, the users can quickly check the concordance between the prior metadata labels and the 205 

computed clusters. 206 

Differential expression 207 

After obtaining a set of clusters, it is intuitively important to identify genes that are differentially 208 

expressed between any two clusters. Granatum uses the state-of-the-art SCDE method for its 209 
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single-cell DE analysis [20]. The DE comparison is performed in a pair-wise fashion when more than 210 

two clusters are present. This step is computationally time and memory consuming. To shorten 211 

computation time, a user can select the number of cores for parallelization on multi-core machines 212 

(Figure 5A). When SCDE is completed, tabbed tables show the genes sorted by their Z-scores, along 213 

with the model coefficients (Figure 5B). As another feature to empower the users, the gene 214 

symbols are linked to their corresponding GeneCards pages (www.genecards.org) [26]. The DE 215 

results can be downloaded as a CSV file via the "Download CSV table" button. 216 

To investigate the collective biological functions of these genes, the user can further perform Gene 217 

Set Enrichment Analysis (GSEA) with either KEGG pathways or Gene Ontology (GO) terms (circled 218 

blue in Figure 5B) [27–30]. We have employed a very intuitive bubble-plot to visualize the GSEA 219 

results, where the vertical position of the bubble indicates the enrichment score of the gene sets, 220 

and the size of the bubble indicates number of genes in that set (KEGG pathway or GO term) 221 

(Figure 5C). 222 

Protein network visualization 223 

Protein-protein interaction (PPI) network gives straightforward and systematic understanding of 224 

the connections between these differentially expressed genes. Granatum selects the top K (default 225 

K=200) genes in the DE results, and super impose the PPI network on them. Genes that are not 226 

connected to any other genes in the list are removed from the PPI network. We use visNetwork to 227 

enable the interactive display of the graph [10]. The user can freely rearrange the graph by 228 

dragging the nodes to the desired location, and reconfiguring the layout to achieve good visibility 229 
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of the modules (via elastic-spring physics simulation) (Figure 6A). In this interactive graph, the Z-230 

scores are mapped as colors on the nodes where red indicates up-regulation and blue indicates 231 

down-regulation. 232 

Pseudo-time construction 233 

Granatum has included the Monocle algorithm, a widely-used method to reconstruct a pseudo-234 

timeline for the samples [3]. Monocle uses the Reversed Graph Embedding algorithm to learn the 235 

structure of the data, and the Principal Graph algorithm to find the time-lines and branching points 236 

of the samples. We superimpose the timeline on the samples scatter-plot projected on the two 237 

components of the learned projection matrix. The user may map any pre-defined labels or numeric 238 

assays provided in the metadata sheet on to the scatter-plot (Figure 6B). The plotting functions are 239 

adapted from the visualization code in Monocle. 240 

Discussion 241 

The field of scRNA-seq is fast-evolving both in terms of the development of instrumentation and 242 

the innovation of computational methods. However, it becomes exceedingly hard for a wet-lab 243 

researcher without formal bioinformatics training to catch up with the latest iterations of 244 

algorithms [5]. This poses major barriers to them and many resort to sending their generated data 245 

to third-party bioinformaticians, before they are able to visualize the data themselves. This 246 

segregation often prolongs the research cycle time, as it often takes significant effort to maintain 247 

effective communications between the two sides (sometimes even more complicated with a third 248 
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party of the genomics core). Also, issues with the experimentations do not get the chance to be 249 

spotted early enough, to avoid significance loss of time and cost in the projects. It is thus very 250 

attractive to have a non-programming graphical application which includes state-of-the-art 251 

algorithms as routine procedures, in the hands of the bench-scientist who generate the scRNA-seq 252 

data. 253 

Granatum is our attempt to fill this void. It is to our knowledge the first solution that aims to cover 254 

the entire scRNA-seq workflow with an intuitive, step-wise graphical user interface. Throughout 255 

the development process our priority has been to make sure that it is fully accessible to 256 

researchers with no programming experiments. We have strived to achieve that the plots and 257 

tables are self-explanatory, interactive and visually pleasant. We have sought inputs from our 258 

single-cell bench-side collaborators, to ensure that the terminologies are easy to understand by 259 

them. We also supplement Granatum with a manual and video that guide the users through the 260 

entire workflow, using example datasets. Currently Granatum targets users who have their 261 

expression matrices and metadata sheets ready. However, we are developing the next version of 262 

Granatum, which will handle the entire scRNA-seq data processing and analysis pipeline including 263 

FASTQ quality control, alignment, and expression quantification. In the future, we will enrich 264 

Granatum with capacities to analyze and integrate other types of genomics data in single cells, 265 

such as exome-seq and methylation data.   266 
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Conclusions 267 

