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Abstract

Background

Simple mechanistic epidemic models are widely used for forecasting and parame-

ter estimation of infectious diseases based on noisy case reporting data. Despite

the widespread application of models to emerging infectious diseases, we know little

about the comparative performance of standard computational-statistical frameworks

in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epi-

demic model with both process and observation error and use it to characterize the

e↵ectiveness of di↵erent flavours of Bayesian Markov chain Monte Carlo (MCMC)

techniques. We explore the limitations of di↵erent platforms and quantify parameter

estimation accuracy, forecasting accuracy, and computational e�ciency across com-

binations of modeling decisions (e.g. discrete vs. continuous latent states, levels of

stochasticity) and computational platforms (JAGS, NIMBLE, Stan).

Results

Simulations showed that models incorporating at least one source of population-level

variation (i.e., dispersion in either the transmission process or the observation pro-
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cess) provide reasonably good forecasts and parameter estimates, while models that

incorporate only individual-level variation can lead to inaccurate (or overconfident)

results. Models using continuous-approximations to the transmission process showed

improved computational e�ciency without loss of accuracy.

Conclusion

Simple models of disease transmission and observation can be fitted reliably to simple

simulations, as long as population-level variation is taken into account. Continuous

approximations can improve computational e�ciency using more advanced MCMC

techniques.

Keywords: MCMC HMC TSIR Dispersion Moment-matching

1 Introduction

Simple homogeneous population models have been widely used to study emerging

infectious disease outbreaks. Although such models can provide important insights

— including estimated epidemic sizes and e↵ects of intervention strategies, as well as

short-term forecasts — they neglect spatial, individual-level and other heterogeneities

which are often important. Decades of work have created frameworks that enable re-

searchers to construct analytical models to capture many aspects of infectious disease

epidemics. But many challenges remain. In particular, estimating parameters (and

associated uncertainties) is always challenging, especially models incorporating mul-

tiple forms of heterogeneity, and especially during the early stages of an epidemic.

Using complex models that are insu�ciently supported by data can lead to unstable

parameter estimates (Ludwig and Walters, 1985) — in many cases, researchers are

forced to revert to simple models.

In the past few decades, researchers have begun to adopt Bayesian approaches
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to disease modeling problems. Bayesian Markov Chain Monte Carlo (MCMC) is a

powerful, widely used sampling-based estimation approach. Despite the widespread

use of MCMC in epidemic modeling (Morton and Finkenstädt, 2005; O’Neill, 2002),

however, there have been relatively few systematic studies of the comparative perfor-

mance of statistical frameworks for disease modeling.

In this paper, we apply relatively simple MCMC approaches to data from simu-

lated epidemics that incorporate stochasticity in both transmission and observation,

and account for multiple generation infectious periods. We compare model approaches

of varying complexity, including a fitting model that matches the simulation model,

and we also explore three di↵erent MCMC platforms: JAGS (Plummer et al., 2003),

NIMBLE (de Valpine et al., 2016) and Stan (Carpenter et al., 2016). We quantify

and compare parameter estimation accuracy, forecasting accuracy, and computational

e�ciency across combinations of these modeling decisions.

2 Methods

We generated test data using a simple framework that combines a transmission pro-

cess based on a simple discrete-time model with an observation process to account for

incomplete reporting. Both processes are assumed to be stochastic. We then fit the

observed cases from these simulations using Bayesian methods that model the under-

lying true number of infections as a latent (i.e., unobserved) variable. Our Bayesian

fitting models explore an approach that matches the assumptions of the simulation

model, and also various simplifications: in particular, we explore simpler methods of

accounting for variation in both the transmission process and the observation process,

and the use of continuous rather than discrete latent variables.
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2.1 Simulation Model

The transmission process of our dual-process framework is based on the Reed-Frost

(R-F) chain binomial model, which can also be described as a discrete-time, stochastic

compartmental SIR model (Ludwig, 1973). To account for the possibility that some

fraction of the population may be beyond the scope of the epidemic — geographically

or socially isolated, genetically resistant, vaccinated or immune — we assume that

only a proportion Pe↵ of the total population is e↵ectively susceptible to infection.

Then, for every time step, we assume that only a proportion Prep of the number of

new infections are actually observed. We model both transmission and observation

using a beta-binomial (rather than binomial) distribution to account for additional

sources of variation (i.e., overdispersion) in both processes. The equations are:

Ne↵ = Pe↵N (1)

S1 = Ne↵ � I1 (2)

�t =
X̀

i=1

k(i)Ii (3)

It+1 ⇠ BetaBin(1� e��t , St, �P ) (4)

St+1 = St � It+1 (5)

Obst ⇠ BetaBin(Prep, It, �obs). (6)

where �t is the force of infection at time t; Ne↵ is the e↵ective population size; and `

is the number of lags.

