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Abstract 

Models of hallucinations across disorders emphasise an imbalance between sensory input and 

top-down influences over perception. However, the psychological and mechanistic correlates 

of this imbalance remain underspecified. Visual hallucinations in Parkinson’s disease (PD) 

are associated with impairments in lower level visual processes and attention, accompanied 

by over activity and connectivity in higher-order association brain networks. PD therefore 

provides an attractive framework to explore the relative contributions of bottom-up versus 

top-down disturbances in hallucinations. Here, we characterised sensory processing in PD 

patients with and without visual hallucinations, and in healthy controls, by fitting a 

hierarchical drift diffusion model (hDDM) to an attentional task. The hDDM uses Bayesian 

estimates to decompose reaction time and response output into parameters reflecting drift 

rates of evidence accumulation, decision thresholds and non-decision time. We observed 

slower drift rates in PD patients with hallucinations, which were insensitive to changes in 

task demand. In contrast, wider decision boundaries and shorter non-decision times relative to 

controls were found in PD regardless of hallucinator status. Inefficient and less flexible 

sensory evidence accumulation emerge as unique features of PD hallucinators. We integrate 

these results with current models of hallucinations, suggesting that slow and inefficient 

sensory input in PD is less informative, and may therefore be down-weighted leading to an 

over reliance on top-down influences. Our findings provide a novel computational framework 

to better specify the impairments in dynamic sensory processing that are a risk factor for 

visual hallucinations.  
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Visual hallucinations are common in Parkinson’s disease (PD), occurring in over 30% of 

newly diagnosed and early-stage patients, and increasing to upwards of 70% by the late 

stages of the disease (Holroyd et al., 2001, Hely et al., 2008, Pagonabarraga et al., 2016).  

But despite their prevalence, visual hallucinations remain poorly understood and treatment 

options are limited (ffytche et al., 2017). Continued characterisation of the psychological and 

mechanistic correlates of visual hallucinations in PD will be crucial to inform therapeutic 

advances.   

 

Proposed explanatory models for visual hallucinations in PD emphasise a state of reduced 

sensory input, where the ongoing perceptual process is vulnerable to influence from 

internally generated imagery (Hobson et al., 2000, Collerton et al., 2005, Diederich et al., 

2005, Shine et al., 2014). This is in keeping with a transdiagnostic framework, where 

hallucinations arise when the balance between sensory input and top-town influence over 

perception is disrupted, such that sensory information is reduced or not properly integrated 

and there is a predominance of top-down influence (Friston, 2005, Fletcher and Frith, 2009, 

Adams et al., 2013, Powers et al., 2016, O'Callaghan et al., 2017).  

 

In PD, sensory input is affected by dopaminergic retinal changes and impairments in lower 

level visual processes and attention – all of which can be more pronounced in patients with 

hallucinations (Weil et al., 2016). However, hallucinations can also occur in patients where 

ophthalmological measures and performances on lower level perceptual tasks are equivalent 

to non-hallucinating patients (Gallagher et al., 2011). A possibility is that lower level sensory 

impairment and reduced attention confer risk factors for visual hallucinations in PD, but 

failures in the dynamic integration of visual input and attention trigger their occurrence 

(Collerton et al., 2005, Diederich et al., 2005). Here, we aimed to investigate the dynamic 

processes underlying visual perception in PD hallucinators by applying a drift diffusion 

model (DDM) to an attentional task.         

 

DDMs, like other models of perceptual decision-making, are based on the premise that 

reaction time and response output can be decomposed into parameters reflecting the latent 

cognitive processes driving task performance (Mulder et al., 2014). The DDM is particularly 

relevant to assessing sensory information processing in PD hallucinators, as it quantifies 

information extracted from a stimulus (drift rate), the evidence needed to make a decision 

(boundary separation), and components related to stimulus encoding and response output 

