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Abstract

Sequences of ribosomal internal transcribed spacers (ITSs) are of great importance to molecular
phylogenetics and DNA barcoding, but remain unstudied in some large taxa of Deuterostomia.
We have analyzed complete ITS1 and ITS2 sequences in 62 species from 16 Deuterostomia
classes, with ITSs sequences in 24 species from 11 classes initially obtained using unannotated
contigs and raw read sequences. A general tendency for both ITS length and GC-content increase
from interior to superior Deuterostomia taxa, a uniform GC-content in both ITSs within the same
species, thymine content decrease in sense DNA sequences of both ITSs are shown. A possible
role of GC-based gene conversion in Deuterostomia ITSs evolutionary changes is hypothesized.
The first example of non-LTR retrotransposon insertion into ITS sequence in Deuterostomia is
described in turtle Geochelone nigra. The roles of mobile genetic element insertions in the

evolution of ITS sequences in some Sauropsida taxa are discussed as well.
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1. Introduction

Repetitive ribosomal RNA genes belong to key elements in Metazoan genome. Yet their
structure, functioning and evolution still give rise to endless questions. rDNA repeat units
correspond to rDNA transcriptional units coding pre-rRNA molecules separated from each other
by intergenic spacers (IGS). Each pre-rRNA transcriptional unit consists of 18S, 5.8S and 28S
rRNA genes and separating internal transcribed spacers, ITS1 and ITS2 (Fig. 1) (Singer and Berg,
1991). Gene sequences are highly conservative and have been throughly investigated in various
animal taxa. Contrarily, spacer sequences are highly variable, both length- and nucleotide

content-wise.

5’ 5.8S |rRNA 3’

Fig. 1. ITS1 and ITS2 positions within a rDNA transcription unit

Exploration of ITS1 and ITS2 transcribed in pre-rRNA is of special importance. So far
their function (presumed regulatory role) so far has remained unclear. However, this high

variability resulting from nucleotide substitutions, deletions and insertions turns ITSs sequences
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into a convenient molecular and genetic marker for eucaryotic taxonomy (Yao et al., 2010;
Wang et al., 2015). ITSs sequences are widely used as phylogenic markers in population and
species-grade analysis (Zagoskin et al., 2014). Due to their high variability, ITSs sequences can
be used in analysis of rDNA repeat unit evolution (Naidoo et al., 2013).

ITSs sequences have been throughly analyzed in plants (Chen et al., 2010), fungi
(Bellemain et al., 2010) and some Protostomia (Cornman et al., 2015). However, Deuterostoma
rRNA structure and evolution, specifically ITS1 and ITS2 sequences, are underinvestigated. An
exception can be made for some fish and placental mammalian species for which complete
sequences of both ITSs have been decoded (Coleman, 2013; Wang et al., 2015). ITS2 structure
has been also described for some reptile species (Kupriyanova et al., 2012). For most of other
Deuterostomia taxa, ITSs sequences are available only for individual species. It is worth noting
that NCBI ITS annotations for Deuterostomia frequently contain incorrect data on generic
identity and size of the spacers (Coleman, 2013; Dyomin et al., 2016). So far no studies ITSs
structural evolution covering the entire versatility of modern Deutorostomia classes have been
conducted.

Such lack of knowledge about Deuterostomia ITSs is very likely to be related to their
extensive length and high GC-content (Dyomin et al., 2016). These peculiarities of ITSs prevent
PCR and traditional capillary sequencing application for their primary structural analysis. High
GC-content and existence of low complexity regions also impact high-throughput sequencing
(HTS) of Deuterostomia ITSs sequences. Nonetheless, today HTS findings are the most
promising data source for ITSs analysis in higher chordate taxa (Coleman, 2013; Dyomin et al.,
2016). Due to progress of animal HTS projects (Koepfli et al., 2015), currently data on genomes
of over 300 species of various Deuterostomia classes are available
(http://www.ncbi.nlm.nih.gov/genome). They are stored in NCBI libraries (Assembly, WGS and
SRA) in contig and raw read format. Unannotated contigs and raw reads can contain ITSs
fragments that can be used for complete sequence assembly (Coleman, 2013; Dyomin et al.,
2016).

