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Abstract

Action observation can facilitate the acquisition of novel motor skills, however, there is con-
siderable individual variability in the extent to which observation promotes motor learn-
ing. Here we tested the hypothesis that individual differences in brain function or structure
can predict subsequent observation-related gains in motor learning. Subjects underwent an
anatomical MRI scan and resting-state fMRI scans to assess pre-observation grey matter vol-
ume and pre-observation resting-state functional connectivity (FC), respectively. On the fol-
lowing day, subjects observed a video of a tutor adapting her reaches to a novel force field.
After observation, subjects performed reaches in a force field as a behavioral assessment of
gains in motor learning resulting from observation. We found that individual differences
in resting-state FC, but not grey matter volume, predicted post-observation gains in motor
learning. Pre-observation resting-state FC between left S1 and bilateral PMd, M1, S1 and left
SPL was positively correlated with behavioral measures of post-observation motor learning.
Sensory-motor resting-state FC can thus predict the extent to which observationwill promote
subsequent motor learning.

Significance Statement

Action observation can facilitate motor learning, however like for motor learning through
active movement pratice, there is considerable individual variability in the degree to
which observation promotes motor learning. Here we show that individual differences in
pre-observation brain function can predict subsequent observation-related gains in motor
learning. Pre-observation resting-state FC between left S1 and bilateral PMd, M1, S1 and
left SPL (assessed using fMRI) predicted observation-related behavioral improvements in
motor learning, assessed on the following day. Our results suggest that pre-observation
resting-state functional connectivity within the identified sensory-motor network may be
used as a biomarker for the extent to which observation promotes motor learning. This
kind of information may be useful if visual observation is to be used as a way to boost
neuroplasticity and sensory motor recovery for patients undergoing rehabilitation for
diseases that impair movement such as stroke.
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Introduction

Recent work has shown that action observation can promote motor learning. For example,
individuals can learn how to reach in novel robot-imposed force field (FF) environments by
observing themovements of a tutor (Mattar andGribble, 2005). Subjects observed a video of a
tutor adapting his reaches to a novel robot-imposed FF applied. Subjects who later performed
reaches in the same FF showed a benefit, performing better (straighter) reaches compared
to control subjects who did not observe a tutor. Subjects who later performed reaches in
the opposite FF performed worse (more curved) reaches than subjects who did not observe.
While these results demonstrate that FFs can be partially learned from observation, there is
considerable inter-individual variability in the extent to which observation promotes motor
learning. Little is known about why this may be. Some individuals may be more predisposed
to learning from observation than others, whether from birth, from experience-dependent
plasticity, or a combination of these or other individual differences. Here we test the idea
that inter-individual differences in brain function or structure underlie the extent to which
observation promotes subsequent motor learning.

In a recent review article, Zatorre (2013) discusses findings showing how structural and
functional neural connectivity patterns predict individual differences in musical training and
speech learning. Other studies have shown similar predictability for a wide array of cognitive
abilities including executive function (Barnes et al., 2014; Reineberg et al., 2015), reading
(Koyama et al., 2011; Wang et al., 2013), second language acquisition (Chai et al., 2016),
visual perceptual discrimination (Baldassarre et al., 2012) and memory recall (King et al.,
2015). In themotor domain, Tomassini et al. (2011) demonstrated that individual differences
in both functional and structural magnetic resonance imaging (MRI) measures correlate
with the acquisition of a novel visuomotor tracking skill through active movement training.
Task-based functional activation levels in a network involving prefrontal, premotor, and
parietal cortices, as well as basal ganglia and the cerebellum were associated with behavioral
measures of active motor learning. Structural differences within the premotor cortex, higher
order visual areas, and the cerebellum were also positively correlated with learning abilities
(Tomassini et al., 2011). Similarly, using dense-array electroencephalography (EEG), Wu et
al. (2014) showed that resting-state functional connectivity (FC) between premotor, primary
motor and parietal cortices predicts individual differences in the subsequent learning of a
visuomotor tracking task. Together, these studies suggest that functional and structural vari-
ations in motor learning-related brain networks can, in part, explain individual differences
in the ability to learn novel motor tasks through active movement practice. The results of
these studies raise the possibility that individual differences in brain structure or function
may also be predictive of motor learning by observing.

Here we tested the hypothesis that individual differences in brain function or structure can
predict the extent to which individuals will learn to perform a novel sensory-motor task (FF
reaching) from observation. Based on our previous work (McGregor and Gribble, 2015; Mc-
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Gregor et al., 2016), we expected that individual differences in brain function and structure
within visual and sensory-motor brain networks would be predictive of motor learning by
observing. On day 1, subjects performed baseline (no FF) reaches using a robotic arm and
then underwent pre-observation anatomical and resting-state functional magnetic resonance
imaging (fMRI) scans. Twenty-four hours later, subjects observed a video of a tutor learning
to reach in a novel FF, and then performed reaches in a FF as a behavioral assessment of mo-
tor learning by observing. We found that pre-observation (day 1) resting-state FC between
bilateral dorsal premotor cortex (PMd), primary motor cortex (M1), primary somatosensory
cortex (S1) and left superior parietal lobule (SPL) predicts post-observation behavioral mea-
sures of motor learning, acquired on day 2. In contrast, individual differences in grey matter
volume could not predict subsequent motor learning by observing. Pre-observation sensory-
motor resting-state FC can thus explain part of the between-subject variation in motor learn-
ing by observing.