(non-decision time) (Voss et al., 2004, Ratcliff and McKoon, 2008). In this study, we applied 

a Bayesian hierarchical version of the DDM, which is robust in the context of low trial 
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numbers (Wiecki et al., 2013, Cavanagh et al., 2014). This makes the task suitable for 

clinical contexts where task duration is necessarily limited, and it has been successfully fitted 

to data from PD patients in previous studies (Cavanagh et al., 2011, Herz et al., 2016b, Zhang 

et al., 2016). We assessed participants on the attentional networks task (Fan et al., 2002), 

which allowed us to measure perceptual decision making under conditions with different 

levels of difficulty as determined by perceptual conflict in the stimuli (neutral and congruent 

conditions vs. incongruent condition). We predicted that parameters reflecting the integration 

of sensory evidence in the decision making process, i.e., the drift rate or boundary separation, 

would be impaired in hallucinators relative to non-hallucinators, but that their non-decision 

components would be similar. We also predicted that controls and non-hallucinators would 

modulate their drift rate and boundary separation in response to the different levels of 

perpetual conflict, but that hallucinators would not show the same level of flexibility in 

response to task demands.                   

 

Methods and Materials  

Case selection  

A total of 50 patients were recruited from the Parkinson’s disease research clinic at the Brain 

and Mind Centre, University of Sydney, Australia. Patients were identified as hallucinators if 

they self-reported visual hallucinatory phenomena and scored ≥1 on question two of the 

MDS-UPDRS (i.e., over the past week have you seen, heard, smelled or felt things that were 

not really there? If yes, examiner asks the patient or caregiver to elaborate and probes for 

information) (Goetz et al., 2008). This resulted in a group of 24 hallucinators (VH) and 26 

non-hallucinators (nonVH). Four patients from the VH group and 1 from the nonVH group 

were excluded from analysis due to excessive missed responses on the experimental task, 

leaving a final cohort of 20 hallucinators and 25 non-hallucinators. A proportion of these 

patients were included in a previous study involving a behavioural investigation of the 

attentional networks task (Hall et al., 2016). Twelve aged-matched controls were recruited 

from a volunteer panel. 

 

All patients satisfied the United Kingdom Parkinson’s Disease Society Brain Bank criteria 

and were not demented (Martinez-Martin et al., 2011). Patients were assessed on the Hoehn 

and Yahr Scale and the motor section of the Unified Parkinson’s Disease Rating Scale 

(UPDRS-III). The Mini-mental state examination (MMSE) and Montreal Cognitive 

Assessment (MoCA) were administered as measures of general cognition. Clinical 

assessments and the experimental task were performed with patients in the ON state having 

taken their regular dopaminergic medication, and dopaminergic dose equivalence scores were 
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calculated. No patients in the cohort were taking antipsychotic medication or cholinesterase 

inhibitors. Control participants were screened for a history of neurological or psychiatric 

disorders. Patients and controls were matched for age. The study was approved by the local 

ethics committees and all participants provided informed consent in accordance with the 

Declaration of Helsinki.  

 

Attentional network task (ANT) 

We administered a shortened version of the ANT (Fan et al., 2002), which requires 

participants to determine if a central arrow points left or right. Central arrows are flanked by 

flat lines (neutral condition), arrows facing the same direction (congruent condition), or 

arrows facing a mixture of directions (incongruent condition) (See figure 1, Panel a). The 

perceptual conflict in the incongruent condition is designed to place a greater demand on 

attentional processes, relative to the congruent and neutral conditions. The ANT also contains 

spatial and warning cues within the three conditions to evaluate alerting and orienting, but 

these were not analysed in the current study. A total of 96 trials were administered (32 from 

each condition); target stimuli were displayed for a maximum of 1700 msec and responses for 

left and right were made using the z and m keys on a standard keyboard.  
 

