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ABSTRACT	

Cancer cells maintain telomere length equilibrium to avoid senescence and 

apoptosis induced by short telomeres, which are triggered by the DNA damage 

response. Limiting the potential for telomere maintenance in cancer cells has been 

long been proposed as a therapeutic target. Using an unbiased shRNA screen 

targeting known kinases, we identified bromodomain 4 (BRD4) as a telomere length 

regulator. Four independent BRD4 inhibitors blocked telomere elongation, in a dose 

dependent manner, in mouse cells overexpressing telomerase. Long-term treatment 

with BRD4 inhibitors caused telomere shortening in both mouse and human cells, 

suggesting BRD4 plays a role in telomere maintenance in vivo.  Telomerase 

enzymatic activity was not directly affected by BRD4 inhibition. BRD4 is in clinical 

trials for a number of cancers, but its effects on telomere maintenance have not been 

previously reported investigated.  
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INTRODUCTION 

Telomere length maintenance is required for long-term division of cells. When 

telomeres become short, they no longer protect chromosome ends, and cells 

undergo senescence or apoptosis (1-3). This requirement for telomere length 

maintenance suggested that blocking telomere elongation might block the growth of 

cancer cells in some settings (4). Telomerase elongates telomeres and maintains a 

telomere length equilibrium that prevents telomeres from becoming critically short (5). 

In the setting of insufficient telomerase or other telomere gene mutations, human 

short telomeres syndromes manifest as bone marrow failure, immunodeficiency, 

enteropathy, pulmonary fibrosis and emphysema (6,7). Conversely, most cancer 

cells upregulate telomerase (8-10). Recent experiments have shown promoter 

mutations that increase the expression of the telomerase catalytic component TERT, 

are very common in many cancers (11,12). Indeed, germline mutations in the TERT 

promoter, or POT1, predispose to familial melanoma, glioma or CLL respectively 

(13-15). This suggests there may be a long telomere state that is cancer prone (7).  

 

Telomerase inhibitors have been proposed as potential cancer therapeutics for over 

25 years (4,10,16,17). BIBR1532 is a potent inhibitor of telomerase in cell extracts 

and in cell culture  (18), but has limited solubility (19,20) and has not progressed to 

clinical trials. Imtelstat is an anti-sense molecule that inhibits telomerase by binding 

to the intrinsic RNA template. Imtelstat is an effective in vitro telomerase inhibitor and 

it shortens telomeres in human cultured cells (21,22). However, it has failed phase II 

clinical trials and the mode of action in some malignancies may be due to off-target 

effects (21,23,24).  With our current understanding of short and long telomere 
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syndromes, and a growing understanding of cancers that rely on telomerase, it is 

possible to revisit the concept of telomere shortening in cancer with a more nuanced, 

approach.    

 

Several groups identified telomerase regulators through direct screening of 

compounds or genes that block telomerase enzyme activity (25-27). We took a 

different approach by identifying pathways that might block telomere elongation 

without direct inhibition of telomerase activity or telomerase transription. Telomere 

elongation is regulated by shelterin proteins (28-30) and by post-translational 

modification (31-35). To identify kinase pathways that might regulate telomere length, 

we designed an unbiased shRNA screen against kinases.  

In this screen, we identified BRD4 as a novel, positive regulator of telomere length.	

BRD4 is a BET family protein that contains a bromodomain, which binds to 

acetylated lysines (36). It also has histone acetyl transferase activity (37), and kinase 

activity (38). BRD4 is a pleiotropic protein with roles in cell cycle regulation, 

chromatin structure, and transcriptional regulation (39). BRD4 has not previously 

been implicated in telomere length regulation. Because several BRD4 inhibitors are 

currently in clinical trials for cancer, understanding their potential effects on telomere 

length will be important to discover both its mechanism of action and potential side 

effects. 

MATERIAL AND METHODS 

Cell Culture 

HeLa and mouse fibroblasts were cultured in DMEM (Gibco) with 1% 

penicillin/streptomycin/glutamine (PSG) and 10% heat-inactivated fetal bovine serum 
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(Gibco). Drugs were dissolved in DMSO and added to cell culture media at indicated 

concentrations. 

