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ABSTRACT 19 

Genetic interactions provide a key for interpreting the functional information contained in 20 

chemical-genetic interaction profiles. However, they have remained underutilized in this capacity 21 

across recent chemical-genetic interaction screening efforts and their ability to interpret 22 

chemical-genetic interaction profiles on a large scale has not been tested. We developed a 23 

method, which we refer to as CG-TARGET (Chemical Genetic Translation via A Reference 24 

Genetic nETwork), that integrates the data from large-scale chemical-genetic interaction screens 25 

with genetic interaction data to predict the biological processes perturbed by compounds. CG-26 

TARGET compared favorably to a standard enrichment approach across a variety of 27 

benchmarks, achieving similar performance on measures of accuracy and substantial 28 

improvement in the ability to control the false discovery rate of its predictions. We found that 29 

one-third to one-half of gene mutants in the data contribute to the highest-confidence biological 30 

process predictions and that these contributions overwhelmingly come from negative chemical-31 

genetic interactions. This method was used to prioritize over 1500 out of over 13,000 compounds 32 

for further study in a recently-completed chemical-genetic interaction screen in Saccharomyces 33 

cerevisiae, enabling the rapid functional annotation of unknown compounds to biological 34 

processes through targeted biological validations. We present here a detailed characterization of 35 
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the method and further biological validations to demonstrate the utility of genetic interactions in 36 

the interpretation of chemical-genetic interaction profiles and the effectiveness of our 37 

implementation of this concept. 38 

INTRODUCTION 39 

The ability to discover chemical compounds with desirable and/or interesting biological 40 

activity is essential to understanding the way compounds and biological systems interact. One 41 

way to characterize the biological activity of a compound in an unbiased manner is to profile its 42 

activity across a genome-wide array of genetic mutants, also known as chemical-genetic 43 

interaction screening [1]. In the resulting chemical-genetic interaction profiles, the identities of 44 

the gene mutations that confer sensitivity or resistance to a compound provide functional 45 

information regarding the actions performed by that compound inside the cell. 46 

Genetic interaction profiles provide analogous information regarding gene function, and as 47 

such can be used to interpret the functional information contained in chemical-genetic interaction 48 

profiles [2]. Specifically, shared interactions between chemical-genetic and genetic interaction 49 

profiles may implicate a particular gene or group of genes (e.g. a biological process or protein 50 

complex) as the target of a compound’s actions in the cell (Figure 1). This scheme for 51 

interpreting chemical-genetic interaction profiles does not depend on the existence of chemical-52 

genetic interaction profiles for well-characterized compounds, and thus enables the discovery of 53 

compounds with novel modes of action.  54 

Recent advances in whole-genome chemical-genetic interaction screening technology have 55 

opened the possibility of using chemical genomics as a high-throughput screening approach [3–56 

5]. This would, for example, enable functional profiling of compound bioactivity at earlier points 57 

in the drug discovery process, providing an additional means of prioritizing promising 58 

compounds (and discarding compounds with less obvious, yet undesirable activities) before 59 

investing into them large amounts of resources. However, genetic interactions remained 60 

essentially unused in these screens for the systematic interpretation of chemical-genetic 61 

interaction profiles. As such, a systematic interpretation of chemical-genetic interaction profiles 62 

using genetic interaction profiles has not been demonstrated on a large scale (1,000s to 10,000s 63 

of compounds). A study of this type would provide insights into the compatibility between 64 

chemical-genetic and genetic interaction profiles and the ability of a genetic interaction-based 65 
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method to prioritize compounds with high-confidence predictions while controlling for issues 66 

typically associated with high-throughput chemical screening. 67 

In this manuscript, we present the use of genetic interaction profiles to systematically 68 

interpret chemical-genetic interaction profiles on a large-scale. Specifically, we developed a 69 

method, called CG-TARGET (Chemical Genetic Translation via A Reference Genetic 70 

nETwork), that incorporates genetic interaction data and different sources of experimental 71 

variation to predict the biological processes perturbed by compounds. We applied this method to 72 

a high-throughput chemical-genetic interaction screen of more than 13,000 compounds in S. 73 

cerevisiae [6], using profiles from the corresponding yeast genetic interaction network [7,8] to 74 

interpret the chemical-genetic interaction profiles. CG-TARGET recapitulated known 75 

information for well-characterized compounds and showed a marked improvement in the ability 76 

to control the false discovery rate – and as a result, prioritize interesting compounds – compared 77 

to a baseline approach. We also confirmed, through a global analysis, the compatibility between 78 

chemical-genetic and genetic interaction profiles for the purpose of predicting perturbed 79 

biological processes. CG-TARGET is available, free for academic use and licensed for 80 

commercial use, at github.com/csbio/CG-TARGET. 81 

RESULTS 82 

Predicting perturbed biological processes from chemical-genetic interaction profiles 83 

When developing a method that uses genetic interaction profiles to interpret chemical-genetic 84 

interaction profiles obtained at scale, it was important to consider scenarios in which 85 

experimental artifacts or common signatures in the chemical-genetic interaction profiles could 86 

strongly influence the similarities between chemical-genetic and genetic interaction profiles, 87 

leading to biased and inaccurate process predictions. For example, common similarity measures 88 

are blind to the variance of individual gene mutants across all chemical-genetic interaction 89 

profiles. As a result, gene mutants with highly variable interaction scores in chemical-genetic 90 

interaction experiments possess the potential to drive the prediction of processes in a nonspecific 91 

manner. While this can be addressed with negative experimental controls, it is not inconceivable 92 

that certain gene mutants would respond nonspecifically only in the presence of compound, 93 

requiring a correction derived from the dataset itself. Additionally, spurious correlations 94 

introduced by normalized similarity measures on weak chemical-genetic interaction profiles 95 
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(Pearson correlation coefficient, cosine correlation) can be further amplified by the redundancy 96 

in the genetic interaction network, leading to false discoveries. 97 

We developed CG-TARGET (Chemical Genetic Translation via A Reference Genetic 98 

nETwork) to address these concerns surrounding the prediction of perturbed biological processes 99 

at scale (Figure 1). Predicting a compound’s perturbed biological processes using CG-TARGET 100 

requires three input datasets (chemical-genetic interaction profiles, genetic interaction profiles, 101 

and a mapping from the query genes in the genetic interaction profiles to biological processes) 102 

and involves four distinct steps. First, a set of resampled chemical-genetic interaction profiles is 103 

generated, each of which consists of one randomly sampled interaction score for each gene 104 

mutant across all compound treatment profiles in the chemical-genetic interaction dataset. 105 