In this article we have compared ITS1 and ITS2 structures of species from 16
Deuterostomia classes. We have identified the common aspects and differences in ITS1 and ITS2
of species of various Deuterostomia evolutionary branches. Assumptions on evolutionary

patterns of ITS sequences in Deuterostomia have been offered.

2. Material and methods

Apart from previously published Deuerostomia ITS1 and ITS2 sequences, we have

compared ITSs sequences assembled de novo from raw reads and contigs found in NCBI
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libraries. We have used three data categories: 1) sequences annotated as ITSs of individual
species in Nucleotide database (http://www.ncbi.nlm.nih.gov/nuccore/); 2) unannotated contig
sequences from Assembly database (http://www.ncbi.nlm.nih.gov/assembly/) and 3) unannotated
raw read sequences from SRA database (http://www.ncbi.nlm.nih.gov/sra/).

Unannotated sequences containing ITSs fragments we identified with the aid of BLAST
algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Fragments of mobile components of ITSs
sequences were identified in Repbase on on-line basis
(http://www.girinst.org/repbase/index.html). De novo sequence assembly from contigs and raw
reads was performed in Geneious v 9.1.5. (http://www.geneious.com/). Most of ITSs Mammalia
sequences were borrowed from the assembly published by Coleman (2013). Spacer boundaries
were identified with the aid of human rDNA repeat unit annotations (NCBI, Nucleotide:
U13369) and chicken rRNA gene cluster (NCBI, Nucleotide: KT445934). Nucleotide structure
of the sequences was analyzed in MEGA v6.0 (http://www.megasoftware.net/). The data were
processed in Statistica v6.0 (http://www.statsoft.com/).

We have analyzed ITS1 and ITS2 performed for 4 types: Chaetognatha, Echinodermata,
Hemichordata and Chordata. The outgroup consisted of Ctenophora and Cnidaria species. In
Chordata ITSs sequences have been analyzed for species of all major classes.

Deuterostomia taxonomy was based on NCBI Taxonomy
(http://www.ncbi.nlm.nih.gov/taxonomy/). The analyzed taxa are grouped in the charts based on
the phylogenic trees proposed by Dunn et al. (2008), Jarvis et al. (2015) and Hedges et al.
(2015).

3. Results

3.1. ITS sequences search and assembly for analysis

We have analyzed complete ITS1 and ITS2 sequences for 62 species (see Table). The
Table contains references to the taxonomic status of each of the species, complete GC length and
content for both ITS sequences and source of ITS sequences data for each species. For 32
species, including six outgroup members, we have used NCBI ITSs that had been earlier
annotated by other authors. These sequences cover the entire analyzed data array on
Chaetognatha type and Chondrichthyes and Actinopterygii classes from Chordata. Some
sequences earlier annotated in GenBank as ITS1 and ITS2 fragments related to the analyzed
Deuterostomia species were excluded from the analysis due to low quality of the related
assemblies or wrong annotation. The analyzed spacer sequences of 13 mammalian species were
earleier described by Coleman (2013). Spacers for 15 species were assembled on the basis of

unannotated contigs. For Petromyzon marinus, a Cyclostomata species, a combined spacer
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assembly was performed on the basis of an NCBI annotated sequence (NCBI, Nucleotide:
AF061798) and unannotated contig sequences.

Most challenging was ITSs analysis in Aves, one of the most progressive classes among
Deuterostomia. So far transcribed avian ribosome RNA spacers have remained virtually
unknown (Dyomin et al., 2016). An article by Kupriyanova et al., (2012) mentions zebra finch
ITS2 assembly, yet, unfortunately, the complete sequence has not been disclosed. Earlier we
annotated in NCBI the first complete assembly of chicken rRNA gene cluster sequence
containing both ITSs (NCBI, Nucleotide: KT445934). In this survey we have assembled from
unannotated contigs one ITSs for each of the two Psittaciformes species. We have also been able
to decode the complete structure of both ITSs for 8 species from 6 avian orders using de novo
assembly from WGS raw reads. We have also established 1TS2 sequence for Zonotrichia
albicollis (Passeriformes, Aves).

