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Abstract

Producing high-quality whole-genome shotgun de novo assemblies from
plant and animal species with large and complex genomes using low-cost
short read sequencing technologies remains a challenge. But when the
right sequencing data, with appropriate quality control, is assembled using
approaches focused on robustness of the process rather than maximization
of a single metric such as the usual contiguity estimators, good quality as-
semblies with informative value for comparative analyses can be produced.
Here we present a complete method described from data generation and
qc all the way up to scaffold of complex genomes using Illumina short
reads and its application to data from plants and human datasets. We
show how to use the w2rap pipeline following a metric-guided approach
to produce cost-effective assemblies. The assemblies are highly accurate,
provide good coverage of the genome and show good short range contigu-
ity. Our pipeline has already enabled the rapid, cost-effective generation
of de novo genome assemblies from large, polyploid crop species with a
focus on comparative genomics.

Availability: w2rap is available under MIT license, with some sub-
components under GPL-licenses. A ready-to-run docker with all software
pre-requisites and example data is also available.
http://github.com/bioinfologics/w2rap
http://github.com/bioinfologics/w2rap-contigger
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1 Introduction

Generation of a high quality genome assembly is a crucial first-step towards
understanding the biology of an organism. It establishes a complete catalogue
of genes and provides the foundation for characterising the genetic variation
within a species and how this variation impacts gene function and phenotypic
variation. Over the last 10 years, many methods have been described to address
this problem and the genomes of many organisms have been published. Yet, for
plant and animal species which often have large and complex genomes, assembly
remains a fundamental challenge.

Genome assemblies generated from massively parallel short-read technolo-
gies such as Illumina are highly accurate at the nucleotide level and relatively
inexpensive to generate, but remain highly fragmented due to complex repeat
content and varying degrees of polymorphism and ploidy. While solutions such
as ALLPATHS-LG (Gnerre et al., 2010), have revolutionised the field enabling
the sequencing and assembly of many mammalian genomes and providing a
foundation for large scale comparative analysis and lineage-specific evolution-
ary analysis, they require a precise recipe of input libraries coupled to a fixed
set of algorithm parameters which are not suitable for larger, complex genomes.

Here we present a pipeline called w2rap (Wheat/Whole-genome Robust As-
sembly Pipeline) to rapidly generate high-quality, low-cost, robust assemblies
from genomes with different levels of complexity. Our approach uses Illumina
PCR-free paired end (PE) 250bp reads for contig construction with the w2rap-
contigger, an improved algorithm based on DISCOVAR denovo (Weisenfeld et
al., 2014) (Love et al., 2016), and Nextera long mate-pair (LMP) libraries for
long-range scaffolding with SOAPdenovo2 (Luo et al., 2012). W2rap encom-
passes a full data processing workflow from raw reads to scaffolds, and crucially
allows the user to fine tune the algorithmic parameters making draft assembly
generation an iterative process adaptable to diverse genome complexities and
data. We also show in our w2rap test A. thaliana dataset that tuning assembly
to enhance accuracy produces more contiguous assemblies at lower computa-
tional cost, as the downstream analysis problems become easier.

We demonstrate our approach here by applying it to a datasets from Ara-
bidopsys thaliana and show how it performs in line with state of the art ap-
proaches in standard Homo sapiens data. We have already used used it to
assemble the hexaploid, highly repetitive, 17Gbp Triticum aestivum (bread
wheat) genome which generated highly accurate scaffolds in agreement with
the existing single chromosome reference sequence (Clavijo et al., 2016). Our
results maintain the completeness and accuracy achieved by DISCOVAR denovo
coupled with reduced memory usage, and processing time. Most importantly,
increased accuracy and contiguity are achieved by enhanced parameterisation of
the algorithms, improved repeat resolution, and the systematic use of LMP data
via SOAPdenovo2 scaffolding. This method makes it possible to consistently
generate high-quality draft assemblies for large, complex genomes at low cost.

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2017. ; https://doi.org/10.1101/110999doi: bioRxiv preprint 

https://doi.org/10.1101/110999
http://creativecommons.org/licenses/by/4.0/


Figure 1: w2rap assembly workflow. Contigs are produced by running the
w2rap-contigger on PCR-free 2x250bp Illumina data. Nextera Long Mate Paired
reads are then pre-processed with the w2rap scripts and used to scaffold the
contigs using the SOAPdenovo2 scaffolder included in w2rap. A script then
re-introduces N-runs from the original contigs displaced during SOAPdenovo2
scaffolding.