Second, scores reflecting both the strength of each compound’s chemical-genetic interaction 106 

profile and its similarity to the profile of each gene mutant are obtained by computing a dot 107 

product between all chemical-genetic interaction profiles (comprising compound treatment, 108 

experimental control, and resampled profiles) and all L2-normalized query genetic interaction 109 

profiles. These “gene-level” prediction scores, which possess per-compound ranks equivalent to 110 

those obtained using cosine similarity but prioritize compounds with stronger profiles, are then 111 

aggregated into process predictions; the z-score and empirical p-value for each compound-112 

process prediction are obtained by mapping the gene-level prediction scores to the genes in the 113 

process of interest and comparing these scores to those from shuffled gene-level prediction 114 

scores and to distributions of the scores derived from experimental control and resampled 115 

profiles. Finally, the false discovery rates for these predictions are estimated by calculating the 116 

frequency at which experimental control and resampled profiles predict processes across a range 117 

of significance thresholds, compared to the compound treatment profiles. 118 

Application to and evaluation on large-scale chemical-genetic interaction screening 119 

data 120 

We applied CG-TARGET to the problem of predicting biological target processes from two 121 

recent large-scale chemical-genetic interaction screens in S. cerevisiae. The first screen was 122 

performed on 9850 compounds from the RIKEN Natural Product Depository [9] (the “RIKEN” 123 

screen) and the second was performed on 4116 compounds from the NCI Open Chemical 124 

Repository’s plated compound libraries, the NIH Clinical Collection, and GlaxoSmithKline’s 125 

Published Kinase Inhibitor Set (the  “NCI/NIH/GSK” screen) [10]. The number of chemical-126 
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genetic interaction profiles obtained from each screen was 8418 and 3565, respectively. In both 127 

screens, the chemical-genetic interaction profiles were determined across a diagnostic set of 128 

approximately 300 haploid gene deletion mutants. Genetic interaction profiles were obtained 129 

from a compendium of genetic interaction profiles in S. cerevisiae [7], with the query genes 130 

mapped to propagated Gene Ontology biological process terms [11,12] to define the process 131 

targets. 132 

To provide a baseline approach for benchmarking the performance of CG-TARGET on these 133 

large screens, we implemented a standard enrichment approach that tests for the enrichment of 134 

processes in each compound’s top-k gene-level prediction scores. Using experimental control 135 

and resampled profiles, we assessed the ability of the enrichment-based prediction method to 136 

control the false discovery rate at various values of k. The best-performing value of k was then 137 

used to further benchmark the accuracy of the process predictions made by CG-TARGET. 138 

CG-TARGET was successful in controlling the false discovery rate across both chemical-139 

genetic interaction screens, identifying 848 out of 8418 compounds from the RIKEN screen 140 

(10%) and 705 compounds from the NCI/NIH/GSK screen (20%) with at least one prediction 141 

that achieved false discovery rates of 25 and 27%, respectively (Table 1, Figure 2A-D). In 142 

contrast, the best-performing top-k enrichment approach (k=100) identified only 57 compounds 143 

with an equivalent false discovery rate when applied to the profiles from the RIKEN screen 144 

(Figure 2E-F). In all cases, the false discovery rates derived from resampled profiles were more 145 

conservative than those derived from experimental controls, suggesting that some sources of 146 

variance in each gene mutant’s interaction scores arise only upon treatment with compound and 147 

therefore cannot be corrected using only negative experimental controls. The compounds from 148 

the RIKEN and NCI/NIH/GSK screens with at least one prediction at or below the respective 149 

false discovery rate cutoff set for each screen will be referred to as the RIKEN and 150 

NCI/NIH/GSK “high-confidence sets,” respectively. 151 

We benchmarked the accuracy of CG-TARGET’s process predictions against a set of 35 152 

gold-standard compound-process annotations curated from the literature and observed favorable 153 

performance to that on predictions generated using the top-100 enrichment approach. More 154 

specifically, we computed the rank of each compound’s gold-standard process within its set of 155 

process predictions, and compared this rank to those obtained from randomly shuffled 156 

predictions. CG-TARGET performed slightly worse overall when comparing the ranks of the 157 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2017. ; https://doi.org/10.1101/111252doi: bioRxiv preprint 

https://doi.org/10.1101/111252
http://creativecommons.org/licenses/by-nc-nd/4.0/


gold-standard processes (12 versus 14 in the top ten, Figure 3A) and the number of compounds 158 

with significant ranks (22 versus 23, Table 2). However, only 2 out of 23 significantly-ranked 159 

gold-standard predictions made using the top-100 enrichment approach achieved a false 160 

discovery rate of 25% or less, while 16 out of 22 predictions from CG-TARGET achieved this 161 

same false discovery rate. As such, CG-TARGET discovered 8-fold more compounds with 162 

significantly-ranked gold-standard process annotations within the RIKEN high-confidence set. 163 