Lentiviral shRNA kinase library 

Decode Pooled Human GIPZ Kinase Library (GE Dharmacon RHS6078) was used 

to screen for telomere length regulators. This library contained 4675 shRNAs, in 

pGIPZ lentiviral vectors, directed against 706 kinase and kinase related genes. HeLa 

cells were transduced with 500-fold representation of the library at an MOI of 0.1. 

Experiments were performed in triplicate. After transduction, cells were cultured cells 

for 7 weeks to allow changes in telomere length over many cell divisions.  

Telomere Flow-FISH and fluorescence activated cell sorting 

We adapted a version of telomere Flow-FISH (40) to sort cells with short telomeres. 

4x107 cells were fixed in 1.5% paraformaldeyhyde for 10 minutes then dehydrated in 

100% methanol overnight. Cells were washed with PBS, hybridized with probe and 

washed, as described (40). Cells were resuspended at a concentration of 5x106/mL 

in modified propidium iodide staining solution, consisting of PBS with 0.1% Triton X-

100, 200 µg/mL RNase A (Sigma), 20 µg/mL propidium iodide (Sigma), and 0.1% 

sodium dodecyl sulfate (SDS, Bio-Rad). SDS was found to inhibit aggregation of 

fixed cells during cell sorting. Cells were incubated for 30 minutes at room 

temperature, protected from light. Sorting was performed on a MoFlo cell sorter 

(Becton Dickinson). Cells were first gated on the G1 cell cycle peak to ensure only 

cells with 2N ploidy were measured. Telomere FITC signal was measured in the 

linear range, and the cells with the 7% shortest telomeres were collected. A 

minimum of 2.5 million cells was collected for each fraction. Unsorted cells were 

collected as a control. 
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DNA preparation, amplification and sequencing  

Genomic DNA was harvested from sorted cells by phenol-chloroform extraction (41). 

shRNA insert was amplified from common flanking regions by PCR as described 

(42). PCR primers contained indices for multiplexing (42). PCR products were 

purified with Agencourt AMPure XP Beads (Beckman Coulter), and then sequenced 

with single end 50 base pair reads using Illumina HiSeq 2000. 

Bioinformatic analysis 

Illumina reads were aligned to reference sequences using Bowtie2 as described 

(42,43), and enriched genes were determined by evaluating 3 biological replicates 

with MAGeCK analysis (44). MAGeCK first normalizes samples based on median 

number of reads per sample. Next, it models a relationship for mean number of 

reads versus variance, based on shRNA read counts across all replicates. Finally, 

MAGeCK ranks genes by taking into account the enrichment and p-value of each 

particular shRNA.  Since there are multiple shRNAs per gene, genes with multiple 

highly ranked shRNAs are ranked higher than those with just a few. Statistically 

significant enriched genes were inspected manually, and prioritized for further 

characterization based on MAGeCK rank, availability of chemical inhibitors, and 

known role in potential telomere pathways such as DNA damage, cell cycle 

regulation, checkpoint regulation, DNA replication and chromatin modification.  

Small molecular inhibitors 

KU-55933 (R&D Systems 3544) was used to inhibit ATM. JQ1 (Selleckchem S7110), 

OTX015 (Selleckchem S7360), I-BET151 (Selleckchem S2780), and MS436 
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(Selleckchem S7305) were used to inhibit BRD4. Additional inhibitors tested that did 

not show an effect, are listed in Supplemental table 1. 

Secondary screen for inhibitors of telomere elongation 

Immortalized CAST/EiJ fibroblasts were treated with drug or vehicle for 24 hours, 

then transduced with the SVA lentivirus at MOI=0.5.  SVA is a lentiviral vector 

encoding mTERT and mTR, the catalytic protein and RNA components of 

telomerase (45). Cells were cultured in the presence of drug or DMSO for 6 days 

and genomic DNA was isolated at days 2 and 6 post transduction for Southern 

analysis of telomere length as described (46).  