2 Results

2.1 Data generation

W2rap uses a combination of Illumina Paired End (PE) and Long Mate Pair
(LMP) reads. We recommend PCR-free PE libraries, using fragment sizes of
about 700bp for optimal short-repeat resolution in the w2rap-contigger stage.
Nextera LMP libraries (Heavens et al., 2015) are used to provide precise and
cost-effective longer range information.

Whilst different combinations of coverages and library sizes can be used de-
pending on genome complexity, repeat structure, and other characteristics, we

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2017. ; https://doi.org/10.1101/110999doi: bioRxiv preprint 

https://doi.org/10.1101/110999
http://creativecommons.org/licenses/by/4.0/


recommend a minimum coverage of 30x PE and up to 100x for highly heterozy-
gous genomes. For LMP libraries, a minimum coverage of 30x raw reads per
library is recommended, with up to 50x being routinely used in internal projects.
For plant genomes that often contain high levels of LTR-retrotransposons, it is
important to include a LMP library longer than 8Kbp to span these highly
repetitive blocks. We have successfully used a combination of libraries of 8Kbp,
10Kbp and 14Kbp for complex genomes such as wheat. As a general rule, when
trying to iteratively improve an assembly by sequencing a range of LMP li-
braries, we recommend getting 30x LMP coverage of a library with an insert
size corresponding to the N80 of the current scaffolding results.

2.2 Assembly quality and contiguity

When all algorithmic heuristics perform as intended, the genome assembly re-
sults should become more accurate, and this accuracy can drive contiguity. Ta-
ble 1 and Figure 1 show a clear example of an A. thaliana assembly becoming
more accurate and contiguous, by changing parameters of the same heuristics
to achieve better processing. The scaffolding results from both the A. thaliana
contigs and scaffolds outperform both ABySS and SOAP for our test runs on
contiguity, and outperform DISCOVAR denovo contigs for both accuracy and
contiguity. Details of the assembly parameters for each of these runs are given
on Supplementary Material Section 5.

We also used the human HG004 Illumina 2x250bp PE and LMP datasets
from the Genome in a Bottle Consortium (Zook et al., 2016), and we cite for
comparison results from the ABySS 2.0 publication (Jackman et al., 2016).
It is important to highlight the main focus of w2rap is producing assemblies
for comparative studies. Therefore, it is crucial to produce assemblies that
are consistently comparable and not one-off optimal settings for a particular
dataset. The default w2rap-contigger parameters achieve similar results to those
of DISCOVAR denovo, as they run essentially the same heuristics with near-
identical parameter choice, but achieve slightly less contiguity as seen for the
HG004 dataset in Table 2. This comes from slightly more conservative choices
of parameters. A ‘dv like‘ mode can be activated when running the w2rap-
contigger that produces results more similar to those of DISCOVAR denovo.
The general results from these assemblies are comparable to those mentioned
on the ABySS 2.0 publication.

2.3 Computational performance of w2rap-contigger

Among the disadvantages of using DISCOVAR denovo to assemble large and
complex genomes are its high memory consumption and long runtime and for
projects aiming to generate multiple assemblies computational resources can be-
come a major bottleneck. We reviewed the whole codebase and re-implemented
many algorithms with openMP-based parallel approaches, testing and improv-
ing the performance on NUMA systems, such as those needed to handle the
memory and processing requirements of larger genome assemblies. This led to
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reduced processing times, both in NUMA systems and normal servers. Further
reduction on the processing times can be achieved by correct parametrisation of
the first steps of the contig assembly process, as this leads to simpler problems
on the later stages (See Supplementary Material for more details).

Each step during contig assembly uses significantly different algorithmic ap-
proaches and data. We segmented the w2rap-contigger processing into eight
steps which can be run independently thus enabling us to make more efficient
usage of resources when running multiple assemblies or sharing computational
resources with other projects. This change produced two desired outcomes: (i)
each step runs with the resources required for that step only, thus avoiding a
waste of computing resources on large-memory multi-processor machines and,
(ii) the granularity of running shorter steps rather than all steps combined allows
for better control over the assembly, and provides the opportunity for a detailed
check of results from intermediate steps. These modifications are important
when assembling large and complex genomes, where the contigging steps can
take over 10 days.