This result provides further evidence supporting the utility of genetic interaction profiles in the 164 

interpretation of chemical-genetic interaction profiles, while simultaneously demonstrating that 165 

the predictive power of genetic interaction profiles improved when combined with additional 166 

experimental data. 167 

In a more global benchmarking effort, we also observed that CG-TARGET improved the 168 

prioritization of process predictions when applied to simulated chemical-genetic interaction 169 

profiles. The set of simulated profiles was designed contain three compounds that target each 170 

query gene in the genetic interaction dataset; each simulated profile thus inherited the process 171 

annotations of its parent genetic interaction profile, providing a gold standard with which to 172 

evaluate their predictions. Evaluation performed on the top process prediction for each simulated 173 

compound revealed that CG-TARGET captured 15% more gold-standard annotations than did 174 

top-100 enrichment. While both methods only captured a gold-standard annotation in the top 175 

process prediction for approximately 30% of the simulated compounds, this still represents a 56-176 

fold enrichment over the background expectation of 0.00533. In addition, CG-TARGET more 177 

successfully prioritized its true positive annotations, as shown by the consistent improvement in 178 

precision over top-100 enrichment, especially at low recall values (Figure 3B). The diversity of 179 

the true positive process predictions, when mapped to a set of 17 broad functional 180 

neighborhoods, was also improved using CG-TARGET (Shannon index = 2.58 for CG-TARGET 181 

versus 2.33 for top-100 enrichment predictions), likely due to a substantial reduction in the 182 

number of compounds mapped to the “vesicle traffic” neighborhood (150 for CG-TARGET vs. 183 

367 for top-100 enrichment). 184 

In addition to benchmarking, we investigated the potential to expand the use cases of CG-185 

TARGET to the prediction of perturbed protein complexes. For protein complex prediction on 186 

the RIKEN screen data, 714 compounds were identified with at least one prediction achieving a 187 

false discovery rate of 25% or less. 603 of these 714 compounds were also identified in the high 188 
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confidence RIKEN process predictions, suggesting the potential to map prioritized process 189 

predictions to more specific, defined predictions of compound targets in the cell. For example, 190 

the top protein complex prediction for NPD1409 was “Kornberg’s mediator (SRB) complex,” 191 

which plays an important role in the initiation of transcription as well as chromatin looping 192 

[13,14]. This prediction agrees with the compound’s top process predictions from the RIKEN 193 

screen to perturb “chromosome organization,” “DNA metabolic process,” and/or “RNA 194 

polymerase II transcriptional preinitiation complex assembly,” and points to a more direct target 195 

for testing in experimental validation efforts. 196 

Insights into the compatibility of chemical-genetic and genetic interaction profiles 197 

Given previous demonstrations [2,7] and the evaluations presented here, it should be clear 198 

that the use of genetic interaction profiles to interpret chemical-genetic interaction profiles is 199 

both appropriate and useful. However, a further investigation of the inner workings of this 200 

approach was warranted to more comprehensively understand the extent to which these two 201 

types of profiles can be combined and how this affects the prediction of processes. Here we 202 

present visualizations that reveal insights into 1) the interpretation of a chemical-genetic 203 

interaction profile to predict a biological process and 2) the different ways in which a process can 204 

be predicted using chemical-genetic and genetic interaction profiles. Finally, we quantify, across 205 

the RIKEN high confidence set of compounds, the relationship between chemical-genetic 206 

interactions and their importance to the prediction of perturbed biological processes. 207 

To better understand the interpretation of chemical-genetic interaction profiles, we 208 

quantified, for every compound, the contribution of each gene mutant to the prediction of 209 

individual biological processes. For a single compound and predicted process, these “importance 210 

scores” were obtained by 1) computing the Hadamard product (elementwise multiplication) 211 

between the compound’s chemical-genetic interaction profile and each L2-normalized query 212 

genetic interaction profile mapped to the predicted process and 2) for each gene mutant, 213 

computing the mean of this product across the genetic interaction profiles. These scores can be 214 

positive, indicating agreement in the sign of chemical-genetic and genetic interactions for a 215 

particular gene mutant, or they can be negative, indicating that the interactions do not agree for 216 

that gene mutant. As such, the importance scores summarize the concordance between chemical-217 

genetic and genetic interaction profiles, conditioned on an individual compound and a perturbed 218 

process of interest. 219 
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The prediction of NPD4142, a compound from the RIKEN Natural Product Depository, to 220 

the “mRNA transport” process can be used to illustrate how the overlap between chemical-221 

genetic and genetic interactions leads to process predictions (Figure 4A). A qualitative 222 

examination revealed that, indeed, NPD4142 possesses a pattern of chemical-genetic interactions 223 

similar to the genetic interactions for the query genes annotated to mRNA transport. However, a 224 

quantitative assessment achieved more nuance in this comparison. While the POM152 deletion 225 

mutant possessed the strongest negative interaction with NPD4142, the importance scores 226 

revealed that it was not the most important gene mutant for making this prediction; instead, the 227 

deletion mutant for NUP133, which possessed a weaker chemical-genetic interaction score but 228 

more genetic interactions with the mRNA transport-annotated query genes, emerged as the most 229 

important for predicting mRNA transport. 230 

We also compared the concordance of chemical-genetic and genetic interaction profiles 231 

across multiple compounds predicted to the same process, revealing that individual processes 232 

were predicted by both homogenous and heterogeneous sets of chemical-genetic interaction 233 

profiles. For example, all predictions made to “proteasome assembly” depended almost entirely 234 

on a strong negative chemical-genetic interaction with RPN4, which was captured most clearly 235 

by the relevant importance scores (Figure 4B). This uniformity in the prediction of a process is 236 

contrasted by the diversity of profiles captured within “fungal-type cell wall organization” 237 

predictions (Figure 4C). Here, filtering on the importance scores showed that chemical-genetic 238 

interactions with four genes – GAS1, SMI1, ABP1, and DFG5 – were primarily responsible for 239 

predictions to this term, but with low agreement regarding their relative importance for each 240 

compound’s prediction. In the lattermost case, the concordance of chemical-genetic and genetic 241 

interactions was not particularly obvious, yet was sufficient to enable the prediction of a 242 

perturbed process. 243 

More globally, we found broad contribution across a large fraction of observed chemical-244 

genetic interactions – primarily negative interactions – to the prediction of perturbed processes 245 