We use the standard parameterization of the beta binomial, meaning that larger

values of the dispersion parameters (�P and �obs) correspond to less variability (the

beta-binomial converges to the binomial distribution as �obs becomes large).

We extend the R-F model by allowing the infectious period to last longer than

one step, using a transmission kernel k(i) based on a truncated negative binomial
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distribution:

k̃(i) = i(GS�1) ⇥ exp

✓
�i

GP ⇥ `

◆
, i = 1, ..., ` (7)

k(i) =
R0

Ne↵

⇥ k̃(i)
P`

i=1 k̃(i)
, i = 1, ..., ` (8)

Here, R0 represents the basic reproductive number and GS and GP are shape and

position parameters, respectively.

2.2 Fitting Model

2.2.1 Transmission and Observational Process Errors

The transmission (eq. 4) and observation (eq. 6) processes in the simulation model

are both defined as beta-binomial (BB) processes. In fitting, we used the BB to

match the simulation model, but also tried several simpler alternatives: binomial

(B), Poisson (P), and negative-binomial (NB) processes. Process B does not allow

for overdispersion, while NB does not incorporate the size of the pool from which a

value is chosen; that is, it is theoretically possible for a NB sample of the number

of infections to be larger than the current susceptible population (although this is

extremely unlikely when the per capita infection probability is small). Process P

neglects both of these phenomena. Figure 1 illustrates the relationship of the four

discrete distributions.

2.2.2 Latent Continuous Transmission process
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Poisson Negative Binomial

Binomial Beta Binomial

Figure 1: Discrete distribution relationships. For beta-binomial distribution (bottom
right panel), we used an alternative parameterization ↵ and �, where ↵ = �P

1�p and

� = �P
p . Moving from the top to bottom row adds a size parameter (replacing µ with

np). Moving from left to right adds a dispersion parameter �.

Continuous Approximation (Hybridization) 

Poisson Negative Binomial

Binomial Beta Binomial

Figure 2: Continuous approximation of discrete distributions via moment matching.
Distributions in Figure 1 were matched to a Gamma distribution with equivalent first
and second moments.
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Another simplification we considered was treating the unobserved number of un-

derlying cases as a continuous variable. To do this, we matched the first two moments

of the discrete distribution to a Gamma distribution (Figure 2). One advantage of the

continuous approximation approach is that it allows us to scale our latent variable to

help with model convergence (see below); it also allows the use of MCMC sampling

procedures such as Hamiltonian Monte Carlo (HMC).

2.2.3 Multiple Scale Decorrelation

The proportion of the population assumed to be e↵ectively susceptible (Pe↵) and

the reporting proportion (Prep) have very similar e↵ects on observed incidence. We

therefore expect them to be hard to identify separately, so we reparameterized the

model so that it uses a single parameter Pe↵rep for their product.

bPe↵ = P 1�⇢
e↵rep (9)

bPrep = P ⇢
e↵rep (10)

We also expect that this parameterization will improve statistical convergence, since

it makes it possible to change the poorly constrained value of ⇢ without changing

Pe↵rep. For similar reasons, we experimented with measuring infected individuals on

a “reporting” scale in our continuous-variable models (see below).

2.3 Bayesian Markov Chain Monte Carlo

In Bayesian MCMC, model parameters are sampled from the posterior distribution

by a reversible Markov chain whose stationary distribution is the target posterior

distribution. Classical MCMC techniques include the Metropolis-Hasting algorithm

(Hastings, 1970), Gibbs sampling (Geman and Geman, 1984), and slice sampling

(Neal, 2003). Recently, convenient implementations of a powerful MCMC technique
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called Hamiltonian Monte Carlo (HMC: also called hybrid MC) (Duane et al., 1987)

have become available. HMC uses the concept of Hamiltonian dynamics to create a

proposal distribution for the M-H algorithm, together with the leap-frog algorithm

and the No U-Turn sampler (Ho↵man and Gelman, 2014). HMC requires more com-

putational e↵ort per sample step compared to other MCMC techniques, but because

subsequent steps are less correlated it also produces more e↵ective samples per sample

step (Ho↵man and Gelman, 2014).