Assembler Contig NG50 Contig NGA50 Scaffold NG50 Scaffold NGA50

ABySS v1.9 57 56.57 412.58 370.42
SOAPdenovo2 21.5 21.49 937 365.86
w2rap 361.9 355.89 1318.81 1136.96

Table 1: Comparison between w2rap and other assembly tools for the A.
thaliana dataset. All values in Kbp.

Assembler Contig NG50 (Kbp) Scaffold NG50 (Mbp)

ABySS v1.9 30.0 4.36
SOAPdenovo2 3.8 0.17
w2rap 90.6 4.78

Table 2: Comparison between w2rap with other assembly tools for the
HG004 H. sapiens dataset from Genome in a Bottle.

* Data for ABySS and SOAPdenovo2 results from ABySS 2.0 preprint.

3 Methods

3.1 Data generation

PCR-free Illumina paired end libraries are both cost-effective and less prone to
representation bias (Huptas et al., 2016). Standard Illumina NGS library con-
struction protocols target fragments with a 500bp insert size but these typically
span 300bp to 700bp, and smaller molecules within a library are more likely
to be sequenced over larger molecules. These libraries reduce effective cover-
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age due to overlapping sequences and fail to provide the spatial information
due to the predominance short insert fragments. For de novo genome assembly
projects, greater accuracy and contiguity can be achieved if the unique sequence
flanking repeats can be resolved within multiple single paired reads. We aim
for fragments of 700bp and longer which can be achieved by using a more strin-
gent AMPure XP bead based clean up (for reproducibility it is recommended to
use a positive displacement pipette to accurately dispense the beads) or a size
exclusion technology such as the Blue Pippin from Sage Science.

We recommend following our modifications to the Nextera LMP protocol
to produce libraries with good size distributions and representation (Heavens
et al., 2015). Processing of these is explained in a later section, but emphasis
must be on QC. When sequencing large genomes, we recommend constructing
multiple libraries, sequencing a combined pool in a single low-coverage (and
low cost) run, then choose the libraries with the best characteristics for further
sequencing.

3.2 Generating contigs with the w2rap-contigger

The w2rap-contigger is a extensively modified version of DISCOVAR denovo.
The original DISCOVAR has some limitations in terms of large repeat-rich
datasets, which made it impossible to run it on genomes such as that of hexaploid
wheat. We fixed bugs and limitations on the repeat-resolution heuristics and
implemented an extra repeat-resolution heuristic, the PathFinder, that is de-
scribed in the Supplementary Material. We divided the original assembly heuris-
tics into discrete steps, both to optimise the usage of computational resources
and to make the heuristic processing easier to track. Supplementary Material
Section 1 contains more detail about each step.

The w2rap-contigger provides a more extensive set of parameters than that of
DISCOVAR denovo, although most of these were originally present in the code
but fixed to values that were reasonable for mammalian genomes as sequenced
by The Broad Institute. In general, when sequencing multiple related genomes
for comparative studies, a sequencing recipe should be devised and then a set
of parameters chosen for the whole study, to guarantee comparable results.

While trying to adjust parameters for contiguity is a widespread practice
in genome assembly, we have shown in the results section and Figure 1 that
increasing accuracy can lead to higher contiguity. This means the assembly
process must be guided by the careful execution of each heuristic to achieve
accuracy. There needs to be an understanding of each heuristic and a method
to measure whether each heuristic is achieving the desired results.

3.2.1 Understanding the w2rap-contigger metrics

At the beginning and end of each step, and at every relevant point during
execution, the w2rap-contigger prints a set of assembly status metrics: kmers
in the graph, graph contiguity, reads pathing (i.e. a single-end read placement)
and pair status. (See Supplementary Material for details).
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The w2rap-contigger represents the assembly graph internally as a list of
edges (sequences or gaps) with a list of vertices representing K-1 overlaps. The
graph is directed, with independent reverse complements, which means every
sequence will be represented both in forward and reverse unless it is palindromic.
This means the number of kmers in the graph will be roughly doubled. Alongside
the number of kmers and edges, a set of Nk20, Nk50 and Nk80 values show the
length in kmers of the edges such that edges of that length or more cover 20%,
50% and 80% of the total kmer size of the graph. We use this value rather than
the traditional NXX values because it makes sense to evaluate edge lengths
using a kmer-based method.