(Figure 4D). By comparing the chemical-genetic interactions for each compound to their 246 

corresponding importance scores for that compound’s top process prediction, we observed that 247 

nearly one-third (5398 / 16464) of chemical-genetic interactions contributed to top process 248 

predictions, the fraction of which increased to nearly one-half (5087 / 10281) when considering 249 

only negative interactions. While positive chemical-genetic interactions were much less 250 
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frequently observed overall (and only 7% positively contributed to a top process prediction), they 251 

were 3.5 times more likely to contribute negatively to a process prediction than were negative 252 

interactions (1.47% vs. 0.42%). Overall, 199 gene mutants (72%) contributed to at least one top 253 

process prediction, while half (143) contributed to at least five predictions (importance score > 254 

0.1). Based on a more stringent threshold on importance scores (> 1.0), 65 gene mutants (23% of 255 

mutants) were observed to be very strong contributors to certain process predictions, with 17 of 256 

these contributing strongly to the top process prediction of at least five compounds. While some 257 

gene mutants certainly contributed disproportionately to a subset of predictions, the broad 258 

majority of predictions required contributions from a much larger fraction of gene mutants. 259 

Experimental validation of compound-process predictions 260 

Phenotypic analysis of cell cycle progression 261 

Several compounds from the RIKEN dataset were predicted to perturb the process related ot 262 

the cell cycle. We chose to test 19 of these compounds, 14 of which had high-confidence to the 263 

“spindle assembly checkpoint” process active in the M phase of the cell cycle, to determine if 264 

our predictions captured the biological activity of these compounds. Indeed, we observed that 7 265 

of the 19 compounds induced a cell cycle phenotype, with 6 of the 14 compounds annotated to 266 

spindle assembly checkpoint inducing abnormally large buds on cells, changes in the budding 267 

index of cells, and increases in cellular DNA content, indicative of arrest in G2/M phase (Figure 268 

5A-C). These phenotypes were not observed when performing the same experiments on a set of 269 

10 active compounds from the high-confidence set whose predictions were to processes 270 

unrelated to the cell cycle. This difference in the rate of validation between predicted active 271 

compounds and negative controls (6 / 14 vs. 0 / 10) was statistically significant (p < 0.03, 272 

proportion test). Two of the selected compounds were predicted to perturb “cell cycle phase,” 273 

one of which induced phenotypes consistent with G1 arrest (Fig 5A-C). This provided one 274 

demonstration of CG-TARGET’s ability to prioritize compounds that perturb a particular 275 

function in the cell. 276 

Inhibition of tubulin polymerization 277 

Compounds that disrupt microtubules are useful for studying cell organization and division, 278 

and remain promising candidates as antitumor agents [15–17]. We therefore chose to 279 

experimentally validate our predictions in a way that might identify compounds that possess such 280 
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activities. All compounds with the strongest predictions (FDR = 0%) to “tubulin complex 281 

assembly” were selected for biochemical validation in an in vitro tubulin polymerization assay 282 

(Figure 5D). Similar to the previous validation, a negative control set of compounds was selected 283 

to contain active compounds (process predictions with FDR ≤ 25%) whose predictions were not 284 

related to microtubules or related processes. We observed that the novel compound NPD2784 285 

strongly inhibited tubulin polymerization nearly as well as the drug nocodazole and more 286 

strongly than the microtubule probe benomyl. In addition, the entire set of compounds predicted 287 

to perturb tubulin complex assembly showed significantly increased inhibition of tubulin 288 

polymerization when compared to the negative control compounds (p < 0.005, Wilcoxon 289 

ranksum test). These confirmatory results showed the translation of our predictions to a specific 290 

biochemical validation, even in the context of a different species. 291 

DISCUSSION 292 

The scaling of chemical-genetic interaction screens from tens or hundreds of compounds to 293 

tens of thousands of compounds has provided the opportunity, and the necessity, to more 294 

comprehensively characterize appropriate methods for interpreting the interaction profiles and 295 

prioritizing high-confidence compounds. We developed a method, CG-TARGET, to address this 296 

need and used it to predict perturbed biological processes for more than 13,000 interaction 297 

profiles from a recent high-throughput chemical-genetic interaction screen [6]. CG-TARGET 298 

demonstrated the ability to recapitulate known compound function while controlling the false 299 

discovery rate, prioritizing 1522 compounds for further study. Further investigation of the 300 

profiles from these high-confidence compounds revealed broad compatibility between chemical-301 

genetic and genetic interaction profiles. In addition to these findings, the predictions made using 302 

CG-TARGET were experimentally validated on a large scale for 67 compounds in an orthogonal 303 

cell cycle assay and revealed insights into the distribution of functions perturbed by compounds 304 

in large compound libraries [6]. 305 

In high-throughput chemical screens, it is important to prioritize the compounds most likely 306 

to demonstrate desired biological activity in further studies. While CG-TARGET and a baseline 307 

approach performed similarly on the task of ranking gold-standard compound-process 308 

annotations, CG-TARGET was 8 times better at prioritizing these compounds as high-confidence 309 

predictions. Surprisingly, CG-TARGET outperformed the same baseline method when 310 

predicting and prioritizing perturbed processes for simulated chemical-genetic interaction 311 
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profiles derived from genetic interaction profiles across the genome, providing evidence for its 312 

value in discovering compounds with modes of action not previously characterized in the 313 

literature. This is particularly important, as our gold standard set of compound-process 314 

annotations, consisting of 35 compounds across 17 biological processes (4 of which are DNA-315 

related), does not enable prediction across the range of biological processes present in the cell. 316 