Materials and Methods

Subjects

Thirty healthy subjects participated in this study. Fifteen subjects were assigned to a learning
group (6 males, mean age 22.87 ± 1.02 (SE) years) and 15 were assigned to a control group
(6 males, mean age 22.53 ± 0.86 (SE) years). All subjects were right handed, had normal
or corrected-to-normal vision, were naïve to force fields, and reported no neurological or
musculoskeletal disorders. Subjects provided written informed consent prior to participating.
All experimental procedures were approved by the Research Ethics Board at the University of
Western Ontario.

Apparatus

Subjects were seated in front of a custom tabletop and grasped the handle of a two degree
of freedom robotic arm (IMT2, Interactive Motion Technologies) with the right hand (see
Figure 1). The chair height was adjusted such that the subject’s upper arm was abducted ap-
proximately 90o from the trunk. An air sled was secured beneath the subject’s right arm to
support the arm against gravity. A semi-silvered mirror, mounted horizontally just above the
robotic arm, occluded the subject’s vision of his or her own arm and the robotic arm. Dur-
ing the reaching task, a liquid crystal display television (LCD TV) projected visual feedback
onto the semi-silvered mirror. Visual feedback included a start position (20-mm blue circle),
a single target (20-mm white circle), and a cursor representing hand position (12-mm pink
circle).
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The reaching task involved guiding the handle of the robotic arm from the start position to
the target, which was located 15 cm in front of the start position. Subjects were instructed
to move as straight as possible. At the end of each reach, the target changed color to provide
feedback about movement time: the target disappeared if the movement time was within the
desired range (450-550 ms duration), turned red if the movement was too fast (< 450 ms) or
turned green if the movement was too slow (> 550 ms). Following each reach, the robotic
arm returned the subject’s hand to the start position.

The robot applied a velocity-dependent force field during the reaching task according to Equa-
tion 1:

[
Fx

Fy

]
=

[
0 dk

−dk 0

] [
vx

vy

]
(1)

in which x and y are lateral and sagittal directions, Fx and Fy are the applied robot forces, vx

and vy are hand velocities, k=14 Ns/m, and d=0 (null field), +1 (right FF) or -1 (left FF).

Reaching Video Stimuli

Each video showed a top-down view of a tutor performing the reaching task described above
using her right arm. The tutors in the videos were naive to force fields. The learning video
consisted of a series of 30-second clips showing a tutor adapting her reaches to a leftward force
field (left FF).These clips showed the gradual progression from curved to straight movements
that is indicative of motor learning. The control video consisted of a series of 30-second clips
showing a tutor performing reaches in an unlearnable FF in which the direction of the FF var-
ied randomly from trial to trial (left FF, right FF, or null field). These clips showed the tutor
performing both high and low curvature movements, but lacked the progressive decrease in
movement curvature depicted in the learning video. Thus the control video included similar
movements to those shown in the learning video, but did not depict learning. The videos
showed 200 reaches each and were 15 minutes in duration (including regular breaks). Video
screenshots are shown in Figures 1B and 2A. Note that the dashed trajectories and super-
imposed labels have been included for demonstrative purposes here and were not shown to
subjects in the experiment.

Experimental Design

The experimental design is shown in Figure 1B. All subjects (n=30) participated in three ses-
sions. For each subject, the sessions were held at the same time on three consecutive days.
On day 0, subjects were familiarized with the reaching task by performing 50 practice move-
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ments in a null field (no force applied by the robot). On day 1, subjects performed 200 base-
line reaches in the null field and then walked to the imaging facility for a fMRI scan session
(see below for scan session details). The scan session began approximately 20 minutes follow-
ing the completion of the reaching task and lasted 1 hour. Data collected during the day 1
scan session were used to estimate pre-observation resting-state FC between 10 visual and
sensory-motor brain areas (see ROIs below) and to estimate whole-brain grey matter volume.
On day 2, subjects performed the observational motor learning task. Subjects watched either
the learning video or the control video while seated in front of the robotic arm. The video
was played on a LCD TV positioned above the robotic arm and was projected onto a semi-
silvered mirror surface. To ensure subjects paid attention during the video, we instructed
subjects to count the number of correctly-timed reaches in the video (indicated by the target
disappearing upon the completion of a reach) and to report the final tally to the experimenter
following the video. Note that subjects were not told to pay attention to any particular part of
themovement trajectory or arm, nor were they told that the robot would be applying forces to
the arm. Reported tallies were analyzed to verify that subjects attended to the video, but these
data were not incorporated into the behavioral or neuroimaging analyses. Approximately 80
minutes after video observation, we assessed motor learning by observing by having subjects
perform 100 reaches while the robotic arm applied a rightward FF (right FF).