2.3.1 Platforms

Many software platforms implement the automatic construction of MCMC samplers

for user-defined models. One of the most widely used platforms is JAGS (Just a Gibbs

Sampler); despite its name, it combines a variety of MCMC techniques to fit models.

NIMBLE (Numerical Inference for Statistical Models for Bayesian and Likelihood Es-

timation) is a more recent platform that allows users to flexibly model and customize

di↵erent algorithms and sample techniques for MCMC. Neither JAGS nor NIMBLE

has yet implemented HMC. One of the relatively few platforms that currently imple-

ments HMC is Stan, which provides full Bayesian inference for continuous-variable

models based on the No-U-Turn sampler, an adaptive form of HMC.

2.3.2 Simulation and Evaluations

The typical (frequentist) statistical simulation scheme fits multiple realizations to

data generated from a fixed set of parameters that is determined a priori and eval-

uates the match of the parameter estimates to the true values. Our simulation test

scheme, based on a Bayesian perspective, sampled multiple sets of the parameters

from the same prior distribution that was used in the fitting process and simulated

one realization for each parameter set. All model variants were used to fit each real-

ization (Table 1 and 2 in the appendix give more detail about parameters and priors).
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Forecasts were made by simulating forward using parameters sampled from the fitted

posterior distributions.

We used four summary statistics to evaluate total cases predicted over the forecast

window (disaggregated forecasts are analyzed in the supplementary material), mean

generation interval, and parameter estimates. The mean generation interval is defined

by:

Mean Generation Interval =

P`
i=1 ik̂(i)P`
i=1 k̂(i)

(11)

We used bias, root mean square error (RMSE), and coverage to assess model fit. We

also assessed model e�ciency using time per e↵ective sample. All errors used were

proportional errors, calculated as:

✏i = log

 
med(✓̂i)

✓i

!
(12)

We then calculated bias and RMSE as:

Bias = median(✏) (13)

RMSE =

sP100
i=1(✏

2
i )

100
(14)

3 Results

The full model (which matches the simulation model) provides generally good fore-

casts and parameter estimates when looking at either bias (Figure 3, or RMSE (Fig-

ure 4), except for estimates of Pe↵ using JAGS.

In general, models with any kind of dispersion in the transmission process, or
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Figure 3: Comparison of bias (based on proportional errors) for forecast, MGI and
parameters using models described in Sect. 2.2 across di↵erent platforms described
in Sect. 2.3.1. Models with transmission process dispersion (first and second left
column panels) and models with observation process dispersion (first and second left
column within each panel) have low bias and models without dispersion have large
bias (moving from left to right columns between and within panels. Continuous
latent state models (solid points) and Stan (purple points) are available for negative
binomial (second column within each panel) and poisson (fourth column within each
panel) observational process. The black line shows bias of zero.

with negative binomial dispersion in the observation process, did well. The exception

is that models that combined negative binomial transmission dispersal with beta

binomial observation dispersal produced biased forecasts and estimates of Prep.
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There are no clear di↵erences in the quality of model fit due to multi-scale decor-

relation, latent continuous transmission process or platform.
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Figure 4: Comparison of RMSE (based on proportional errors) for all fitting model
variants. The layout matches that of Figure 3. Patterns across models and platforms
are similar to those seen in Figure 3. Short-term forecasts have generally high error,
even when bias is low, reflecting inherent uncertainty in the system. The cross-
correlated parameters Pe↵ and Pe↵rep also show high error but not high bias.

Figure 5 shows the statistical coverage of our estimates. Similar to the results

shown for bias and RMSE (Figure Figure 3 and Figure 4), we find generally good
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coverage (i.e., close to the nominal value of 0.9) for models with dispersion in the

transmission process, except that the negative-binomial transmission process model

undercovers across the board (coverage ⇡ 0.8 for all observation process models and

platforms) for forecasts and Prep. For models without dispersion in transmission,

models with dispersion in the observation process have low coverage (⇡ 0.8) for most

parameters, while the beta-binomial process model has low coverage (⇡ 0.4) for Prep

and models without any dispersion have uniformly low coverage.

There are noticeable e�ciency di↵erences between platforms and transmission-

process approaches (continuous vs. discrete), as measured by time per e↵ective sample

size, shown in Figure 6. For a given platform, models using continuous latent variables

are generally more e�cient than discrete latent processes. Comparing models with

continuous latent variables between platforms ( Figure 5, second and fourth column of

every panel), Stan (using HMC) is the most e�cient platform, followed by NIMBLE

and JAGS. For discrete latent-state models, NIMBLE is more e�cient than JAGS.