Genomic DNA was digested with MseI (NEB), separated on a 0.7% agarose in 1X 

TAE (40mM Tris, 20mM Acetate, 1mM EDTA, pH 8.6), denatured in 0.5 M NaOH/1.5 

M NaCl and neutralized in 1.5 M NaCl/0.5 M Tris-HCL pH 7.4. DNA was transferred 

in 20X SSC (3M NaCl, 0.34M NaCitrate) to a nylon membrane (Amersham Hybond 

N+), crosslinked by UV (Stratagene), and prehybridized for 2 hours in Church buffer 

(0.5M Sodium Phosphate, pH7.2, 7% SDS, 1% BSA, 1mM EDTA) and hybridized 

overnight at 65°C with radiolabeled telomere fragment, generated from JHU821 as 

described, (47) and radiolabeled 2-log DNA ladder (NEB). After washing, the nylon 

membranes were exposed to Storage Phosphor Screens (GE Healthcare) and 

scanned on a Storm 825 imager (GE Healthcare). The images were converted using 

Adobe Photoshop CS6 and adjusted for contrast using the “curves” feature within the 

software.  The 2-log ladder marker shown on the left of the Southern blots, indicates 

the sizes in kb. 

 Direct telomerase activity assay 
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Direct telomerase assay was performed on cell lysates as described with 

modifications (45). For stable hTR overexpression, pBluescript II SK(+)U1-hTR (48) 

was cloned into a FUGW-derived lentiviral backbone where Puro was cloned into the 

GFP site with BamH1 and EcoR1. 293TREx/FRT cells were transduced with the 

FUPW-hTR lentivirus and selected for clonal hTR overexpressing cells. Polycistronic 

TERT, POT1 and TPP1 was flipped into a single genomic FRT site using the Flp-in 

system (Invitrogen). These cells were treated with DMSO, 5 µM IBET151, 0.5 µM 

JQ1, 25 µM MS436, or 2.5 µM OTX015 for 48 hours before lysis in 1x CHAPS buffer. 

Protein was quantified by Bradford assay (Bio-Rad). Equal amounts of protein were 

incubated with a5 primer (49) and 0.5 mM dTTP, 0.5 mM dATP, 2.92 µM dGTP, and 

0.33 µM α32P-dGTP  (Perkin Elmer) in telomerase buffer (50 mM Tris-Cl, 30 mM 

KCl, 1 mM MgCl2, 1 mM spermidine). Reactions were incubated for 15 minutes at 

30°C, terminated with stop buffer (20mM EDTA, 10mM Tris), spiked with an end-

labeled 18-mer purification control, and telomere products were isolated by phenol-

chloroform extraction and ethanol precipitation. Reaction products were separated 

on a 10% polyacrylamide/7M urea sequencing gel, dried, and imaged on a Storm 

825 imager (GE Healthcare). Telomere repeats were quantified in ImageQuant, and 

processivity values were calculated as described (50). Telomerase catalytic activity 

was calculated by measuring the intensity of the first telomere repeat normalized to 

the loading control. 

RESULTS AND DISCUSSION 

BRD4 identified in screen for telomere length regulators 

To identify new pathways that regulate telomere length, we carried out an unbiased 

screen of shRNAs that target kinases in HeLa cells. Kinases are attractive 
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therapeutic targets (51), and there is evidence that they affect telomere length. Loss 

of Tel1 kinase in yeast, or ATM, its homologue in mammals, results in telomere 

shortening (33,45,52). CDK1 activity is also required for telomere elongation in yeast 

(31,32). We screened a lentiviral library of shRNAs, targeting 706 kinase and kinase 

related genes (GE Dharmacon RHS6078) (42). HeLa cells were transduced with the 

library in triplicate and cultured for 7 weeks to allow for telomere length changes after 

multiple divisions. We adapted a Flow-FISH protocol (40) to hybridize telomere 

probe to telomeres, in intact cells, and then separate cells based on telomere length, 

using fluorescence activated cell sorting (FACS). Cells with the shortest telomeres 

were collected and shRNA inserts were amplified, sequenced and genes enriched in 

the short population, compared to the unsorted population, were identified by 

aligning to reference sequences with Bowtie2 (43), and ranking gene enrichments 

with MAGeCK (44). We manually inspected candidates, and prioritized those that 

were involved in nuclear localization, cell cycle regulation, checkpoints, DNA 

replication, and chromatin modification. Selected candidates, for which small 

molecule inhibitors were available, were tested in a secondary screen for inhibition of 

telomere elongation.  