During the 80 minutes between video observation and the motor learning test on day 2, both
groups underwent a second fMRI scan session identical to the day 1 fMRI scan session. Data
from the second fMRI scan session were not used in any of the analyses presented here since
the main objective of the current study was predicting motor learning by observing based on
pre-observation (day 1) neuroimaging data. See McGregor and Gribble (2015) for details of
FC changes from day 1 to day 2, and how they relate to observation-related gains in motor
learning.

We assessed motor learning behaviorally by having subjects perform reaches in a right FF,
which was the opposite FF to what was depicted in the learning video. The better subjects
learned about the observed left FF, the worse their performance would be in the right FF.The
idea is that during observation, subjects learn something about the compensatory pattern of
muscle forces (i.e., rightward compensation) that is required to counteract the left FF. Subjects
continue to use a learned pattern of muscle forces even when the force environment is unex-
pectedly changed, resulting in after-effects (e.g., Shadmehr andMussa-Ivaldi, 1994). As is the
case in this study, after-effects are especially large if the environment is changed such that it
is the opposite of the learned environment. This is because the subject compensates right-
ward (persistence of the learned pattern of muscle forces) and the robotic arm also pushes
the hand to the right. Therefore, we expected that those subjects who better learned about
the observed left FF would perform more highly curved reaches when first exposed to the
right FF (Cothros et al., 2006; Brown et al., 2009; McGregor and Gribble, 2015; McGregor et
al., 2016). We chose to use this interference paradigm to assess motor learning by observing
because it tends to be a more sensitive measure compared to testing subjects in the same FF
that they observed.
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The overall aim of this study was to assess if pre-observation resting-state FC or grey matter
volume can predict the extent to which subjects will learn from observation. While both
the learning and control groups underwent resting-state scans on day 1, we did not perform
neuroimaging analyses on the data from the control group. This is because the control group
did not observe learning in the control video and so motor learning by observing did not
occur. We have included the control group here as a basis for comparing behavior in the final
motor learning test to demonstrate the motor learning by observing effect.

Imaging Procedure

Neuroimaging data were acquired by a 3-Tesla Siemens Magnetom Tim Trio imaging system
using a 32-channel head coil. All subjects underwent resting-state scans on day 1 to assess
functional connectivity prior to the observational motor learning task on day 2. The fMRI
scan session lasted 1 hour. The scan session began with two 8-minute resting-state runs dur-
ing which subjects were instructed to relax with their eyes closed. The resting-state runs were
separated by a 5-minute anatomical scan during which subjects were instructed to fixate their
gaze on a crosshair projected onto a screen. Subjects then performed two 6-minute func-
tional localizer tasks: an action observation network localizer and a motor localizer task. We
selected 10 a priori regions of interest (ROIs) known to be involved in action observation
and/or motor learning (see below). The two localizer tasks allowed us to determine the coor-
dinates of each ROI for use in the functional connectivity analysis described below.

For the the action observation network localizer task, subjects viewed intact and scrambled
video clips of a tutor performing reaches while holding the robotic arm (ten 36-s interleaved
blocks). Intact video clips showed a top-down view of a tutor performing straight reaching
movements in a null field (no forces applied by the robot). For the baseline condition, subjects
viewed scrambled versions of these video clips in which only the start and target positions re-
mained in their original locations. Scrambling the videos allowed us to preserve the low-level
motion features such asmovement direction and velocity while removing suchmovement fea-
tures as shoulder and elbow joint rotations and the hand path (Malfait et al., 2010). During
the action observation network localizer task, subjects were instructed to count the number
of correctly-timed movements the tutor performed and to report the final tally to the exper-
imenter at the end of the video. This was done to verify that subjects attended to the video.
Reported tallies were not incorporated into the behavioral or neuroimaging analyses.

For themotor localizer task, subjects performed interleaved blocks of armmovement and rest
(ten 36-s blocks). During movement blocks, subjects slowly moved their right forearm along
the frontal plane in a cyclic manner (90o elbow flexion). Color-coded visual cues were used
to pace movements at a frequency of 0.1 Hz.
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Image Acquisition

Whole-brain functional data were acquired with a T2-weighted EPI sequence (TR = 3,000
ms, TE = 30 ms, 90o flip angle, 3-mm isotropic voxels, 80x80x50 matrix, iPAT acceleration
factor = 2). T1-weighted anatomical images were collected with a MPRAGE sequence (TR
= 2,300 ms, TE = 2.98 ms, 9o flip angle, 1-mm isotropic voxels, 192x240x256 matrix). For
each subject, a field map was acquired at the beginning of the scan session using a gradient
echo sequence (TR = 531 ms, TE = 4.92 ms/7.38 ms, 60o flip angle, 3-mm isotropic voxels,
80x80x50 matrix).