Genetic interactions thus provide the most comprehensive reference for interpreting chemical-317 

genetic interaction profiles in an unbiased, genome-wide manner.  318 

While we demonstrated the ability to predict perturbed processes for compounds and 319 

prioritize the highest-confidence predictions, many further steps are required to identify lead 320 

compounds and ultimately develop molecular probes or even pharmaceutical agents. Perturbing a 321 

biological process does not necessarily require perturbing a specific protein target, and as such, 322 

further refinements to our methods are needed to prioritize the compounds most likely to perturb 323 

a small number of defined targets in the cell. Different modes of chemical-genetic interaction 324 

screening can provide support in this endeavor, as the profiling of heterozygous diploid strains 325 

provides evidence for the direct, essential cellular target(s) of a compound [1,4]. Regardless of 326 

these limitations in predicting defined targets, information about the processes perturbed by an 327 

entire library of would be useful in selecting the compounds most amenable to activity 328 

optimization and off-target effect minimization in the development of a pharmaceutical agent or 329 

molecular probe. 330 

Moving forward, this work supports the idea of performing both genetic and chemical-331 

genetic interaction screens in other species for which obtaining functional information on 332 

compounds would be useful. For example, genome-wide deletion collections have been 333 

developed for Escherichia coli [18] and Schizosaccharymyces pombe [19] and used to perform 334 

chemical-genetic interaction screens [20,21] as well as genetic interaction mapping [22–25]. 335 

Such efforts are even underway in human cell lines, enabled by genome-wide CRISPR knockout 336 

screens [26–29]. Furthermore, future efforts to interpret chemical-genetic interaction profiles in a 337 

new species need not wait for the completion of an all-by-all genetic interaction network, as this 338 

work highlights the ability of a diagnostic set of gene mutants to capture functional information 339 

and predict perturbed biological processes. From the discovery of urgently-needed antibacterial 340 

or antifungal agents, to the treatment of orphan diseases or a better understanding of drug and 341 

chemical toxicity, the combination of chemical-genetic and genetic interactions in a high-342 
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throughput format, with appropriate analysis tools, offers a means to achieve these goals via the 343 

discovery of new compounds with previously uncharacterized mechanisms of action. 344 

MATERIALS AND METHODS 345 

Datasets 346 

Chemical-genetic interaction data 347 

Chemical-genetic interaction profiles were obtained from a recent study [6], in which nearly 348 

14,000 compounds were screened for chemical-genetic interactions across approximately 300 349 

haploid yeast gene deletion strains. Each profile contains z-scores that reflect the deviation of 350 

each strain’s observed fitness from its expected fitness in the presence of compound. The 351 

chemical-genetic interaction profiles were obtained in two batches and divided as such into: 1) 352 

the “RIKEN” dataset, which contains chemical-genetic interaction profiles across 289 deletion 353 

strains for 8418 compounds from the RIKEN Natural Product Depository [9] and 5724 negative 354 

experimental controls (solvent control, DMSO) ; and 2) the “NCI/NIH/GSK” dataset, which 355 

contains chemical-genetic interactions across 282 deletion strains for 3565 compounds from the 356 

NCI Open Chemical Repository, the NIH Clinical Collection, and the GSK kinase inhibitor 357 

collection [10], as well as 2128 negative experimental control profiles. The solvent control 358 

profiles consisted of biological and technical replicate profiles. 359 

Genetic interaction data 360 

The genetic interaction dataset consisted of quantitative fitness observations for the double 361 

mutants obtained upon crossing between 1505 high-signal query gene mutants into an array of 362 

3827 array gene mutants, obtained from a recently assembled S. cerevisiae genetic interaction 363 

map [7,8]. These observations are represented as epsilon scores, which quantify the difference 364 

between each double mutant’s observed and its expected fitness values and are analogous to the 365 

chemical-genetic interaction z-scores. The procedure for selecting the 1505 high-signal query 366 

genes out of the larger pool of 4382 is described in [6]. Briefly, each query profile was required 367 

to possess at least 40 significant genetic interactions, a sum of cosine similarity scores with all 368 

other query profiles greater than 2, and a sum of dot products with all other query profiles greater 369 

than 2. When comparing with chemical-genetic interactions, the genetic interaction dataset was 370 

filtered to contain only array strains present in the chemical-genetic interaction datasets. 371 
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GO Biological Processes and protein complexes 372 

A subset of terms from the “biological process” ontology within the Gene Ontology 373 

annotations [12] were used as the processes. Query genes from the S. cerevisiae genetic 374 

interaction dataset were mapped to genes to biological process terms using annotations from the 375 

Saccharomyces cerevisiae Genome Database [11]. Both gene ontology and S. cerevisiae 376 

annotations were downloaded from their respective databases via Bioconductor in R [30]. Terms 377 

were propagated using “is_a” relationships, such that all child terms were annotated to their 378 

parent terms as well. The final set of processes consisted of the terms with 4 – 200 gene 379 

annotations from the set of 1505 high-signal query genes in the genetic interaction dataset. 380 

Protein complex annotations were obtained from [8]. Complexes with 3 or more genes 381 

annotated to them were used as the input biological processes for CG-TARGET-based protein 382 

complex predictions. 383 

Gold standard compound-process annotations 384 

Biological processes were assigned to 35 primarily antifungal compounds with chemical-385 

genetic interaction profiles in the RIKEN dataset, based on known information about their 386 

mechanisms of action. Process terms were selected to be specific to the compound’s mechanisms 387 

of action where applicable. 388 

Mapping biological processes to functional neighborhoods 389 

We expanded an initial standard of 488 Gene Ontology biological process terms annotated to 390 

17 functional neighborhoods [31] using a k-nearest-neighbors approach. For each previously 391 

unannotated process in our set of processes, we assigned similarity scores for the 3 most similar 392 