 

We previously found that inhibition of ATM kinase with the specific inhibitor KU55933, 

blocked telomere elongation when telomerase was overexpressed (45). Mouse 

fibroblasts, from a CAST/EiJ strain with short telomeres, transduced with a lentivirus, 

SVA, encoding both mTR and mTERT, showed robust telomere elongation after 6 

days. The ATM inhibitor KU55933 blocked this elongation (45) (Figure 1A). We used 

this blockage of telomere elongation as a secondary screen to evaluate selected hits 

from the flow-FISH screen. We tested 36 inhibitors to candidates genes from our 
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screen for their ability to block telomere elongation (Supplementary Table 1). We 

found that the BRD4 inhibitor, JQ1 (53), effectively blocked telomere elongation 

(Figure 1A), in a dose dependent manner from 3.3nM to 33 nM (Figure 1B). The 

degree of inhibition was similar to that seen with the inhibition of ATM by KU55933 

(45).  

We next tested the effects of three additional BRD4 inhibitors, OTX015, I-BET151 

and MS436 on telomere elongation. All of these inhibitors blocked telomere 

elongation, induced by telomerase overexpression, in a dose dependent manner 

(Figure 2A-C), indicating inhibition is specific to BRD4.  All four of these inhibitors, 

target the bromodomain of BRD4 and interfere with its binding to acetyl lysine thus 

blocking chromatin binding of BRD4 (54). The effect on telomere elongation is not 

likely due to transcriptional regulation of telomerase components directly since, in 

this screen, mTERT and mTR are highly overexpressed from exogenous promoters.    

BRD4 does not affect telomerase enzymatic activity 

To examine whether the BRD4 inhibitors had a direct effect on telomerase enzyme 

activity, we used a quantitative direct activity assay (45). 293T cells overexpressing 

telomerase components were treated with the highest tolerated dose of each of the 

four BRD4 inhibitors JQ1, OTX015, I-BET151 and MS436. There was no effect of 

any of these compounds on telomerase activity or processivity in vitro  (Figure 3A, B), 

suggesting that BRD4 inhibitors do not block telomere elongation through direct 

inhibition of telomerase enzymatic activity.  
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BRD4 inhibition has pleiotropic phenotypes on the cell cycle by affecting its role as a 

mitotic bookmark (55), a transcriptional scaffold (55,56) or altering its HAT activity 

(37). The mechanism by which BRD4 inhibition blocks telomere elongation is not yet 

clear. However, since we have ruled out changes in telomerase transcription and 

activity, it may act through blocking telomerase access to the telomere, by 

modification of a telomere binding protein or regulation of telomere protein levels. 

BRD4 inhibition shortens telomeres in long-term growth assays 

The short-term lentiviral screen is a powerful, rapid method to identify inhibitors that 

block telomere elongation. To examine whether inhibition of BRD4 causes telomere 

shortening in a more physiological setting, we cultured cells for 6 weeks and 

examined telomere length by Southern blot. We chose OTX015 to inhibit BRD4 

because it showed the greatest inhibition in blocking telomere elongation. OTX015 is 

also of particular interest because it is currently being tested in clinical trials to treat 

acute leukemia (57), lymphoma and multiple myeloma (58). Treatment with OTX015 

caused significant telomere shortening in both human HeLa cells (Figure 4A), and 

mouse CAST/EiJ fibroblasts (Figure 4B). DMSO treated cells showed no change in 

telomere length over the same period. Notably, significant changes in the average 

telomere length were seen at 4 weeks in human cells, and after 2 weeks in mouse 

cells. The rapid nature of this telomere shortening suggests a relatively robust role 

for BRD4 in telomere maintenance.  

BRD4 translocations are linked to cancer, and BRD4 inhibition reduces cell 

proliferation in acute myeloid leukemia (59,60), potentially by blocking BRD4 

mediated transcription of c-MYC. Our finding, that BRD4 inhibition shortens 

telomeres in human and mouse cells in culture, suggests that part of the mechanism 
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by which BRD4 inhibitors block cancer cell growth (60-62) may be through telomere 

shortening.  