Behavioral Data Analysis

During the reaching task, the position and velocity of the robotic handle were sampled at 600
Hz and stored for offline analysis. Positional data were low-pass filtered at 40 Hz. The start
and end of each trial were defined using a threshold of 5% of the peak tangential hand velocity.
Movement curvature was quantified for each trial as the maximum perpendicular deviation
of the hand (PD) from a straight line connecting the start and target locations (Mattar and
Gribble, 2005).

We calculated a behavioral motor learning by observing score for each subject. Motor learn-
ing by observing scores were calculated as the mean PD of the first 3 reaches in the right FF
minus the mean PD of the last 50 reaches in the baseline null field. This approach allowed us
to examine the extent to which observing the left FF interfered with subjects’ initial perfor-
mance in the right FF compared to control subjects who did not observe the tutor undergoing
learning. As in our previous work (Cothros et al., 2006; Brown et al., 2009; McGregor et al.,
2016), we expected that motor learning by observing would primarily affect initial perfor-
mance in the right FF, after which motor learning through active movement in the right FF
would occur for both groups.

Functional Connectivity Analysis

We carried out a whole-brain seed-based correlation analysis to examine if inter-subject dif-
ferences in resting-state FC could predict the amount of motor learning by observing that
subjects would achieve on the following day. Neuroimaging data analyses were performed
only on the data from the learning group using FSL version 5.04 (FMRIB’s Software Library,
https://www.fmrib.ox.ac.uk/fsl). Image preprocessing steps for the functional connectivity
analysis included the removal of the first 2 volumes in each functional run, slice-timing cor-
rection, motion correction, spatial smoothing using a 6-mm kernel, and high-pass temporal
filtering (100 s). Field map distortion correction and affine coregistration of functional and
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anatomical images were performed using boundary-based registration (BBR) in FLIRT. Sub-
jects’ images were registered to MNI space (MNI’s 152-brain T1 template, 2-mm isotropic
voxel size) using a 12-DOF affine registration.

We selected 10 a priori regions of interest (ROIs) known to be involved in action observation
and/or motor learning. ROIs were used in the whole-brain functional connectivity analysis
described below. These regions included left supplementary motor cortex, dorsal premotor
cortex, ventral premotor cortex, primarymotor cortex, primary somatosensory cortex, visual
area V5/MT, superior parietal lobule, inferior parietal lobule, putamen, and right cerebellum.
The coordinates of each ROI were determined based on block-design analyses of the action
observation network and motor localizer tasks described above. For each localizer, the task-
induced response was assessed with a per-subject GLM. Data from all 15 subjects were then
included in a mixed-effects analysis (Z > 2.3, p < 0.05, cluster-based thresholding) for each
localizer. The seed coordinates were chosen as the peak activated voxel within each of the 10
brain areas listed above. ROIs consisted of all voxels within a 6-mm radius of the activation
peaks. Table 1 shows the coordinates of the activation peaks used for each ROI.

Functional connectivity analyses were performed using both resting-state runs acquired on
day 1. We analysed both resting-state runs together, as well as separately (see Results). Fol-
lowing preprocessing, a bandpass filter of 0.01 – 0.1 Hz was applied to the resting-state data
(Biswal et al., 1995; Damoiseaux et al., 2006). Mean-based intensity normalization was per-
formed (mean value of 10,000) to remove global intensity differences between runs (Damoi-
seaux et al., 2006). We carried out seed-based correlation analyses on each subject’s resting-
state runs using FILM (FMRIB’s Improved General Linear Model). This allowed us to assess
FC between each ROI and the rest of the brain on day 1. The mean time series of each ROI
was used as the predictor of interest in the GLM. Nuisance regressors included the temporal
derivative of the mean ROI time series, 6 rigid body motion parameters obtained from mo-
tion correction, mean global signal, mean white matter signal and mean CSF signal. For each
ROI, the results of the subject-level analyses were then entered into a mixed-effects group-
level analysis. We also included in our group-level analysis a nuisance regressor modelling
the average PD of the last 50 reaches in the null field for each subject. This was done because
subjects had performed 200 reaches in the null field prior to the fMRI scan session on day 1.
Even though the robot did not apply force to the subject’s hand during null field reaches, sub-
jects likely underwent some degree of motor learning as they learned the inertial properties
of the robotic arm. We included a nusiance regressor modelling subjects’ behavioral perfor-
mance in the null field to account for the potential effects of previous experience in the null
field.