Figure 1   

Title – Attentional networks task conditions and drift diffusion model 

 

 

 

 

 

 

 

 
 

 

 

 

 

Legend – Panel a) The three conditions in the attentional networks task. Panel b) Example of drift diffusion 

trajectories. Evidence is noisily accumulated toward a left or right response (blue and red panels), which are 

separated by the boundary threshold (a). The average evidence accumulation is denoted by drift rate (v). The 

evidence accumulation begins after a period of non-decision time (T). Density plots show the distribution of 

observable reaction times (RT). Adapted from (Wiecki et al., 2013, Zhang and Rowe, 2014).  
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Hierarchical drift-diffusion model of the ANT 

Drift-diffusion models (DDMs) are widely applied to rapid, two-choice decision making 

tasks such as the ANT (Ratcliff and McKoon, 2008, Wagenmakers, 2009, Ratcliff et al., 

2016). DDMs are typically described by four main parameters: drift rate v, decision boundary 

a, decision bias z and non-decision time T. The decision process is modelled as the gradual 

accumulation of information, reflected by the drift rate, which continues until a decision 

boundary is reached. Fast and accurate decisions are often generated by high drift rates, 

whereas lower drift rates lead to slow and error-prone decisions (Krypotos et al., 2015). 

Separation of upper and lower decision boundaries reflects response caution, where high 

values are associated with accurate, long reaction times and low values with shorter and more 

error prone reaction times (Krypotos et al., 2015). The decision bias parameter captures a 

priori bias toward one of the two responses. Non-decision time incorporates components that 

are not part of the evidence accumulation process, including stimulus encoding, extracting 

stimulus dimensions and executing a response (Ratcliff et al., 2016).  See Figure 1, Panel b, 

for an example of the drift diffusion process. In the current study we applied a hierarchical 

DDM (hDDM), using the hDDM toolbox  (http://ski.clps.brown.edu/hddm_docs/ (Wiecki et 

al., 2013) to fit the response and reaction time data from the ANT. The hDDM uses Bayesian 

estimation to generate posterior distributions of DDM parameters at group and subject levels. 

This approach optimises the trade-off between random and fixed effect models, accounting 

for both within-subject variability and group level similarities, as individual parameters are 

constrained by a group level distribution.  

 

We tested three models that all assumed an unbiased starting point (z), given that left/right 

responses were counterbalanced, and assumed that non-decision time (T) would not be 

expected to vary as a function of condition, as the stimulus encoding and motor responses 

required across conditions were comparable. Model specifications were as follows: in the 

first model, only drift rate (v) was permitted to vary by condition, and decision boundary (a) 

was held constant; in a second model, a could vary across conditions, but v was held 

constant; in a third model, both v and a were free to vary across conditions. To optimise 

convergence only group level parameters were estimated (Wiecki et al., 2013). For all 

models, Markov Chain Monte Carlo simulations were used to generate 120,000 samples from 

the joint posterior parameter distribution. The first 20,000 samples were discarded as burn-in 

and we used a thinning factor of 10, with outliers specified at 5%. Convergence was assessed 

by visually inspecting the Markov chains and computing the R-hat Gelman-Rubin statistic 

where successful coverage is indicated by values <1.1 (Krypotos et al., 2015). The best 

model was determined by comparing the deviance information criterion (DIC) of each model, 
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which evaluates a model’s goodness-of-fit while accounting for model complexity (i.e., 

number of free parameters), with lower DIC values indicating better model fit (Spiegelhalter 

et al., 2002). To further evaluate the best fitting model, we ran posterior predictive checks by 

averaging 500 simulations generated from the model’s posterior to confirm it could reliably 

reproduce patterns in the observed data (Wiecki et al., 2013). The fitted reaction time, choice 

data and source code for the hDDM can be found at 

https://github.com/claireocallaghan/hDDM_ANT_PD. 

 

Statistical analysis 

Independent samples t-tests and ANOVAs with Tukey post hoc tests were used to compare 

demographics and behavioural results from the ANT. Parameters from the hDDM were 

analysed using Bayesian hypothesis testing to determine the extent of overlap between the 

percentage of samples drawn from two posterior density distributions. Posterior probabilities 

are considered significantly different if less than 5% of the distributions overlap (Wiecki et 

al., 2013, Cavanagh et al., 2014, Herz et al., 2016b). Here, we applied Bonferroni correction 

for multiple comparisons (5% /13) where significance is assigned when less than 0.38% of 

the posterior distributions overlap. The proportion of overlap in the posterior probabilities is 

denoted by P to distinguish it from the classical frequentist p values. 