4 Discussion

This paper fits models with a variety of simplifications to simulated epidemic data

with multiple sources of heterogeneity, using several di↵erent platforms. Using models

that include some form of overdispersion is necessary for robust fits, but models that

include overdispersion only in the transmission process can work as well as or better

than the full model. Including overdispersion only in the observation process (if

implemented as a negative binomial distribution) also provides relatively robust fits

to these data. Simplifying the models by using continuous rather than discrete latent

variables increased e�ciency with little e↵ect on fits.
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Figure 5: Comparison of coverage probability for forecast and parameters. Models
with transmission process dispersion (left column panels) and models with observation
process dispersion (first and second left column within each panel) have coverage near
the nominal value of 0.9 for all parameters and model variants. The black line shows
the nominal coverage, and the grey ribbon the 95% binomial confidence interval based
on the number of simulated fits. Vertical axis is plotted on a logit scale.

4.1 Ceilings

The e↵ects of using distributions with ceilings (i.e. binomial and beta binomial dis-

tributions) instead of their less realistic counterparts without ceilings (Poisson and

negative binomial) was relatively small. In our framework, ceilings only apply in

models with discrete latent variables; the primary e↵ect of such ceilings is to reduce
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Figure 6: Comparison of e�ciency for all fitting model variants (the layout of the
figure is also the same as Figure 3)

variance as probabilities (of infection or of sampling) become large.

4.2 Overdispersion

Accounting for overdispersion had more impact on our fits than the presence or ab-

sence of ceilings. In particular, models with no overdispersion in either process lacked

flexibility and tended to be over-confident (that is, they showed low coverage). How-

ever, models that account for overdispersion in only one process (either transmission
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or observation) tended to be reliable for estimating parameters such as R0, mean

generation interval, and short-term forecasts, particularly when overdispersion was

implemented through negative binomial (a less constrained distribution than the beta

binomial). However, parameters such that are more closely tied to the details of a

particular model structure used (such as the overdispersion parameters for the ob-

servation and transmission processes) must change when the overdispersion model

changes, in order to compensate for missing sources of variability.

Several authors (e.g., (King et al., 2015; Taylor et al., 2016)) recommend account-

ing for process as well as observation error in estimates of R0 and in forecasts, to

avoid over-confident estimates. Our exploration does not include any cases where

process error is completely absent — even our ”dispersion-free” processes incorporate

sampling error in the process. However, we find that neglecting overdispersion can

still lead to over-confident and unreliable estimates.

4.3 Latent vs Observable

We are interested in two aspects of the epidemic that are not directly observable:

reporting rate and total e↵ective population size. Classic infectious disease models

ignore both of these aspects, relying on the constancy of reporting rate and the non-

sensitivity of e.g. R0 estimates to a constant degree of underreporting (Clarkson and

Fine, 1985). While we want to use as much observable information as possible and

make as few assumptions as possible about unobservable aspects of the epidemic,

underreporting is of huge practical importance. Thus, modeling observation error

explicitly is required if we want reliable estimates of uncertainty (King et al., 2015).

If reporting error is modeled with a ceiling, then underreporting is a necessary com-

ponent of reporting error (i.e., reporting is always biased downward as well as noisy).

Allowing overdispersion, especially without a ceiling (i.e, a negative-binomial model

of the reporting process), decouples variance and bias in the reporting process.
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We have shown how simple techniques can improve accuracy and e�ciency in

modeling epidemics, but much remains to be done. Our fitting model neglects many

di↵erent forms of heterogeneity and epidemic phenomena — among them spatial, age

and social structure — that may be important in modeling epidemics. We have yet

to explore more advanced Bayesian MCMC techniques that can potentially improve

accuracy, such as redundant parameterizations, block sampling, or sequential Monte

Carlo frameworks (Del Moral et al., 2012; Gelman et al., 2014; He et al., 2009; Yang

et al., 2014).

5 Conclusion

We have presented a comparison of simple MCMC approaches to fit epidemic data.

We learned two things about fitting epidemic data. First, modeling di↵erent processes

with dispersion (BB and NB) is a naive but e↵ective way to add uncertainty in

the model; models without such uncertainty are likely to be over-confident and less

accurate at forecasting. Second, approximating discrete latent state process with

continuous processes can aid e�ciency without losing robustness of fit. This allows

more e�cient fitting in the classic framework (e.g., JAGS and NIMBLE), and also

allows us to use the more advanced HMC technique (which we implemented via Stan).
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