Group-level analysis results were thresholded based on Gaussian random field theory, us-
ing maximum height thresholding with a corrected significance level of p=0.005 (voxelwise
thresholding, corrected for familywise error). We applied a Bonferroni correction for the
number of ROIs used; therefore, our corrected significance threshold of p=0.005 reflects
p=0.05/10 ROIs. These analyses resulted in 10 Z-score maps (one per ROI) showing areas
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that, on average, exhibited FC with the seed region across subjects. FC was defined as the
temporal correlation (Fisher Z-transformed correlation coefficient) between the seed region
time series and the average time series of all target clusters.

For each ROI, we computed the correlation between day 1 resting-state FC and day 2 motor
learning by observing behavioral scores. We again applied a Bonferroni correction for the
number of ROIs used; therefore, we considered statistically significant only those correlations
for which p < 0.005 (i.e., p=0.05/10 ROIs).

Voxel-Based Morphometry Analysis

We carried out a whole-brain voxel-based morphometry (VBM) analysis to test for inter-
subject differences in grey matter volume across the whole brain (measured on day 1) that
could predict motor learning by observing scores on day 2. This analysis was carried out
on the T1-weighted images from the learning group using FSL-VBM v1.1. First, each sub-
ject’s anatomical imagewas brain-extracted, grey-matter segmented, and transformed toMNI
space using an affine registration. The resulting anatomical images were then averaged and
flipped along the x-axis to generate a left-right symmetric, study-specific template. Grey mat-
ter images were then smoothed using a 3-mmGaussian kernel. TheVBManalysis was carried
out using a voxelwise GLM model. The predictor of interest modelled the subjects’ motor
learning by observing scores. Two nuisance regressors were also inluded, one modelled the
grey matter grand mean across all subjects, and the second modelled each subject’s unnor-
malized total brain volume. Each subject’s total brain volume was estimated prior to standard
space normalization using FSL’s SIENAX tool. The voxelwise GLM model was applied using
non-parametric permutation (50,000 iterations) to correct for multiple comparisons with a
significance threshold of p=0.005.

Results

Behavioral Results

Figure 2A shows the behavioral data from the learning and control groups. It can be seen that,
on day 1, reaches are straight in the baseline null field condition for both groups. Following
video observation on day 2, we assessed motor learning by observing by instructing subjects
to perform straight reaches while the robotic arm applied a right FF (the opposite FF to what
had been observed in the learning video). The better subjects had learned and retained the
observed left FF, the worse their performance would be during their initial performance in
the right FF. Indeed, we found that subjects who observed the tutor adapting to a left FF in
the learning video exhibited greater PD during initial reaches in the right FF compared to
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control subjects who observed the tutor performing curved reaches in an unlearnable FF. As
in previous work (Mattar and Gribble, 2005; Cothros et al., 2006; Brown et al., 2009; Williams
and Gribble, 2012; Bernardi et al., 2013; McGregor et al., 2016), the effects of observation
are most apparent early in the motor learning test (i.e., the first 10 reaches shown as blocks
1 and 2 in Fig 2A) and diminish as subjects in both the learning and control groups adapt
to the right FF. Average motor learning by observing scores are shown in Figure 2B. Motor
learning by observing scores reflect the PD of the first 3 reaches in the right FF relative to the
subject’s baseline PD in the null field. In Figure 2B, it can be seen that those subjects who
observed the tutor undergoing left FF learning exhibited significantly higher motor learning
by observing scores compared to control subjects who observed the tutor performing reaches
in an unlearnable FF (t(28)=2.58, p < 0.01).

Functional Connectivity Analysis

We performed functional connectivity analyses on the neuroimaging data acquired from the
learning group on day 1 to test whether individual differences in pre-observation FC could
predict motor learning by observing scores on the following day. Of the 10 ROIs used, only
the analysis using the left S1 ROI revealed a network in which pre-observation FC was reli-
ably correlated with day 2motor learning by observing scores. As shown in Figure 3, day 1 FC
between left S1 ROI and clusters in bilateral PMd, bilateral M1, bilateral S1 and left SPL was
positively correlated with day 2 motor learning by observing scores (r=0.76, p=0.001). Sub-
jects with greater pre-observation FC among these areas on day 1 went on to achieve higher
motor learning by observing scores on the following day. Table 2 shows cluster activation
peaks and statistics.

Our computed motor learning by observing score took into account the average PD of a sub-
ject’s first 3 reaches in the right FF relative to his or her baseline PD in the null field. To assess
the sensitivity of the correlation between FC andmotor learning by observing scores, we com-
puted additional motor learning by observing scores to use in our analysis. Additional motor
learning scores reflected the average PD of the first 4, 5, 6, 7, 8, 9 or 10 reaches in the right
FF minus the average PD of the last 50 reaches in the null field. The correlation between day
1 FC and motor learning by observing scores remained significant for all of the additional
measures.