BRD4 inhibitors are currently in early phase clinical trials for treatment of 

hematopoietic cancers, including AML, ALL, multiple myeloma, and lymphoma (63). 

If telomere shortening also occurs in vivo in a clinical trial setting, telomere 

shortening might accentuate the anti-cancer effects of BRD4. BRD4 also affects 

immune cell function through its interaction with NF-κB (64), and BRD4 inhibitors 

have been proposed as anti-inflammatory agents, including in liver fibrosis and 

idiopathic pulmonary fibrosis (65,66). However, these approaches should be 

carefully considered, because short telomeres in humans lead to Telomere 

Syndromes that can manifest as bone marrow failure, pulmonary fibrosis, liver 

fibrosis, and other disease (67-69).  Telomere shortening in either cancer trials or 

fibrosis may exacerbate underlying short telomere syndromes. Stratifying patients by 

telomere length before treatment may help identify individuals who might be at risk 

from side effects caused by further telomere shortening. 

  

ACKNOWLEDGEMENTS 

We would like to thank Hao Zhang at the Johns Hopkins School of Public Health Cell 

Sorting Facility, and John Weger at the UC Riverside High Throughput Sequencing 

Center for many helpful discussions on the design and application of FACS and 

Illumina sequencing.  

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2017. ; https://doi.org/10.1101/112169doi: bioRxiv preprint 

https://doi.org/10.1101/112169
http://creativecommons.org/licenses/by-nc/4.0/


	 13	

FUNDING 

This work was supported by the National Institute of Health [grant numbers 

R37AG009383 and 1R35CA209974] to [C.W.G] and the Johns Hopkins Telomere 

Center  

 

TABLE AND FIGURE LEGENDS 

Figure 1 
JQ1 blocks telomere elongation in a dose dependent manner 

Mouse fibroblasts were transduced with SVA lentivirus, encoding for mTERT and 

mTR and cultured for six days. (A) Southern blot of mouse fibroblast telomeric DNA, 

at days 2 and 6 post SVA transduction, grown in the presence of DMSO (lane 2-3), 

10 µM KU-55933 (lane 4-5) or 0.1 µM JQ1 (lane 6-7). Lane 1 shows the 2-log ladder 

marker (NEB) sizes marked are in in kilobases. (B) Southern blot of mouse fibroblast 

telomeric DNA, at days 2 and 6 post SVA transduction, in the presence of DMSO 

(lane 2-3), 10 µM KU-55933 (lane 4-5), or decreasing concentrations of 33 nM JQ1 

(lane 6-7), 11 nM JQ1 (lane 8-9) or 3.3 nM JQ1 (lane 10-11). Lane 1 shows the 2-log 

ladder marker (NEB) sizes marked are in in kilobases. 

 

Figure 2 
Three additional BRD4 inhibitors block telomere inhibition in a dose dependent 

manner 

Mouse fibroblasts transduced with SVA lentivirus were treated with four different 

BRD4 inhibitors: JQ1, IBET151, MS436 OTX015. (A) Southern blot of mouse 

fibroblast telomeric DNA, at days 2 and 6 post SVA transduction, grown in the 

presence of DMSO (lane 2-3), 10 µM KU-55933 (lane 4-5), 0.1 µM JQ1 (lane 6-7), 5 

µM MS436 (lane 8-9), 0.5 µM OTX015 (lane 10-11), or 1 µM IBET151 (lane 12-13). 

(B) Dose dependence of IBET151. Southern blot of mouse fibroblast telomeric DNA, 

at days 2 and 6 post SVA transduction, in the presence of 1 µM (lane 2-3), 0.5 µM 

(lane 4-5), 0.25 (lane 6-7), or 0.125 µM (lane 8-9) IBET151. (C) Dose dependence of 

OTX015 and MS436. Southern blot of mouse fibroblast telomeric DNA, at days 2 

and 6 post SVA transduction, in the presence of DMSO (lane 2-3), 10 µM KU-55933 
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(lane 4-5), 250 nM (lane 6-7), 125 nM (lane 8-9) or 62.5 nM OTX015 (lane 10-11), 5 

µM (lane 12-13), 2.5 µM (lane 14-15), 1.25 µM (lane 16-17) or 0.625 µM (lane 18-19) 

MS436. Lane 1 in all panels shows the 2-log ladder marker (NEB), sizes marked are 

in in kilobases. In Panel B, other lanes between the marker and IBET treated lanes 

were removed. 