(Jaccard overlap on gene annotations) processes in the process-neighborhood standard to their 393 

respective functional neighborhoods and annotated the new process to the functional 394 

neighborhood with the highest sum of similarity scores. In the case of a tie, the process was 395 

annotated to both functional neighborhoods. 396 

Predicting the biological processes perturbed by compounds 397 

Our method to predict biological processes perturbed by compounds is described in the 398 

recent study from which the chemical-genetic interaction profiles were obtained [6]. We describe 399 

here the modifications to this approach to implement the top-k enrichment method for 400 

benchmarking. 401 
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Given a set of gene-level similarity scores for each compound and a set of gene-process 402 

annotations, the enrichment of each process in the set of the top-k most similar genes for each 403 

compound was computed. This is reflected in an enrichment factor (the fraction of the k selected 404 

genes annotated to a particular process divided by the fraction of total genes annotated to that 405 

process) and a p-value obtained using a hypergeometric test. These enrichment factors and p-406 

values were substituted in place of the z-scores and p-values obtained using CG-TARGET for 407 

subsequent analyses. 408 

Computational evaluation of process predictions 409 

Performance on gold-standard compounds 410 

The predicted perturbed processes for each of the gold standard compounds were sorted, first 411 

by their p-value (ascending) and then by their z-score (for CG-TARGET, descending) or 412 

enrichment factor (top-100 enrichment, descending), and the rank of each of their gold-standard 413 

process annotations was recorded. To assess the significance of each rank, each pair of p-value 414 

and z-score was assigned to a new process, the lists re-ordered, and the ranks of each 415 

compound’s target process re-computed. The empirical p-value for each gold-standard 416 

compound-process pair was computed as the number of times the rank from the shuffled 417 

processes achieved the same or better rank as the observed rank. 418 

Performance on genetic interaction profiles 419 

We generated a set of simulated chemical-genetic interaction profiles derived from the 420 

genetic interaction profiles [6]. Each simulated chemical-genetic interaction profile was a query 421 

genetic interaction profile augmented with noise sampled from a Gaussian distribution with a 422 

mean of 0 and a variance for each array gene twice that of the same array gene in the genetic 423 

interaction dataset. Three simulated profiles were generated based on each query gene, resulting 424 

in 4515 total profiles. Because each simulated chemical-genetic interaction profile was derived 425 

from a query genetic interaction profile, it inherited the gold standard process annotations from 426 

its parent genetic interaction profile in subsequent benchmarking efforts. 427 

We then used CG-TARGET and the top-100 enrichment method to predict perturbed 428 

processes for this set of 4515 simulated chemicals x 289 deletion mutants. For each simulated 429 

chemical, its top process prediction was compared to the set of inherited gold-standard process 430 

annotations, counting as a true positive if the top prediction matched an existing annotation and a 431 
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false positive if it did not. Precision-recall curves were then generated by sorting the list of each 432 

simulated chemical’s top process predictions (p-value ascending, z-score or enrichment factor 433 

descending) and computing the precision (true positives / (true positives + false positives)) and 434 

recall (true positives) at each point in this list. 435 

The set of true positive process predictions from both methods was mapped to functional 436 

neighborhoods via the expanded process-neighborhood mapping (“Mapping biological processes 437 

to functional neighborhoods”). The proportion of processes mapped to each neighborhood was 438 

used to compute diversity via Shannon Index. 439 

Analysis of process prediction drivers in chemical-genetic interaction data 440 

Given a compound and a predicted process, a profile of “importance scores” describes the 441 

contribution of each gene mutant that compound’s process prediction. To obtain this score, a 442 

Hadamard product (elementwise multiplication) is first computed between the compound’s 443 

genetic interaction profile and each L2-normalized genetic interaction profile for which the dot 444 

product between them is 2 or greater and the genetic interaction profile is annotated to the 445 

process of interest. The final importance profile consists of the mean of each gene’s elementwise 446 

products across all selected genetic interaction profiles. 447 

Experimental validation of process predictions 448 

Phenotypic assessment of cell cycle 449 

To examine the effect of compounds on arresting cells in G2/M phase, we looked for 450 

differences in budding index and cell DNA content between compounds predicted to perturb the 451 

cell cycle versus negative control compounds. Nineteen compounds with high-confidence 452 

predictions to cell cycle-related biological processes, 14 of them to “spindle assembly 453 

checkpoint” were selected for validation, while ten compounds with predictions of false 454 

discovery rate ≤ 25% to processes not mapped to the functional neighborhoods of “Cell Cycle 455 

Signaling and Progression” and “Mitosis and Chromosome Segregation” (see “Mapping 456 

biological processes to functional neighborhoods”) were selected as bioactive negative controls. 457 

Two compounds predicted to perturb “cell cycle phase” were also tested in these experiments. 458 

All compounds were tested at a concentration of 10 µg/mL, which was also the concentration 459 

used to obtain their chemical-genetic interaction profiles [6]. 460 
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To quantify budding index, logarithmically-growing pdr1∆pdr3∆snq2∆ cells were 461 

transferred to fresh galactose-containing medium (YPGal) containing compounds and incubated 462 

at 250C for 4 h. The budding status of at least 200 cells was visually determined under the 463 

microscope. The percentage of the budded cells in no compound or compound-treated cells was 464 

counted. 465 

For flow cytometry analysis, the pdr1∆pdr3∆snq2∆ cells were grown in YPGal media in the 466 

presence or absence of a compound until log phase and then fixed in 70% ethanol for 1 h at 467 

250C. Cells were collected by centrifugation, treated with RNase A solution (0.25 mg/mL in 468 

50 mM Tris pH7.5) for 1.5 h, and 20 µl of 20 mg/ml proteinase K further incubated at 500C for 469 

1h. Samples were then stained with propidium iodide, briefly sonicated, and measured using 470 

FACSCalibur ver 2.0 (Becton Dickinson, CA, USA). 471 

The proportions of predicted active compounds and negative controls with positive 472 

phenotypic results were compared using the prop.test function in R to assess significance. 473 

Tubulin polymerization assay and analysis 474 

We performed in vitro tubulin polymerization assays using the Cytoskeleton fluorescent-475 

based porcine tubulin polymerization assay (BK011P) following manufacturer specifications. 476 

We tested the compounds at a concentration of 10 µg/ml, which was identical to the 477 

concentration at which they were screened to generate their chemical-genetic interaction profiles. 478 