The GLM used for the group-level functional connectivity analyses included a nuisance re-
gressor modeling each subject’s PD in the null field during the last 50 trials. This was done
to account for potential effects of subjects having had performed null field reaches before the
resting-state scans on day 1. The clusters and correlation with behavioral scores remained
significant whether the null field nuisance regressor reflected the average PD of the last 3, 5,
10 or 50 null field reaches or the average PD of the first 3, 5, 10 or 50 null field reaches.

It is possible that the correlation between pre-observation FC and the day 2 motor learning
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scores is due to random chance (e.g. spurious correlations in the BOLD time series) and not
due to stable individual differences in functional connectivity. To assess this we repeated the
functional connectivity analysis on each the two resting-state runs separately. The resting-
state runs were independent, separated in time by a 5-minute anatomical scan. Again using
the ROI in left S1, we found consistent spatial patterns of pre-observation (day 1) FC between
left S1, bilateral PMd, M1, S1 and left SPL for both individual runs (see Figure 4). Moreover,
the correlation between pre-observation (day 1) FC and day 2 motor learning by observing
scores was statistically significant for both resting-state run 1 (r=0.75, p=0.001) and run 2
(r=0.63, p=0.01). Therefore, when performed on the each of the two independent resting-
state runs, our analysis yielded similar results both in terms of the spatial extent of the clusters
and the correlations with day 2 motor learning scores. It is therefore unlikely that our main
result arises from a spurious correlation.

Voxel-Based Morphometry Analysis

Wecarried out awhole-brainVBManalysis on the anatomical images from the learning group.
This was done to test if individual differences in grey matter volume could predict subsequent
motor learning by observing scores. This analysis yielded no significant results. We tested
the sensitivity of this null result to the chosen statistical threshold. No significant clusters
survived statistical thresholding at the group level until the p-value threshold was raised to
0.27, at which level clusters survived in left frontal lobe (-32, 54, 12) and Broca’s area (-50, 20,
12). When the p-value threshold was raised further to 0.37, a cluster survived which spanned
right PMC (54, -8, 52), M1 (54, -10, 46), S1 (56, -14, 44) and IPL (64, -20, 40). However, since
none of these clusters survived an appropriopriate statistical threshold, these results are not
interpretable. In the context of the dataset here, individual differences in grey matter volume
could not account for variability in the extent to which observation promotes motor learning.

Discussion

Here we examined if pre-observation measures of brain function or structure could account
for individual differences in the extent to which observation facilitates motor learning. We
acquiredmeasures of resting-state FC and grey matter volume usingMRI prior to an observa-
tional learning task on the following day. We found that pre-observation (day 1) resting-state
FC between left S1 and bilateral PMd, bilateral M1, bilateral S1 and left SPL was reliably corre-
lated with behavioral scores of motor learning by observing acquired on day 2. Those subjects
who exhibited greater resting-state FC on day 1 achieved greater motor learning by observing
scores on day 2. Individual differences in grey matter volume could not predict subsequent
motor learning by observing behavioral scores. This finding provides further insight into the
neural basis of motor learning by observing.
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The finding that pre-observation resting-state FC between S1 and PMd, M1, and SPL pre-
dicts subsequent motor learning is consistent with previous work demonstrating that M1 and
the somatosensory system play necessary roles in motor learning by observing. Brown et al.
(2009) used repetitive transcranialmagnetic stimulation (rTMS) to reduce cortical excitability
in M1 immediately after subjects observed a FF learning video. A subsequent behavioral as-
sessment showed that reducing M1 excitability following observation disrupted motor learn-
ing by observing. rTMS applied toM1 after observation of FF learning reduced the beneficial
effect of observing congruent forces, and eliminated the detrimental effect of observing incon-
gruent forces. These results suggest that M1 plays a key role in motor learning by observing.

We have also recently demonstrated that the somatosensory system plays a necessary role in
motor learning by observing (McGregor et al., 2016). We used median nerve stimulation to
occupy the somatosensory system with unrelated afferent inputs while subjects observed a
video of a tutor undergoing FF learning. During observation, subjects received median nerve
stimulation to the right arm (the same arm used by the tutor in the video), to the left arm
(opposite the arm used by the tutor) or no stimulation. Stimulation disrupted motor learning
by observing in a limb-specific manner such that stimulation of the right arm (observed effec-
tor) interfered with learning, whereas stimulation applied to the opposite arm did not. This
result demonstrated that the somatosensory representation of the observed effector is neces-
sary and therefore must be unoccupied during observation for motor learning by observing
to occur. In a follow-up EEG experiment, we showed that S1 cortical activity, as assessed
using somatosensory evoked potentials, increased for subjects who observed learning by an
amount that positively correlated with subsequent behavioral motor learning scores. These
results suggest that observation-induced functional changes in S1 support motor learning by
observing (McGregor et al., 2016).