In total, we have been the first to analyzed ITSs structure for 24 species from 11
Deuterostomia classes. All sequences used, including those first assembled in this study, are
listed in Supplementary File 1.

Table ITS1 and ITS2 lengths and GC-content in Deuterostomia representatives

Taxonomic group Species ITS1 ITS2 Source
L | GC% | L | GC% | (*unannotated sequences)
phylum CTENOPHORA
class Nuda Beroe cucumis 210 48.6 | 226 53.5 AF293699
class Tentaculata Pleurobrachia sp. 215 46.5 | 274 50.0 KP099828
Hormiphora plumosa 260 54.2 | 283 53.0 AF293676
phylum CTENOPHORA
class Anthozoa Myriopathes 212 50.5 | 227 58.1 AM404328
myriophylla
class Hydrozoa Craspedacusta sinensis | 251 48.2 | 291 54.3 AY730675
class Scyphozoa Manania uchidai 245 48.6 | 234 49.1 KU308635
phylum CTENOPHORA
class Sagittoidea Caecosagitta 360 62.2 AB505690
macrocephala
Sagitta elegans 258 65.1 AF342799
phylum ECHINODERMATA
class Holothurioidea | Apostichopus japonicus | 518 645 | 434 67.5 AB595141
class Echinoidea Paracentrotus lividus 429 58.8 | 360 61.7 AJ457832
Strongylocentrotus 430 60.5 | 387 60.5 NW 011993745*
purpuratus B
phylum CTENOPHORA
class Enteropneusta Saccoglossus 444 58.6 450 62.2 ACQMO00000000*
kowalevskii
Ptychodera flava 361 68.4 | 242 74.8 LC014161
Balanoglossus 335 68.4 | 286 73.1 LC012597
carnosus
phylum CHORDATA
subphylum Cephalochordata
class Leptocardii Branchiostoma floridae | 903 | 64.9 | 364 ‘ 69.2 ‘ ABEP00000000*
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Taxonomic group Species ITS1 ITS2 Source
L [ GC% | L [ GC% | (*unannotated sequences)
subphylum Tunicata
class Ascidiacea Ciona savignyi 224 62.5 313 68.7 AACT00000000%*
Herdmania momus 286 | 64.3 | 276 69.9 X53538
class Appendicularia | Oikopleura dioica 205 | 441 | 209 46.4 CABV01004439*
subphylum Vertebrata
class Cyclostomata Petromyzon marinus 307 66.8 313 67.1 AEEG00000000*
AF061798
class Chondrichthyes
subclass Holocephali | Callorhinchus milii 730 729 | 429 77.7 AAVX00000000%*
Hydrolagus colliei 429 70.2 AF061799
subclass Lamna ditropis 1566 | 65.1 AB375551
Elasmobranchii Rhizoprionodon 1362 | 61.1 JN008720
porosus
class Actinopterygii
subclass Neopterygii | Cyprinus carpio 368 | 66.0 | 381 78.0 AF133089
Clarias camerunensis 521 | 68.5 | 423 71.9 AJ876402
Heteropneustes fossilis 409 | 64.8 431 | 68.6 AJ876377
Aphanotorulus 410 | 717 | 361 70.6 AJ412872
ammophilus
Auxis rochei 602 71.4 | 398 72.1 AB193743
class Sarcopterygii
subclass Actinistia Latimeria chalumnae 807 | 77.1 | 348 79.9 BAHO00000000*
superclass Tetrapoda
class Amphibia
subclass Rana nigromaculata 506 78.1 343 | 82.2 AB099628
Lissamphibia Xenopus tropicalis 499 75.6 337 | 78.9 AAMC00000000*
clade Sauropsida
class Reptilia
order Squamata Anolis humilis 1029 | 75.2 KJ523027
Ctenosaura bakeri 439 80.9 EU407546
Crotalus mitchellii 1526 | 79.0 630 81.0 JPMF00000000%*
Ophiophagus haah 1599 | 78.4 645 83.1 AZIM00000000*
Protobothrops 1568 | 78.1 621 81.0 BCNE02005998*
mucrosquamatus
order Testudines Geochelone nigra 2007 | 53.9 AY101758
Chrysemys picta 1413 | 72.4 928 73.9 AHGY00000000*
order Crocodilia Crocodylus siamensis 1561 | 619 | 830 65.3 EU727190
Alligator 1690 | 65.5 850 67.3 AKHWO00000000*
mississippiensis
class Aves
order Apteryx australis 3144 | 81.0 1257 | 81.8 ERX487302* ERX487299*
Apterygiformes ERX484520*
NW_013995077*
NW_013988608*
order Gallifirmes Gallus gallus 2530 | 82.2 | 733 82.1 KT445934
Coturnix coturnix 2176 | 78.1 666 79.0 DRX001709*
order Columbiformes | Columba livia 3003 | 80.2 649 80.6 SRX1034682*
order Calidris pugnax 2551 | 83.0 643 79.3 ERX1097215*
Charadriiformes
order Aquila chrysaetos 2765 | 81.3 716 80.2 SRX710379%*
Accipitriformes
order Psittaciformes | Ara macao 2004 | 80.6 AOUJ00000000%*
Melopsittacus 593 78.6 AGAI00000000%*
undulates
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Taxonomic group Species ITS1 ITS2 Source
L GC% | L GC% (*unannotated sequences)
order Passeriformes Geospiza fortis 2955 | 81.4 876 66.4 SRX728502* SRX728501%*
SRX728503*
Zonotrichia albicollis 901 61.5 SRX871640
Taeniopygia guttata 2767 | 81.9 874 76.7 SRX1205094*
SRX1205425*
Sturnus vulgaris 3075 | 78.9 822 64.4 SRX1182705*
clade Synapsida
class Mammalia