  

Results 

Participant characteristics 

Demographic and clinical characteristics are shown in Table 1. The groups were matched for 

age (F(2,54) = 1.31, p = 0.28). Performance on the MMSE was similar across groups (F(2,54) 

= 1.07, p = 0.35), but the MoCA revealed significant group differences, with the nonVH 

group performing below control levels [(F(2,54) = 5.91, p < 0.01); nonVH vs. controls: 

p<0.01; VH vs controls and nonVH: p values = 0.17 and 0.19)]. The patient groups did not 

differ in disease duration [t(-1.42), p = 0.16], Hoehn and Yahr stage [t(-1.33), p = 0.19], 

UPDRS III [t(-1.80), p = 0.08], or dopamine dose equivalence [t(-1.63), p = 0.11].   
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Table 1. Demographics and clinical characteristics of Parkinson’s disease and healthy control participants.  

 
 

Control 

 

PD nonVH 

 

PD VH 

N 

Sex (M:F) 

Age 

MMSE 

MoCA 

Disease duration (yrs) 

Hoehn & Yahr stage 

UPDRS III 

12 

4:8 

64.75 (5.97) 

29.08 (.79) 

28.50 (1.45) 

- 

- 

- 

25 

19:6 

67.08 (8.22) 

28.39 (1.47) 

26.56 (2.11) 

5.52 (2.86) 

2.16 (.47) 

27.67 (11.54) 

20 

15:5 

68.89 (6.05) 

28.79 (1.72) 

27.41 (1.50) 

7.11 (4.99) 

2.37 (.60) 

34.28 (13.97) 

Values are mean (standard deviation). 

 

 

ANT Behavioural results 

For the ANT, participants who made no response on more than one third of trials were 

excluded from the study. This resulted in the exclusion of one nonVH and 4 VH patients. 

Trials where no response was made were omitted from the behavioural and modelling 

analyses, rather then using the upper limit reaction time, which would bias the model. After 

removal of no response trials, accuracy was at 100% across the three groups. Reaction times 

are plotted in Figure 2. Global reaction times, regardless of condition, were fastest for 

controls, followed by nonVH, then VH, with significant differences evidenced by a main 

effect for group in the ANOVA [F(2,162) = 8.15, p < 0.001; VH vs controls and nonVH: p 

values < 0.01; nonVH vs controls: p = 0.59]. A main effect of condition revealed that reaction 

times were significantly slower for the incongruent condition compared to both the congruent 

and neutral conditions, whereas the congruent and neutral conductions were equivalent 

[F(2,162) = 17.02, p < 0.000001; incongruent vs congruent and neutral: p values < 0.00001; 

congruent vs neutral: p = .98]. There was no significant interaction between group and 

condition, suggesting that the relatively slowed reaction times for the incongruent condition 

were consistent across groups [F(4,162) = .04, p = .99].  
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Figure 2 

Title – Attentional networks task reaction times 

 

 

 

 

 

 

 

 

 

 

 
 

Legend – Reaction time distributions for the attentional networks task across the three levels of task difficulty. 

Bolded black lines designate mean reaction times.    

 

 

Hierarchical drift-diffusion model fit 

All three models showed good convergence, based on R-hat values under 1.1 and visually 

inspected chains (see supplementary material for R-hat values). The best fitting model was 

model three, which allowed v and a to vary across conditions (DIC model 3: -636.496; 

compared to DIC model 1: -436.160 and DIC model 2: -626.593). Posterior predictive checks 

showed good agreement between the simulated and observed data as shown in supplementary 

figure 1 plotting the observed data against the model prediction. Comparisons showed that 

the difference between the summary statistics of the simulated and the observed data fell 

within the 95% credible interval.  

 

Analysis of model parameters 

Comparisons between groups 

Figure 3 shows the posterior probability density plots for the drift rate (top panel) and 

decision boundaries (bottom panel) for the three groups across each condition. The VH group 

had uniformly lower drift rates compared to nonVH, these differed significantly in the neutral 

and incongruent conditions (P = 0.05% and P = 0.04%) but not in the congruent condition (P 

= 3.41%). Drift rates of VH patients were also significantly lower than controls for the 

incongruent condition (P = 0.04%), although not for the neutral and congruent conditions (P 
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= 3.43% and P = 12.72%). Posterior probabilities did not differ significantly between nonVH 

and control groups for any condition (neutral: P = 84.21%; congruent: P = 66.45%; 

incongruent: P = 41.19%). 