The network identified in the current study overlaps with those identified in neuroimaging
studies showing that sensory-motor networks support observational learning. We have pre-
viously shown that observing motor learning results in changes in resting-state FC between
M1, S1, visual area V5/MT and the cerebellum. Functional connectivity changes within this
network were correlated with behavioral measures of motor learning, assessed following the
fMRI sessions (McGregor and Gribble, 2015). Cross et al. (2009) showed that observation of
dancemovement sequences recruits brain areas including premotor and parietal cortices. The
authors reported greater activation in premotor and parietal regions when subjects observed
movement sequences on which they had been trained (by observation) over the previous 5
days, compared to untrained movement sequences. These studies suggest that the neural sub-
strates of motor learning by observing include premotor cortex, M1, S1 and parietal cortex.
This is consistent with the results of the current study in which subjects who exhibited greater
pre-observation resting-state FC between S1 and PMd, M1, and SPL later showed the greatest
observation-related facilitation of motor learning.

There are commonalities between the functional network identified in the current study and
those functional networks that have been previously reported to predict aspects of motor
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learning through active movement training. Tomassini et al. (2011) showed that the task-
based activation of premotor and parietal cortices (along with prefrontal cortex, basal ganglia
and the cerebellum) is associated with higher behavioral measures of motor learning. Wu et
al. (2014) have similarly shown that resting-state FC (as measured by high-density EEG) be-
tween M1, premotor cortex and parietal cortex can predict skill acquisition. The consistency
between predictive functional networks for learning through active movement training and
observational motor learning provides evidence in favor of similar neural substrates for these
two forms of motor learning.

There is evidence from the motor learning literature that individual differences in brain struc-
ture can predict learning through active practice. Tomassini et al. (2011) demonstrated that
individual differences in grey matter volume within the cerebellum and higher order visual
areas (V2, V3, V5/MT) can also predict behavioralmeasures ofmotor learning during a visuo-
motor tracking task. While there is evidence for structure-based predictability ofmotor learn-
ing, in the current study we found that this was not the case for motor learning by observing;
individual differences in grey matter volume could not account for variability in behavioral
scores of motor learning by observing. Future studies investigating grey matter volume cor-
relates of motor learning by observing should have a larger sample size to increase statistical
power.

Here we tested if pre-observationmeasures of brain function or structure could predict subse-
quent motor learning by observing. We found that pre-observation resting-state FC between
S1 and bilateral PMd, M1, and left SPL predicted the extent to which observation would pro-
motemotor learning on the following day. Individual differences in greymatter volume could
not predict behavioral scores of learning following observation. These results demonstrate
that individual differences in resting-state FC among sensory-motor cortical brain areas can
explain part of the individual variability in the extent to which observation facilitates mo-
tor learning. This finding is consistent with the idea that those individuals who have more
‘primed’ sensory-motor circuits are more predisposed tomotor learning through observation.
Pre-observation FC within the identified sensory-motor networkmay be used as a biomarker
of the extent to which observation will promote motor learning. Predicting an individual’s
predisposition for motor learning by observing could be valuable in a clinical context for
planning individualized rehabilitation strategies and improving prognostic accuracy (Stinear,
2010).

The origin of individual variability in pre-observation sensory-motor FC is still unclear. In
one scenario, it is possible that the observed individual differences in FC are a reflection of
functional variability and not anatomical variability within this network. However, given the
close correspondence between anatomical and functional connectivity (e.g., Fox et al., 2005),
another scenario is that the observed differences in FC arise from individual differences in
anatomical connectivity. For example, it could be the case that greater structural connectivity
between these sensory-motor brain areas results in higher pre-observation sensory-motor FC
which, in turn, promotes greater motor learning by observing. Since here we did not acquire
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images for performing structural connectivity-based analyses (such as diffusion tensor im-
ages), we cannot rule out the possibility that individual differences in structural connectivity
among sensory-motor brain areas underlies the effect seen here, whereby pre-observation FC
predicts motor learning by observing.

However, resting-state FC does not only reflect anatomical connectivity. Indeed, much work
has shown that resting-state FC can be shaped by recent experiences. Such “stimulus-rest
interactions” have been demonstrated across several domains. For example, exposure to vi-
sual stimuli (Lewis et al., 2009) or undergoing active motor learning (Albert et al., 2009) can
change resting-state FC. Since resting-state FC is affected by both structure and function, it is
likely the case that both of these factors contribute to individual differences in pre-observation
sensory-motor FC. While we cannot further pursue this question using the current dataset,
this would be an interesting avenue for future research. Another outstanding issue is the sta-
bility of these individual differences in pre-observation FC over time. Future research should
examine the test-retest reliability of pre-observation FC over longer time periods (e.g., several
days or weeks apart) to establish the long-term stability of the FC patterns within the network
identified here. This would allow one to better distinguish between within-session patterns
from those more permanent structural or functional patterns.
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Figures