order Monodelphis domestica | 3080 | 74.1 | 740 73.2 Coleman, 2013
Didelphimorphia
order Afrosoricida Echinops telfairi 1786 | 75.5 | 1405 | 76.5 Coleman, 2013
order Proboscidea Loxodonta africana 1660 | 81.0 | 1350 | 84.1 Coleman, 2013
order Cingulata Dasypus novemcinctus | 1111 | 78.8 | 1089 | 84.5 Coleman, 2013
order Pilosa Choloepus hoffmanni 1343 | 76.8 | 1148 | 79.5 Coleman, 2013
order Chiroptera Myotis lucifugus 1242 | 76.2 | 789 75.5 Coleman, 2013
order Carnivora Canis lupus 1865 | 80.5 | 1116 | 73.8 Coleman, 2013
order Perissodactyla | Equus caballus 1430 | 81.0 | 1149 | 854 Coleman, 2013
order Artiodactyla Bubalus bubalis 1465 | 74.7 | 966 67.8 JN412502
order Cetacea Tursiops truncatus 1823 | 78.9 | 1327 | 80.5 Coleman, 2013
order Soricomorpha | Sorex araneus 1302 | 77.7 | 924 79.8 Coleman, 2013
order Erinaceus europaeus 1526 | 74.2 | 953 77.2 Coleman, 2013
Erinaceomorpha
order Primates Homo sapiens 1095 | 79.6 | 1155 | 83.1 U13369
order Scandentia Tupaia belangeri 1430 | 76.2 1567 | 78.9 Coleman, 2013
order Rodentia Rattus norvegicus 1066 | 74.6 | 764 79.8 NR_ 046239
order Lagomorpha Oryctolagus cuniculus | 1595 | 73.8 | 1113 | 76.9 Coleman, 2013

3.2. ITSs structural trends in Deuterostomia evolution

We have analyzed Deuterostomia ITSs structural changes in two evolutionary vectors:
from Chaetognatha to Reptilia—Aves (Sauropsida), and from Chaetognatha to Mammalia
(Sinapsida). For simplification both these vectors are represented in separate charts designated as
Sauropsida line and Synapsida line respectively. In both charts taxa layout is based on their
evolutionary proximity. However, closely located taxa are not necessarily ancestors to or

descendants of each other.