 
Figure 3 

Title – Between group comparisons of drift rates and decision boundaries 

Legend – Posterior probability density plots for drift rates (top panel) and decision boundaries (bottom panel).      

 

For the decision boundary, there were no significant differences between the VH and nonVH 

groups for any of the conditions (neutral: P = 31.19%; congruent: P = 50.96%; incongruent: 

P = 9.45%). Both the VH and nonVH group had significantly larger decision boundaries than 

controls in the neutral and congruent conditions (VH: P = 0.12% and P = 0.03%; nonVH: P = 

0.03% and P = 0.03%), but not the incongruent condition (VH: P = 14.19% nonVH: P = 

0.68%).  

 

As shown in figure 4, VH and nonVH groups had similar non-decision times (P = 34.04%), 

which were significantly shorter than controls (VH: P = 0.05% nonVH: P = 0.00%).   
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Figure 4 

Title – Non-decision time 

 

 

  

 

 

 

 

 

 
Legend – Posterior probability density plots for non-decision time.  

 

 

Comparisons across conditions 

Figure 5 shows posterior probabilities within each group for the three conditions (Controls: 

left panel; nonVH: middle panel; VH: right panel). For drift rates, controls showed an 

expected pattern with significantly longer drift rates in the incongruent condition compared to 

the neutral and congruent conditions (P = 0.28% and P = 0.32%), and similar rates in the 

neutral and congruent conditions (P = 50.92%). The nonVH group showed a similar pattern 

with significantly longer drift rates in the incongruent relative to the congruent condition (P = 

0.15%), although not significantly different from neutral (P = 1.55%), with similar rates in 

the neutral and congruent conditions (P = 18.31%). In contrast, VH patients showed no 

significant differences between incongruent and neutral or congruent conditions (P = 3.28% 

and P = 17.47%), with similar rates also between neutral and congruent conditions (P = 

17.80%).   

 

All groups showed a similar pattern for decision boundaries across the conditions, with 

significantly larger decision boundaries in the incongruent relative to the neutral and 

congruent conditions (Control: P = 0.00% and P = 0.00%; nonVH: P = 0.00% and P = 

0.00%; VH: P = 0.00% and P = 0.00%), with similar thresholds in the neutral and congruent 

conditions (Control: P = 38.80%; nonVH: P = 37.32%; VH: P = 20.00%) 
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Figure 5 

Title – Within group comparisons of drift rates and decision boundaries 

 
Legend – Posterior probability density plots for drift rates (top panel) and decision boundaries (bottom panel).    

 

 

Discussion 

Our results demonstrate two features that characterise the perceptual decision making process 

of hallucinating patients relative to non-hallucinating patients: lower drift rates, and an 

inability to adjust drift rates to accommodate changes in perceptual conflict.  

 

Behaviourally, all groups had 100% accuracy on the ANT. Employing a task with relatively 

low cognitive demands that PD patients could easily understand and execute was particularly 

important, given the possibility of cognitive impairment in this patient cohort. This ensured 

we could accurately access perceptual decision making without higher order cognitive 

deficits confounding performance. Hallucinating patients had the slowest reaction times on 

the ANT, although each group showed the expected pattern of shorter reaction times for the 

easier (neutral and congruent) conditions, and longer for the more difficult (incongruent) 

condition. Our results from the hDDM reveal the added benefits of modelling these data to 

uncover the cognitive processes underlying the behavioural results.        
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The drift rate parameter reflects how efficiently information is accumulated and determines 

the quality of evidence that enters the decision making process (Ratcliff and McKoon, 2008). 

In all three conditions, the control and non-hallucinating groups displayed similar drift rates. 