We have developed a graphical web application called Granatum, which enables bench 268 

researchers with no programming expertise to analyze state-of-the-art scRNA-Seq data. This tool 269 

offers many interactive features to allow routine computational procedures with a great amount 270 

of flexibility. We expect that this platform will empower the bench-side researchers with more 271 

independence in the fast-evolving single cell genomics field. 272 

Figure legends 273 

Figure 1: Granatum workflow. Granatum is built with the Shiny framework, which supports both 274 

front-end and the back-end. The user uploads one or more expression matrices with 275 

corresponding metadata for samples. The back-end stores data separately for each individual user, 276 

and invokes third-party libraries on demand. 277 

Figure 2: The batch-effect removal steps. A box-plot is shown for the samples. The colors indicate 278 

the batch labels, which can be selected using the batch factor selection box circled in blue. In cases 279 

where more than 96 cells are present in the data, only a random sample of 96 cells are shown. The 280 

user can re-sample the data by clicking the “Re-plot random 96 cells” button. 281 

Figure 3: The outlier removal, normalization and gene filtering steps. A) The main interface of the 282 

outlier removal step. The two scatter-plots are the PCA and correlation t-SNE plots, with colors 283 

indicate the cell labels (box circled in blue). The metadata table (circled in red) shows the labels for 284 
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the selected cells. B) The pop-up window for automatic outlier detection options after the “auto-285 

identify” button is clicked. C) The normalization step. The box-plot shows the expression levels of 286 

each cell in log-scale. In cases where more than 96 cells are present in the data, only a random 287 

sample of 96 cells are shown. D) The Gene filtering step. The y-axis of the scatter-plot is the 288 

empirical dispersion, estimated by a negative binomial model. The x-axis is the log mean 289 

expression of each gene. The user can change the threshold by dragging the two sliders circled in 290 

blue.  291 

Figure 4: The Clustering step. A) Main interface. PCA and t-SNE plots are shown with colors 292 

mapped to user-selected sample labels. After clustering, samples are marked with their assigned 293 

cluster numbers. The user can either choose a specific number of clusters or let Granatum 294 

compute the best number of clusters. B) When Hclust (Euclidean) is selected, a pop-up window will 295 

show a heatmap of the expression matrix with dendrograms.  296 

Figure 5: The Differential expression (DE) step. A) Before running DE, the user may select the 297 

number of cores to use for speed. B) After DE, top differentially expressed genes for each pair of 298 

clusters are shown. Gene Set Enrichment Analysis (GSEA) can be performed, using either KEGG 299 

pathways or GO terms (circled in blue). C) The results of GSEA. The pathways on the x-axis are 300 

sorted top 20 enriched gene sets. The height of the bubble indicates the absolute normalized 301 

enrichment score, and the size of the bubble indicates the number of genes in the set.  302 

Figure 6: The Protein network and Pseudo-time construction steps. A) The Protein network step. 303 

The A tabbed panel shows the connected gene modules on the PPI network between each pair of 304 
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clusters. The color on each node (gene) indicates its Z-score in the differential expression test. Red 305 

and blue colors indicates up- and down- regulation. B) The Pseudo-time construction step. 306 

Monocle algorithm is customized to visualize the paths among individual cells. The user can 307 

represent sample labels from the metadata as colors in the plot. 308 
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Table 1: Comparison of existing single-cell analysis pipelines. 310 
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Outlier Identification
Identify and remove abnormal samples 

automatically or manually

Batch-effect Removal
Remove the confounding factors created by 

sequencing batches

Normalization
Normalize the data using various methods 

to remove unwanted variation

Gene Filtering
Remove low-expressed genes and filter out 

over-dispersed genes

Pre-processing

Clustering
Find computational clusters of the samples 

using various algorithms

Differential Expression
Find genes that are highly differentially 

expressed (DE) between any two clusters

Protein Network Visualization
Super-impose the DE results on the 
protein-protein interaction network

Pseudo-time Construction
Find genes that are highly differentially 
expressed between any two clusters

Analyses
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(*) The three components (SCRAT, TSCAN and GSCA) are not integrated.
(**) Results can be shown interactively using a web interface. However, the results themselves have to be pre-computed in R.
(***) For the interactive interface only

Software GUI d
riv

en workflo
w

Live web site

Video tu
toria

l

Interactiv
e plots

Batch-effe
ct re

moval

Outlie
r re

moval

Norm
alizatio

n

Over-d
ispersed genes id

entifi
catio

n

Clusterin
g analysis

Diffe
rentia

l expression analysis

Gene-set e
nric

hment a
nalysis

Network analysis

Pseudo-tim
e constru

ctio
n

Citation

Granatum ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

SCRAT / TSCAN / GSCA ✔ (*) ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ Ji et al. 2016

ASAP ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✘ Gardeux et al. 2016

Sake ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ NA

Singular ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✘ Fluidigm Corp. 2015

Cell Ranger / Loupe ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘ Zheng et al. 2017

Seurat ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘ Satija et al. 2016

Scater ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ McCarthy et al. 2017

Monocle ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ Trapnell et al. 2014

SCDE / PAGODA ✘ (**) (***) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ Kharchenko et al. 2014

Flotilla ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✘ NA

Sincell ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✔ Juliá et al. 2015

Sincera ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✘ Guo et al. 2015

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/110759doi: bioRxiv preprint 

https://doi.org/10.1101/110759