3.2.1. ITS1 and ITS2 sequence length change

ITSs length change in Sauropsida and Synapsida lines is shown in Figures 2 and 3
respectively. By ITSs length change nature both lines clearly fall into two parts. Within the left
part (Chaetognatha — Amphibia) the average lengths of both ITSs are 1.5 times as much as ITS
lengths in the outgroup: ITS1 — 419 bp, ITS2 — 364 bp vs 230 bp and 254 bp in Ctenophora and
Cnidaria respectively (Fig. 4). Generally no clear relation between spacer length change and
evolutionary development of animal structure can be identified here. The only exception are ITS
lengths in the analyzed Elasmobranchii (ITS1 in Lamna ditropis — 1566 bp; ITS2 in
Rhizoprionodon porosus — 1362 bp), which considerably exceed the average ITSs lengths within
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this group. In terms of ITS1 length also stand out lancelet (Branchiostoma floridae) and
coelacanth (Latimeria chalumnae) (Fig. 2 and 3). The above exceptions are in line with high
variability of ITS1 (Fig. 4). Yet, generally ITS1 and ITS2 average lengths in the first chart part
are approximately equal, ITS1 being only slightly longer than ITS2 (Fig. 5).

The right sections of charts 2 and 3 consist of ITS1 and ITS2 sequences of Sauropsida
(Reptilia, Aves) and Sinapsida (Mammalia) respectively. Both in Sauropsida and Sinapsida both
spacers are considerably longer than those of Chaetognata-Amphibia and outgroup. In
Sauropsida line ITS2 length increases smoothly with transition from anamniotes to amniotes
(Fig. 2); towards Aves the disproportion in ITS1 and ITS2 length increases (Fig. 6). ITS1
sequence in kiwi (Apteryx australis) of 3144 bp is the longest among the analyzed animal
species. Taking into account the data reported by Coleman (2013), this value is the ceiling in
Deuterostomia. Among Sauropsida, Kiwi also features the longest ITS2 of 1257 bp. ITS2 length
in kiwi, a member of Paleognathae, considerably differs from ITS2 of the analyzed avian species,
sub-class Neognathae, and reptiles whose 1TS2 is 1.5-2 times shorter.

In Sinapsida evolutionary line the length of both spacers sharply increases in mammals
(Fig. 3). In most of the analyzed species ITS1 is slightly longer than ITS2 (Fig. 7). In placental
mammals, ITS1 to ITS2 length ratio is similar to most amniotes, the average being around 1.32.
Contrarily to birds and reptiles, in mammals ITS1 and ITS2 lengths vary widely even among
close orders (Fig. 3, 7).

Marsupial Monodelphis domestica constitutes a noteworthy exception. The
extraordinarily long ITS1 (3080 bp) in this species combines with a short ITS2 of 740 bp. This

situation is common to birds and some reptiles, yet not to mammals.
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3.2.2. GC pair content variation
GC pair content variation in Sauropsida and Sinapsida evolutionary lines is shown in Figures 8
and 9 respectively. In both charts a smooth GC-content increase can be seen in both ITS1 and
ITS2 from Ctenophora, Cnidaria, and primitive Deuterostomia to terrestrial vertebrates. In
Chaetognatha and Echinodermata, GC pair content is about 61% in ITS1 and 63% in ITS2. In
coelacanth (Sarcopterigii), GC pair content in ITSs achieves as much as 75 — 80% and increases
further to 82—85 % in birds and mammals.