Hallucinating patients had consistently lower drift rates. In between-condition comparisons, 

drift rates are modulated by task difficulty (Voss et al., 2004). This effect was apparent in our 

results for both controls and non-hallucinators. These groups had longer drift rates in the 

incongruent relative to the congruent conditions, suggesting their integration of information 

into the decision making process was flexibly modulated in response to task demands. In 

contrast, the hallucinating group had similar drift rates across the three conditions of 

perceptual conflict, indicating the absence of flexible context-dependent modulation of 

sensory accumulation.  

 

Previous work has identified neural correlates of evidence accumulation during perceptual 

decision making. Recordings in monkeys suggest that neuronal populations in primary 

sensory areas (e.g., middle temporal visual area) fire in response to properties of a stimulus, 

and downstream regions (e.g., lateral intraparietal, frontal eye fields (FEFs), dorsal lateral 

prefrontal cortex (DLPFC)) integrate this information over time until sufficient evidence is 

accumulated for a decision (Newsome et al., 1989, Gold and Shadlen, 2001, Shadlen and 

Newsome, 2001, Heekeren et al., 2008). In humans, evidence accumulation has been related 

to frontoparietal regions (i.e., dorsal and ventrolateral PFC and FEF (Heekeren et al., 2004, 

Heekeren et al., 2006, Philiastides and Sajda, 2007, Liu and Pleskac, 2011)) and the anterior 

insula (Ho et al., 2009), as well as integration across large-scale networks (Shine et al., 

2016).  In PD, abnormal local and network-level engagement of frontoparietal and insula 

regions has been found in hallucinators (Stebbins et al., 2004, Ramírez‐Ruiz et al., 2008, 

Goetz et al., 2014, Shine et al., 2015), and is typically equated with attentional dysfunction. 

In perceptual decision making, accumulation of sensory evidence and attention are highly 

collinear –and possibly inseparable– processes (Mulder et al., 2014). It follows that our 

finding of impaired drift rates may offer a more tangible, computational framework to better 

specify attentional impairments in PD hallucinators.      

  

All groups modulated their decision boundaries in response to the more difficult condition, 

displaying larger boundaries for the incongruent relative to congruent and neutral conditions. 

Flexible adaptation of decision thresholds in response to task demands has been shown 

previously in PD patients and related to a medial prefrontal cortex–subthalamic nucleus 

network that supports conflict detection and gating of decision thresholds when increased 

caution is required (Cavanagh et al., 2011, Herz et al., 2016b). Despite the flexible adaptation 
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of thresholds, regardless of hallucination status, PD patients had larger decision boundaries 

than controls. The lack of difference between the hallucinating and non-hallucinating groups 

suggests that a widening of decision boundaries during perceptual decision making is a 

feature of PD more generally. This corresponds to findings in healthy ageing where older 

adults display wider decision boundaries relative to younger adults (Ratcliff et al., 2001, 

Spaniol et al., 2006, Ratcliff et al., 2007). In older adults, adopting conservative decision 

criteria is presumed to be a compensatory strategy to prevent errors in speed/accuracy trade-

off tasks, and this effect may be amplified in PD.          

 

Hallucinating and non-hallucinating patients also had comparable non-decision times, and 

these were shorter than controls. This might have seemed counter intuitive in light of the 

longer non-decision times that are found in ageing (Ratcliff, 2008, Starns and Ratcliff, 2010), 

but similar evidence of reduced non-decision times in PD has been shown with the 

application of an hDDM to a saccadic go/no-go task (Zhang et al., 2016). Non-decision time 

encompasses diverse processes: encoding evidence from a stimulus and extracting its 

dimensions to guide the decision making process, and execution of a motor response (Ratcliff 

et al., 2016). As response execution would not be anticipated to speed up in PD, decreased 

latencies in stimulus encoding and extraction of details may drive this finding. Future work 

may make this distinction in PD, although currently non-decision time is a relatively 

underspecified term compared to the other parameters in the DDM, and few studies have 

successfully separated its sub-components (Mulder et al., 2014).  