Nine out of the 10 compounds predicted to perturb “tubulin complex assembly” with an 479 

estimated false discovery rate of 0% were selected for testing in the tubulin polymerization 480 

assay. Twelve compounds with predictions of false discovery rate ≤ 25% to processes not 481 

mapped to the “Mitosis and Chromosome Segregation” functional neighborhood were selected 482 

as bioactive negative controls. 483 

We used the Vmax of tubulin polymerization between the tubulin-predicted compounds and 484 

the negative controls to determine if the tubulin-predicted compounds inhibited polymerization 485 

to a greater degree than the controls. Vmax for each compound’s fluorescence time-course was 486 

calculated as the maximum mean change in fluorescence across 8 consecutive time points. Vmax 487 

values were then compared using a Wilcoxon rank-sum test to determine the significance of 488 

polymerization inhibition increases caused by the compounds predicted to perturb tubulin 489 

complex assembly. 490 

 491 
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 584 

FIGURE LEGENDS 585 

Figure 1. Overview of genetic interaction-based interpretation of chemical-genetic 586 
interactions on a large scale. Chemical-genetic interaction profiles, obtained by measuring the 587 
sensitivity or resistance of a library of gene mutants to a particular compound, are compared 588 
against genetic interaction profiles consisting of double mutant interaction scores. The resulting 589 
similarities are aggregated at the level of biological processes to predict the process(es) perturbed 590 
by the compound. Better agreement between chemical-genetic and genetic interaction profiles 591 
leads to stronger process predictions. 592 
 593 
Figure 2. Rate of compound discovery and control of the false discovery rate for the 594 
prediction of biological processes from chemical-genetic interaction profiles. Biological 595 
processes were predicted for compounds, negative controls (DMSO), and resampled compound 596 
profiles from the RIKEN and NCI/NIH/GSK datasets. (A,C,E) The number of compounds, 597 
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experimental controls, and resampled compound profiles discovered across different significance 598 
thresholds. (B,D,F) The respective translation of panels A, C, E into estimates of the false 599 
discovery rate of biological process predictions. (A,B) Estimation of false discovery rate for 600 
predictions using CG-TARGET on the RIKEN dataset. (C,D) Same as (A,B), but for the 601 
NCI/NIH/GSK dataset. (E,F) Same as (A,B), but for predictions made using the top-100 602 
enrichment-based process prediction method on the RIKEN data. 603 
 604 
Figure 3. Performance of biological process prediction for well-characterized and 605 
simulated compounds. (A) Biological processes were predicted for compounds in the RIKEN 606 
dataset using both CG-TARGET and the top-100 enrichment method. For each of 35 well-607 
characterized compounds in the RIKEN dataset with gold-standard biological process 608 
annotations, we determined the rank of its gold-standard process within its list of predictions. 609 
The number of compounds for which a rank (or better) was achieved is plotted for each process 610 
prediction method. (B) Biological processes were also predicted using both prediction methods 611 
for a set of 4500 simulated compounds, each of which was designed to target one query gene in 612 
the genetic interaction network. As such, each simulated compound inherited gold-standard 613 
process annotations from its target gene, and the ability to recapitulate gold-standard annotations 614 
within the set of rank 1 predictions was assessed using precision and recall measures. 615 
 616 
Figure 4. Detailed analysis of the contribution of individual gene mutants to biological 617 
process predictions. (A) Schematic showing prediction of the “mRNA transport” process for 618 
NPD4142. An abbreviated chemical-genetic interaction profile for NPD4142 is shown, aligned 619 
with the corresponding array genes from the genetic interaction data and scores that reflect the 620 
importance of each of these gene mutants in making the mRNA transport prediction. Query 621 
genes were selected from the set of genes mapped to mRNA transport and were sorted from left 622 
to right in order of increasing similarity to NPD4142 (gene-level prediction score ≥ 2). Array 623 
genes were included if they possessed a chemical-genetic interaction score < –2.5 or variance > 624 
0.02 across the selected query genes. Compounds are sorted from left to right in order of 625 
decreasing process prediction strength. (B) Schematic showing the prediction of “proteasome 626 
assembly” for several compounds. Query genes (columns) were selected from the set of genes 627 
mapped to proteasome assembly and sorted from left to right in order of increasing average 628 
similarity with the compounds predicted to “proteasome assembly” (gene-level prediction score 629 
≥ 2). Array genes were included if they possessed a mean chemical-genetic interaction score < –630 
2.5 or variance > 0.02 across the selected query genes in the genetic interaction data. Compounds 631 
are sorted from left to right in order of decreasing process prediction strength. Importance scores, 632 
as in (A), reflect the importance of each strain for each compound’s prediction to proteasome 633 
assembly. (C) same as (B), but for the “fungal-type cell wall organization” process. (D) Global 634 
characterization of the relationship between chemical-genetic interactions and their importance 635 
to process predictions for the RIKEN dataset. Each point compares the interaction score between 636 
one gene mutant and one compound to the importance of that gene mutant in predicting the top 637 
biological process for that compound. Black points represent gene-compound pairs that possess 638 
chemical-genetic interactions (z-score ≥ ± 2.5) and contribute nontrivially (importance score ≥ ± 639 
0.1) to the compound’s top process prediction. Data for predictions made with high confidence 640 
(FDR ≤ 25%) were included. 641 
 642 
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Figure 5. In vivo and in vitro experimental validations of biological process predictions. 643 
(A,B,C) Phenotypic validation of cell cycle-related predictions, performed on drug-644 
hypersensitive yeast treated with solvent control (DMSO) or compounds predicted to perturb the 645 
cell cycle. (A) Differential interference contrast microscopy (DIC) and fluorescence upon DAPI 646 
staining showing bud size and DNA localization, respectively, after compound treatment. (B) 647 
FACS analysis of cell populations in different cell cycle phases at 0h, 2h, and 4h after compound 648 
treatment. The green curve overlay represents the estimated cell population in G1, S and G2/M 649 
phases. (C) Budding index percentages induced by treatment with compound or solvent control. 650 
(D) In vitro inhibition of tubulin polymerization by compounds predicted to perturb “tubulin 651 
complex assembly” (red) compared to negative control compounds (blue). Vmax values 652 
reflecting the maximum rate of tubulin polymerization for each compound and negative control 653 
are plotted. Assay positive and negative control compounds are colored grey. A Wilcoxon rank-654 
sum test was used to assess the significance of the difference in Vmax between the predicted 655 
active compounds and the negative controls. 656 
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Table 1. Comparison of number of compounds discovered at selected false discovery rate thresholds for CG-
TARGET vs. the best-performing enrichment method (top 100 gene target candidates). The CG-TARGET method 
for predicting chemical-process targets was applied to two large-scale chemical-genetic interaction screens, one of 
compounds from the RIKEN Natural Product Depository (RIKEN) and the other consisting of 6 chemical compound 
collections from the National Cancer Institute, National Institutes of Health, and GlaxoSmithKline (NCI/NIH/GSK). 