Most taxa, with the exception of Aves, feature a higher GC-content in ITS2 compared to
ITS1 (Fig. 10A). Concurrently, in most taxa GC-content in /7S1 and ITS2 is virtually the same
within the same species: the difference generally does not exceed 8%, the average being 3.3%
and close to 0% in some species (Fig. 10B). Torres et al. (1990) obtained similar results from
spacer analysis of some evolutionarily remote eukaryotes. This phenomenon prompts the
existence of some concerted evolution patterns stabilizing ITS1 and ITS2 nucleotide content in

Deuterostomia.
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3.2.3. Nucleotide compositional shift in the sense DNA sequences of ITS1 and ITS2 in
Deuterostomia

The charts in Figures 11 and 12 show nucleotide compositional shift in ITS sense of
Deuterostomia DNA sequences. The situation observed is generally common to both spacers.
Their adenine content is higher than thymine content in the majority of the analyzed species.
This feature can already be detected in Ctenophora and Cnidaria members. In Siamese crocodile
(Crocodylus siamensis) the ITS1 nucleotide balance shifts towards a higher adenine content. A
considerable shift has been recorded only in mammals. In ITS2 adenine content increase starts
with lamprey (P. marinus) and is well-marked in most vertebrates. Guanine and cytosine content
in ITS sense DNA sequences varies insignificantly and virtually stabilizes in painted turtle
(Chrysemys picta). Therefore, the observed thymine content decrease in ITS sense DNA chains
correlates to GC-content in double strength DNA of these sequences.

Earlier methyl-cytosine deamination in CpG dinucleotides was shown to be involved in
plant ITS1 and ITS2 alteration towards AT-content increase (Torres et al., 1990). The GC-
content increase in Deuterotomia described by these authors is likely to be related to the effect of
other mechanisms.

3.3. Peculiarities of GC-content in Sauropsida ITS1 and ITS2

The reported common patterns of GC-content variation in Deuterostomia ITS1 and ITS2
include a number of exceptions requiring special focus.

In the segment of the chart (Fig. 8) showing GC-content in Sauropsida ITSs, we can
clearly see a region of GC-content collapse in turtles and crocodiles. GC-content in both ITSs is
by 20-25% lower in crocodiles (C. siamensis and Alligator mississippiensis) and 10-15% in
turtles (C. picta) compared to the rest of Sauropsida. This phenomenon stands out of the general
GC increase trend in ITSs associated with Deuterostomia evolution. We assume that this
phenomenon could be related to expansion of AT-enriched mobile genetic elements (MGC) in
spacer sequence. Thus, in Galapagos tortoise (Geochelone nigra) ITS1 featuring a length of 2007
bp and 54 GC-content (NCBI, Nucleotide: AY101758), we have found an AT-enriched fragment
of 880 bp (Supplementary File 2). The similarity of this fragment to non-LTR retrotransposon
CR1-4 CPB sequence achieves 93%. NCBI database contains 15 complete ITS1 sequences of
five Geochelone species (NCBI, Nucleotide: AY101749-AY101763) including AT-enriched
fragments that are also homologous to CR1-4 CPB. The repetitiveness of such cases excludes the
probability of an artifact. MGE presence in ITSs Deuterostomia sequences has not been reported
earlier. MGE insertion is likely to be one of ITSs evolutionary patterns. MGE insertions have not

been found in the ITSs of other analyzed Deuterostomia taxa. The homology of insertions and
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source MGE sequences could have been terminated due to the high evolutionary rate of rDNA

spacers (Wang et al., 2015).
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In birds, from ruff (Calidris pugnax) and onwards, GC-content in ITS2 decreases
compared to ITS1 (Fig. 7), which is uncommon to the great majority of the analyzed taxa. In
Passeriformes, the most numerous Aves order, GC-content in ITS2 is 1.5 times lower than that of
other orders. For example, GC-content in zonotrichia (Zonotrichia albicollis) ITS2 is 61,5%,
while in other orders its can achieve as much as 80%. GC-content in ITS1 exceeds ITS2 by 15%
in medium ground finch (Geospiza fortis) (Fig. 9). ITS2 length in Passeriformes increases
compared to the rest of the analyzed Aves, subclass Neognathae by at least 132 bp (Fig. 2). The
insertions accounting for this increase are unique to Passeriformes and AT-enriched in 3 out of
the 4 analyzed species. It is quite possible that MGE insertion could have caused variations in
GC-content in Passeriformes 1TS2 and in Galapagos tortoise.