In terms of read paths and pairs status, as the assembly progresses we should
generally see an improvement in the number of ends that map to a unique
location and the number of pairs with both ends mapped and satisfied. These
are the more indicative metrics, and we recommend following them throughout
all the steps described below. A more detailed and up-to-date explanation on
how to use the metrics to guide the assembly will always be kept in the w2rap
tutorial.

3.2.2 60-mer graph construction

The first three steps on the w2rap-contigger transform the reads into its binary
format (step 1), produce a 60-mer count with neighbouring information (step 2)
and construct a 60-mer graph (step 3). The main parameter to adjust in these
steps is the minimum frequency of 60-mers. This can be adjusted on step 2, and
then can be re-adjusted to higher values on step 3 if needed on high coverage
datasets where errors are over-abundant. The 60-mer spectrum is written to the
small K.freqs file, and we recommend choosing values of minimum frequency
smaller than the first valley, which separates the bulk of the error distribution
from the bulk of the genome’s true 60-mers. At this step it is also advisable
to check the fragment size distribution, saved in small K.frag.dist and control
that small improvements on NkXX are not achieved by loosing placement for
too many reads.

3.2.3 Optimising large K value

At this point, a collection of all possible paths through the graph are generated,
effectively transforming the 60-mer graph into an exploded large-K graph that
contains all possible large kmer paths. This graph is then evaluated for support,
pruning paths that do not have support from the original reads. The main
parameter for steps 4 and 5 is the kmer size for the second (and final) graph. This
value again represents a trade-off between connectivity and noise. Increasing
this parameter will disentangle repeats in the kmer spectrum, but will also
generate more erroneous paths, thus decreasing the amount of reads mapped to
the true paths and eventually making them discontiguous due to lack of support.
A secondary parameter, representing the number of supporting reads required
for a path to be considered valid is also available.
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3.2.4 Optimising local assembly

At this point, a key requirement is to maximise the graph connectivity so the
desired assembly can be found as a path through the graph. As previous steps
may have incorrectly pruned true paths, a local heuristic to reconstruct them is
now used. First, clusters of unsatisfied read pairs are generated: these are reads
that connect a set of ”left” and a set of ”right” edges in the graph, which are not
currently connected through existing paths. All left edges need to be connected
between them and all right edges needs to be connected between them. The
set of these ”bridging” reads is assembled using the local assembly methods
described in the DISCOVAR denovo publication. A selection of possible paths
through the previously unrepresented region is created. A new sequence graph
is computed by including all the edges from the previous graph and the edges
from the local assembly heuristics. This graph is the basis of the final assembly.

The number of reads in each cluster is sub-sampled to a fixed value. This is
reasonable both because it places an upper-bound on computational resources,
and because the reads are only spanning a region between two ends of a pair,
which means a region of less than 1Kbp. The number of read pairs is defaulted to
200, but this can be adjusted with the pair sample parameter. While increasing
this parameter may in some cases improve the assembly, it is computationally
expensive.

3.2.5 Optimising repeat resolution

This step cleans all artifactual paths and edges in the graph and attempts to
resolve repeats by using read-mapping information through the edges. There
are 2 different heuristics for repeat resolution which can be used in different
combinations and with different parameters;

• PullAparter: inherited from the original DISCOVAR denovo heuristics,
expands edges with 2 neighbours on each side, where there is read evi-
dence to separate the two instances of the repeat. This method has been
optimised to run faster on complex genomes but the simple heuristics
remain the same.

• PathFinder: expands loops using a combination of read support and
coverage-based heuristics, then looks for single-flow repeat regions. These
are regions where a number of small, complex connected paths, flow in a
single direction from a set of N inputs into a set of N outputs, and where
all these inputs and outputs are assumed to be unique sequence on the
assembly. Reads mapping from the input edges to the output edges is then
evaluated to score in-out combinations. If an in-out 1-to-1 combination
with correct support is found, and it is possible to reconstruct the path
through the single-flow region based on read mappings, then the whole
region is expanded and solved for each 1-to-1 pairing (see Supplementary
figure).
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The dv like mode of the contigger runs just the PullAparter, like the original
DISCOVAR. The default mode runs the PullAparter (to solve the easier cases)
and then the PathFinder.