Figure 1: Apparatus and Experimental Design. A. Subjects were seated in front of an InMo-
tion2 robotic arm and performed the reaching task in a horizontal plane using the right arm.
B. On day 1, all subjects performed reaches in a null field (no force applied by the robot).
Subjects then underwent a pre-observation MRI scan session. The scan session consisted of
2 resting-state runs separated by an anatomical scan, followed by 2 functional localizer tasks.
On day 2, subjects in the learning group (n=15) observed a learning video showing a tutor
adapting her reaches to a left FF. A control group (n=15) observed a control video showing
a tutor performing curved reaches in an unlearnable (randomly-varying) FF. Finally, all sub-
jects performed reaches in a right FF as a behavioral test of motor learning by observing. FF,
force field.
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Figure 2: Behavioral results. A. Experimental design showing the average PD of reaches for
each group across trial in the null field on day 1 and in the right FF on day 2. Behavioral data
from the learning and control group are shown in magenta and orange, respectively. Data are
shown as 10-trial blocks except for the first 2 blocks in the right FF, which are shown as 5-
trial blocks. Error bars represent SEM. B. Motor learning by observing scores for the learning
group (magenta) and control group (orange), reflecting PD in the right FF relative to baseline
PD in the null field. Error bars represent SEM. FF, force field; PD, perpendicular deviation.
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Figure 3: Baseline FC predicted motor learning by observing scores. This figure shows neu-
roimaging data from the learning group only. Pre-observation (day 1) resting-state FC be-
tween the left S1 ROI (inset at left) and clusters in bilateral PMd, bilateral M1, bilateral S1 and
left SPL are shown. Across subjects in the learning group, the average day 1 resting-state FC
within this network was positively correlated with day 2 motor learning scores. As shown in
the scatterplot on the far right, subjects who exhibited stronger resting-state FC within this
network on day 1 achieved greater motor learning by observing scores on the following day
(r=0.76, p=0.001). FC values reflect the Fisher Z-transformed temporal correlation between
the ROI time series and the average time series of all voxels in target clusters.
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Figure 4: Pre-observation FC in run 1 and run 2 both predict motor learning by observing
scores. The figure shows neuroimaging data from the learning group only. Data from resting-
state run 1 (shown in pink) and run 2 (shown in blue) were analyzed separately. For both
runs, the ROI in left S1 (inset at left) exhibited resting-state FC with clusters in bilateral PMd,
bilateral M1, bilateral S1 and left SPL. For both runs, the pre-observation (day 1) resting-
state FC between bilateral PMd, M1, S1 and left was reliably correlated with day 2 motor
learning scores across subjects in the learning group. As shown in the scatterplot on the far
right, subjects who exhibited stronger FC within the network identified in each run on day
1 achieved greater motor learning by observing scores on day 2. FC values reflect the Fisher
Z-transformed temporal correlation between the ROI time series and the average time series
of all target clusters within each run. FC, functional connectivity.
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Tables

Table 1: Region of Interest (ROI) coordinates used in functional connectivity analyses. The
ROI coordinates were determined on the basis of a block-design analyses of the action ob-
servation network and motor localizer tasks. The seed coordinates were chosen as the peak
activated voxel within each of the 10 a priori selected brain regions listed in this table. L, left;
R, right; SMA, supplementary motor area; PMd, dorsal premotor cortex; PMv, ventral pre-
motor cortex; M1, primary motor cortex; S1, primary somatosensory cortex; V5/MT, middle
temporal visual area; SPL, superior parietal lobule; IPL, inferior parietal lobule; BG, putamen;
CB, cerebellum. ROI locations are given in the MNI coordinate frame.

ROI x y z Z-score

L SMA -4 -10 56 5.93
L PMd -24 -22 66 6.02
L PMv -42 -6 56 5.16
L M1 -26 -30 64 6.41
L S1 -30 -36 62 6.32
L V5/MT -42 -76 2 5.70
L SPL -22 -48 68 5.87
L IPL -60 -44 22 4.01
L BG -28 -14 8 4.52
R CB 26 -44 -26 5.22
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Table 2: Using a seed placed in left S1 (see Table 1), target clusters in which pre-observation
resting-state FC (on day 1) predicted day 2 motor learning by observing scores. Z score ac-
tivation peaks, MNI coordinates and anatomical labels of the sensory-motor clusters in the
identified functional network. ROI, region of interest; L, left; R, right; SMA, supplementary
motor area; PMd, dorsal premotor cortex; M1, primarymotor cortex; S1, primary somatosen-
sory cortex; SPL, superior parietal lobule; FC, functional connectivity.

Z-score x y z Label

7.40 -26 -40 58 L S1 (BA2)
6.75 -22 -20 66 L PMd (BA6)
6.12 -16 -50 62 L SPL (BA5L)
5.80 -34 -28 52 L M1 (BA4p)
6.97 22 -42 60 R S1 (BA2)
7.10 30 -32 56 R M1 (BA4p)
6.36 26 -16 64 R PMd (BA6)
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