Dataset     RIKEN     NCI/NIH/GSK 
Prediction 

method     top-100 enrichment     CG-TARGET 

FDR cutoff 
    p-value 

number of 
compounds     p-value 

number of 
compounds     p-value 

number of 
compounds 

0.00     7.4E-32 13     0.00E+00 586     0.00E+00 352 

0.05     9.3E-30 26     2.00E-05 610     4.00E-05 405 

0.10     5.2E-29 30     8.00E-05 649     1.60E-04 494 

0.25*     3.5E-25 57     2.80E-04 848     4.70E-04 705 

*This cutoff is 0.27 for the NCI/NIH/GSK dataset 
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Table 2. Evaluation against literature-derived, gold standard compound-process annotations. The target process rank 
was determined by its position in the list of all process predictions for each gold standard compound, with the 
significance computed empirically by shuffling the processes and re-computing the rank (bold p-values indicate 
significance, p < 0.05). Grey boxes indicate cases in which the false discovery rate of the gold standard compound-
process prediction was less than 25%. The “effective rank” represents the rank of the process prediction after 
considering its similarity to processes predicted with higher confidence. 

        top-100 enrichment     CG-TARGET 

Chemical Target GO process     

Target 
process 

rank 
Rank 

significance 
Effective 

rank     

Target 
process 

rank 
Rank 

significance 
Effective 

rank 

Aclacinomycin A  DNA conformation change 
(GO:0071103)     11 0.0076 1     1 6.00E-04 1 

Caffeine TOR signaling cascade 
(GO:0031929)     16 0.0113 4     1 6.00E-04 1 

Mycophenolic 
acid 

DNA metabolic process 
(GO:0006259)     1 6.00E-04 1     1 6.00E-04 1 

Tunicamycin glycosylation (GO:0070085) 
    4 0.004 2     1 6.00E-04 1 

Benomyl microtubule-based process 
(GO:0007017)     2 0.0015 1     2 0.0021 2 

Nocodazole microtubule-based process 
(GO:0007017)     16 0.0099 4     2 0.0021 2 

Bortezomib protein catabolic process 
(GO:0030163)     4 0.0033 1     3 0.0025 1 

MMS DNA repair (GO:0006281) 
    2 0.0015 1     3 0.0025 1 

Hedamycin DNA repair (GO:0006281) 
    3 0.0022 1     4 0.0034 1 

Tyrocidine B cell wall organization or 
biogenesis (GO:0071554)     24 0.0165 5     5 0.0035 1 

Haloperidol steroid metabolic process 
(GO:0008202)     13 0.0097 2     5 0.0043 2 

Oligomycin A response to pH 
(GO:0009268)     3 0.0022 2     9 0.0045 2 

Latrunculin B cytoskeleton organization 
(GO:0007010)     37 0.0243 2     11 0.0083 1 

Mitomycin C DNA replication 
(GO:0006260)     3 0.0022 1     15 0.0093 4 

Camptothecin DNA conformation change 
(GO:0071103)     274 0.181 1     16 0.0142 4 

Furazolidone DNA replication 
(GO:0006260)     7 0.0054 1     20 0.014 4 

FK228 chromatin organization 
(GO:0006325)     2 0.0015 1     23 0.0168 2 

Trichostatin A chromatin organization 
(GO:0006325)     5 0.003 2     23 0.0168 3 

5-Fluorocytosine RNA biosynthetic process 
(GO:0032774)     2 0.0015 2     27 0.0188 2 

Hydroxyurea DNA replication 
(GO:0006260)     76 0.0478 2     29 0.02 6 

Acriflavine  DNA metabolic process 
(GO:0006259)     1 6.00E-04 1     30 0.0214 1 

Podophyllotoxin microtubule-based process 
(GO:0007017)     149 0.0965 8     53 0.0401 6 

Daunorubicin DNA replication 
(GO:0006260)     1245 0.8145 139     70 0.0551 21 
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Fluconazole steroid metabolic process 
(GO:0008202)     70 0.0481 6     114 0.0877 12 

Cisplatin DNA replication 
(GO:0006260)     34 0.0208 1     134 0.1025 23 

Rapamycin TOR signaling cascade 
(GO:0031929)     790 0.5843 7     156 0.1164 8 

Nigericin Golgi vesicle transport 
(GO:0048193)     2 0.0015 1     157 0.1226 13 

Itraconazole steroid metabolic process 
(GO:0008202)     122 0.08 18     234 0.1748 29 

Gramicidin S cell wall organization or 
biogenesis (GO:0071554)     75 0.0506 11     286 0.2142 39 

Micafungin cell wall organization or 
biogenesis (GO:0071554)     132 0.0891 21     495 0.3809 47 

Brefeldin A 
ER to Golgi vesicle-
mediated transport 
(GO:0006888)     1452 0.9541 196     565 0.4198 32 

Calcofluor White cell wall organization or 
biogenesis (GO:0071554)     1498 0.9815 177     624 0.4577 90 

Blasticidin S translation (GO:0006412) 
    1519 0.9962 258     772 0.5742 57 

Griseofulvin microtubule-based process 
(GO:0007017)     1313 0.8642 244     1291 0.9723 227 

Polyoxin D cell wall organization or 
biogenesis (GO:0071554)     1490 0.976 127     1302 0.9773 225 

Number with significant rank    23     22  
  

Number with significant rank and 
prediction FDR <= 25%       2         16   
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