4. Discussion

Our findings allow suggesting that internal transcribed spacer structural variation from
inferior to superior taxa of Deuterostomia is associated with four key aspects: a) spacer length
increase; b) GC-content increase in both ITSs; ¢) uniform GC-content in ITS1 and ITS2 within
the same species; d) thymine content decrease in sense DNA sequences in both ITSs.

The most considerable ITSs extension has been identified in superior vertebrates and
members of subclass Elasmobranchii (5-12 fold versus the members of the rest of the analyzed
taxa). Superior vertebrates and Elasmobranchii are not sister taxa and have been evolving
independently of each other. Convergent extension of ITSs of their members could be related to
various selection factors. Both of these groups strongly differ ecologically and physiologically,
so that physical environmental factors and the rate of metabolic processes appeared to have been
of no key role in such changes.

ITSs length extension must have been related to the impact of focused selection, yet the
true causes and patterns of this extension remain unclear. It would be feasible to analyze spacer
length extension in the context of nucleotide composition shift. Spacer differences between close
species of Deuterostomia are primarily defined by indels of several nucleotides or large
fragments (of 20 or bp or longer). The possible role of MGE insertion in ITSs extension cannot
be excluded either.

Contrarily to more primitive taxa of Deuterostomia, spacer extension within Amniota
group evolved in two directions: in placental mammals both spacers generally extended
commensurately, while in marsupials, reptiles and birds spacer length ratio shifted towards
significant extension of ITS1 (2-3 fold). Probably, a similar disproportion could have been
discovered in the common amniotic ancestor of Sauropsida and Sinapsida, which is specifically
evidenced by the obviously disproportional spacer lengths of marsupial mammals.
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In the evolutionary line of Deuterostomia ITSs length extension is accompanied by ITSs
nucleotide composition shift. Specifically, GC-content smoothly increases: the difference
between primitive Deuterostomia (Chaetognatha and Echinodermata) and Tetrapoda and
Sarcopterygii is about 15 — 20%. Concurrently adenine content increases, while thymine content
respectively decreases in ITS sense DNA sequences. The most likely pattern underlying this
nucleotide composition shift could consist in GC-biased gene conversion (gBGC) leading to GC-
content increase for the account of gene conversion in the course of recombination and selective
repair of the appearing non complementary TG pairs to CG (Fryxell and Zuckerkandl, 2000;
Galtier et al., 2001; Duret and Galtier, 2009). gBGC phenomenon has been noted in a wide range
of eukaryotes (Pessia et al., 2012), ectopic genetic conversion presumably being one of the core
patterns of concerted evolution of rDNA repeat units (Naidoo et al., 2013). We could assume
that the observed GC-content increase and thymine content decrease in Deuterostomia ITS with
evolution is associated with the increasing gBGC capacity and/or impact of selection focused on
GC pair binding in spacer sequences. The same processes could also account for sustaining
GC/AT content similarity between internal transcribed spacers on intra-species basis.

ITSs length extension and the related GC-content increase lead to formation of infusible
secondary structures containing multiple hairpins in pre-rRNA transcripts (Dyomin et al., 2016).
The evolutionary effect of this spacer transformation remains unclear. Presumably, secondary
structures are better recognized by pre-RNA splicing factors, which contributes to ribosome
RNA formation. Furthermore, spliced pre-rRNA fragments enriched with G- and C-bases
produced an enormous amount of double-stranded RNAs (dsRNA), whose further destiny is still
unclear. Pre-rRNA synthesis rate has been reported to be consistently high in interphase nucleus
and change considerably in the course of cell division (McStay and Grummt, 2008; Brown and
Szyf, 2008). It is quite possible that in vertebrates, taking into account their advanced genetic
chains, dsRNA forming from ITS transcripts could be one of the components of cell cycle

genetic regulatory pattern.
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