 

 

Figure 3 
BRD4 inhibition does not affect telomerase enzyme activity 

(A) Direct telomerase assay using whole cell lysates of 293TRex cells 

overexpressing hTR, TERT, POT1, and TPP1, which were treated with DMSO (lane 

1), 0.5 µM JQ1 (lane 2), 2.5 µM OTX015 (lane 3), 25 µM MS436 (lane 4), or 5 µM 

IBET151 (lane 5). Lanes 6-10 show extracts pretreated with RNase A to show 

activity due to RNase sensitive telomerase enzyme.  (B) Quantification of telomerase 

processivity and (C) Quantification of telomerase catalytic activity.  Values in (B) and 

(C) are averages of two technical replicates. Error bars in (C) represent the standard 

deviation.     

 

Figure 4 
BRD4 inhibition causes telomere shortening in human and mouse cells in culture 

(A) Southern blot of telomeric DNA from HeLa cells treated with DMSO (lane 2-5), or 

2.5 µM OTX015 (lane 6-9) for 6 weeks, with samples taken at 2, 4 and 6 weeks of 

treatment. (B) Southern blot of telomeric DNA from mouse fibroblast cells, which 

were treated with DMSO (lane 2-5), or 0.5 µM OTX015 (lane 6-9) for 6 weeks, with 

samples taken at 2, 4 and 6 weeks of treatment. 

 
Supplemental Table 1 
Compounds tested for effect on telomere elongation 

The complete set of 36 compounds tested for their ability to block telomere 

elongation, when telomerase is overexpressed, is listed. 
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Supplemental Table 1. 

Number Compound Target Vendor Catalogue Number 
1 KU-55933 ATM R&D Systems 3544 
2 JQ1 BRD4 Selleckchem S7110 
3 IBET151 BRD4 Selleckchem S2780 
4 MS436 BRD4 Selleckchem S7305 
5 OTX015 BRD4 Selleckchem S7360 
6 MK-2206 2HCl AKT Selleckchem S1078 
7 BI 2536 PLK1 Selleckchem S1109 
8 Sorafenib VEGFR, RAF Selleckchem S1040 
9 Staurosporine PKC Selleckchem S1421 
10 Ruxolitinib JAK1/2 Selleckchem S1378 
11 Rapamycin mTOR Selleckchem S1039 
12 Selumetinib ERK/MEK Selleckchem S1008 
13 CHIR-99021 GSK-3α/β Selleckchem S2924 
14 Cerdulatinib TYK2 Selleckchem S7634 
15 TG003 CLK Selleckchem S7320 
16 WZ4003 NUAK Selleckchem S7317 
17 SCH772984 ERK1/2 Selleckchem S7101 
18 PD98059 MEK Selleckchem S1177 
19 Trametinib MEK1/2 Selleckchem S2673 
20 ML141 CDC42 Selleckchem S7686 
21 Enzastaurin PKC Selleckchem S1055 
22 BI-D1870 RSK1/2/3/4 Selleckchem S2843 
23 KN-93	Phosphate CaMKII Selleckchem S7423 
24 D	4476 CK1 Selleckchem S7642 
25 CID755673 PKD1/2/3 Selleckchem S7188 
26 5-Iodotubercidin CK1 Selleckchem S8314 
27 IC261 CK1 Selleckchem S8237 
28 GDC-0994 ERK1/2 Selleckchem S7554 
29 FR	180204 ERK Selleckchem S7524 
30 Alisertib AURKA Selleckchem S1133 
31 LDC000067 CDK9 Selleckchem S7461 
32 SNS-032 CDK2/7/9 Selleckchem S1145 
33 H 89 2HCl PKA Selleckchem S1582 
34 SB203580 p38 MAPK Selleckchem S1076 
35 BAY 80-6946 PI3K Selleckchem S2802 
36 HTH-01-015 NUAK1 Selleckchem S7318 