3.2.6 Parameterisation

It is important to note that modifying parameters at each stage of the w2rap-
contigger may significantly affect runtime. If the first 60-mer graph produces
a clean, highly resolved assembly, many of the complex heuristics for cleanup
and specially for local assembly and repeat resolution won’t need to be used
to analyse the bulk of the graph. This again highlights the value of being able
to run the algorithms in a consistent manner with metrics that show when the
parameters are being set correctly.

3.3 Scaffolding

3.3.1 Preparing Nextera LMP reads

The pipeline for processing Nextera LMP reads is based on Nextclip (Leggett
et al., 2013) and is designed to recover correctly generated LMP reads from
raw sequencing reads. The Nexera protocol generates circularised constructs
containing the Nextera adapter at the junction between the two reads. However,
the adapter doesn’t necessarily occur at the end of each read. To account for
this, reads are first combined into a single sequence where they overlap using
FLASh (Magoc and Salzberg, 2011) to generate a single sequence which should
contain the Nextera adapter. This sequence is then reverse complemented to
generate the other read in the pair. Nextclip (Leggett et al., 2013) is used
to classify reads according to whether the adapter is found and where in the
read-pair it is located. This whole process is encapsulated within a single script
provided as part of the pipeline.

The K-mer Analysis Toolkit can be used to compare the LMP reads to the
PE reads to highlight sequence representation issues. A subset of the reads are
then mapped to the previously assembled contigs to check the fragment size
distribution.

3.3.2 Optimising LMP mapping and scaffolding

A bundled version of SOAPdenovo is used for scaffolding. The main parameters
at this stage are the kmer size used to map the reads and the read support to
call a link, as in the original SOAP scaffolder. A kmer size of 71 is reasonable
in most cases of complex genomes, but checking read placement stats and link
status on the output files is recommended. Finally, s scaff is used to generate
scaffolds. The output file generated at this stage gives useful information about
how the scaffolding performed.
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3.3.3 Recovering gaps and creating releases

Before scaffolding, SOAPdenovo converts gaps in contigs (Ns) to Cs and Gs so
these are converted back to Ns by mapping the contigs back to scaffolds using
the output files from SOAPdenovo. A script is provided for this as outlined in
the tutorial.

When deciding on a length cut-off for scaffolds in a final release, the K-
mer Analysis Toolkit can be used to make sure this doesn’t result in a loss of
content. The scaffolds should also be checked for contamination (such as phiX)
and Illumina adapters.

Figure 2: Correct parametrisation improves contiguity and accuracy. Contigs
generated using K=260 and the PathFinder heuristic show increased aligned
contiguity when evaluated against the TAIR10 reference. At the same time
the correct parametrisation shows a decrease in misassemblies, which indicates
improved performance from the algorithms instead of just contiguity gains by
joining less-supported links.

4 Conclusion

Our assembly method to construct contigs and scaffolds from short read Illumina
data produces high-quality assemblies in a cost-effective way, unlocking infor-
mation in complex genomes. The focus on metrics enables complete tracking of
how the datasets and algorithms are performing, which becomes particularly im-
portant for comparative studies where multiple similar genomes are assembled
from equivalent datasets. By using w2rap, performance of the whole assembly
process can be tracked to ensure reproducibility.

We have shown the effectiveness of combining the w2rap-contigger’s short-
range accuracy, based on the DISCOVAR heuristics originally designed to pre-
serve variation on the assembly datasets, with a quality focused long mate paired
sequencing method and the simple but proven heuristics of SOAPdenovo2’s scaf-
folding modules. While more expensive or specific approaches could produce
particular one-off results outmatching w2rap’s performance, these assemblies
are a good starting point for many comparative genomics projects where ro-
bustness, accuracy and price are the most important factors to consider. As
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shown by its performance on the H. sapiens dataset, w2rap also scales well with
complexity, and is already in use for even more complex genomes including the
highly complex, 17Gbp genome of hexaploid wheat.
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