 

Inefficient and less flexible evidence accumulation during perceptual decision making 

emerges as a unique feature of PD hallucinators, whilst changes in cautiousness and visuo-

motor processes are apparent regardless of hallucinator status. Longer drift rate latencies lead 

to slower decisions, and because perceptual decision making is a noisy process this increases 

the chance of errors (Krypotos et al., 2015, Herz et al., 2016a). In PD hallucinators, low drift 

rates that are invariant to changing environmental demands would be a source of low quality 

or inaccurate information entering the perceptual process.  

 

Our results can be interpreted in light of models where an over weighting of top-down 

predictions, at the expense of bottom-up sensory information, contributes to hallucinations 

(Friston, 2005, Corlett et al., 2009, Fletcher and Frith, 2009). Such models are formally 

described by a Bayesian framework: sensory input (bottom-up information, or likelihood) is 

integrated with known statistics about the environment (top-down predictions, or priors), 

forming an estimate of the external stimulus (the posterior). Contributions of the likelihood 
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and prior in generating the posterior estimate are weighted in accordance with their certainty. 

Noisy sensory input is uncertain and carries less weight, shifting the balance in favour of 

priors. In this context, perception is vulnerable to excessive influence from internally 

generated beliefs and expectations. In PD, if visual information is accumulated slowly and 

inefficiently and is therefore less informative, this may contribute to the down weighting of 

bottom-up information in favour of top-down information.   

 

Whilst the Bayesian framework is a compelling computational description of hallucinations, 

it does not necessarily favour a single mechanistic explanation (Teufel and Fletcher, 2016). 

For example, aberrant predictive coding across hierarchal brain circuitry (Friston et al., 2014) 

and large scale disruptions in the brain’s excitatory-to-inhibitory (E/I) tone (Jardri et al., 

2017) both accommodate this account of hallucinations. Reconciling computational 

descriptions of hallucinations with a mechanistic framework will open important therapeutic 

avenues, as predictive coding and E/I accounts rely on distinct neuromodulatory and 

neurotransmitter profiles. In PD, we are beginning to uncover the psychological and neural 

signatures associated with a bottom-up vs. top-down imbalance in perception. Along with the 

results of the current study and previous evidence of lower level deficits in attention and 

visual processing, previous work has identified over activity in the default network of PD 

hallucinators (Franciotti et al., 2015) and increased coupling between the default network and 

visual cortex (Shine et al., 2015). Given the default network’s role in construction of mental 

imagery (Andrews-Hanna, 2012) and its positioning as a transmodal system distinct from 

unimodal sensory regions (Margulies et al., 2016), over engagement of the default network 

during visual perception may be a source of excessive top-down influence. Future studies in 

PD will be needed to reconcile these insights with a mechanistic framework.   

 

In summary, our results suggest that impaired drift rate can provide a novel computational 

framework encompassing the sensory processing and lower level attentional deficits 

previously described in visual hallucinators. Alterations in the dynamic process of evidence 

accumulation may therefore be a valuable marker to exploit in future explanatory and 

therapeutic studies of PD visual hallucinations.             
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Figure legends 

Figure 1 

Title – Attentional networks task conditions and drift diffusion model 

Legend – Panel a) The three conditions in the attentional networks task. Panel b) Example of 

drift diffusion trajectories. Evidence is noisily accumulated toward a left or right response 

(blue and red panels), which are separated by the boundary threshold (a). The average 

evidence accumulation is denoted by drift rate (v). The evidence accumulation begins after a 

period of non-decision time (T). Density plots show the distribution of observable reaction 

times (RT). Adapted from (Wiecki et al., 2013, Zhang and Rowe, 2014)  

 

Figure 2 

Title – Attentional networks task reaction times 

Legend – Reaction time distributions for the attentional networks task across the three levels 

of task difficulty. Bolded black lines designate mean reaction times.    

 

Figure 3 

Title – Between group comparisons of drift rates and decision boundaries 

Legend – Posterior probability density plots for drift rates (top panel) and decision 

boundaries (bottom panel).      

 

Figure 4 

Title – Non-decision time 

Legend – Posterior probability density plots for non-decision time.  

 

Figure 5 

Title – Within group comparisons of drift rates and decision boundaries  
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Legend – Posterior probability density plots for drift rates (top panel) and decision 

boundaries (bottom panel).    
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