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Abstract 9

Genetic diversity plays a central role in tumor progression, metastasis, and resistance to 10

treatment. Experiments are shedding light on this diversity at ever finer scales, but interpre- 11

tation is challenging. Using recent progress in numerical models, we simulate macroscopic 12

tumors to investigate the interplay between global growth dynamics, microscopic composi- 13

tion, and circulating tumor cell cluster diversity. We find that modest differences in growth 14

parameters can profoundly change microscopic diversity. Simple outwards expansion leads 15

to spatially segregated clones, as expected, but a modest cell turnover can result in mixing 16

at the microscopic scale, consistent with experimental observations. Whereas simple range 17

expansion models predict maximum diversity at the tumor edge, turnover models predict 18

maximum diversity near the core of the tumor and a higher potency of CTCs for metasta- 19

sis. Using multi-region sequencing data from a Hepatocellular Carcinoma patient to validate 20

our models, we propose that deep multi-region sequencing is well-powered to distinguish be- 21

tween some of the leading models of cancer evolution. The genetic composition of circulating 22

tumor cell clusters, which can be obtained from noninvasive blood draws, is therefore infor- 23

mative about tumor evolution, the position of origin of the cluster within the tumor, and 24

its metastatic potential. It is therefore a promising tool for both fundamental and medical 25

research. 26

Introduction 27

Most cancer deaths are due to metastasis of the primary tumor, which complicates treatment 28

and promotes relapse [1–3]. Circulating tumor cells (CTC) are bloodborne enablers of metas- 29

tasis that can be isolated and genetically characterized [4, 5]. Counts of single CTCs have 30

been used to predict tumor progression [6,7] and monitor curative and palliative therapies in 31

breast [8,9] and lung cancers [10]. CTCs have also been isolated in clusters of 2-30 cells [11]. 32

These CTC clusters, though rare, are associated with more aggressive metastatic cancer and 33

poorer survival rates in mice and breast and prostate cancer patients [5]. 34

Cellular growth within tumors follows Darwinian evolution with sequential accumulation 35

of mutations and selection resulting in subclones of different fitness [12, 13]. Certain classes 36
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of mutations are known to give cancer cells advantages beyond local growth rates. For 37

example, acquiring mutations in ANGPTL4 in breast tumors does not appear to provide a 38

growth advantage to cells in the primary, however it enhances metastatic potential to the 39

lungs [14] . Similarly, breast tumors are more likely to metastasize into the lung or brain if 40

they acquire mutations in TGFβ or ST6GALNAC5, respectively [14, 15]. These mutations 41

are referred to as metastasis progression genes or metastasis virulence genes [1, 16]. 42

Mutations, including metastasis progression and virulence genes, are not uniformly dis- 43

tributed in the tumor. Tumors show substantial intratumoral heterogeneity (ITH) [17–19] 44

where subclones have private mutations that can lead to subclonal phenotypes [20–22] and 45

contribute to therapy resistance and relapse [3,23]. Studying ITH is therefore important for 46

cancer treatment and prognosis [23–25]. This requires multiple samples across a tumor to 47

capture the complete mutational spectrum of a primary tumor. 48

Next-generation sequencing (NGS) of single CTCs has shown that they have similar 49

genetic composition to both the primary and metastatic lesions [26]. This opens the way 50

for using CTC and CTC clusters as a non-invasive liquid biopsy to study tumors, monitor 51

response to therapy, and determine patient-specific course of treatment [26–29]. 52

Here we ask whether genetic heterogeneity within individual circulating tumor cell clusters 53

can be informative about solid tumor progression. Because CTC clusters are thought to 54

originate from neighboring cells in the tumor [5], heterogeneity within CTC clusters is closely 55

related to cellular-scale genetic heterogeneity within tumors. Here, we therefore suppose that 56

CTC cluster diversity is a direct function of diversity in small cell clusters within the tumor. 57

We study the interplay of tumor dynamics, CTC cluster diversity, and metastatic outlook 58

through large-scale tumor modelling. We show that fine-scale tumor heterogeneity, and 59

therefore CTC cluster composition, depend sensitively on the tumor growth dynamics and 60

sampling location. Simulated data is consistent with recent sequencing experiments, but 61

slightly finer sampling will provide stringent tests that distinguish between state-of-the-art 62

models. These findings further reinforce the utility of fine-scale tumor profiling and CTC 63

clusters as clinical tools to elucidate tumor information and clinical outlook [30,31]. 64

Tumor growth model 65

To simulate the growth of solid tumors, we use TumorSimulator [32]. The software is able to 66

simulate a tumor containing 108− 109 cells, or roughly 2 cubic centimeters, in 24 core-hours. 67

The tumor consists of cells that occupy a 3D lattice. Empty lattice sites are assumed to 68

contain normal cells which are not modelled in TumorSimulator. 69

Each cell has an associated list of genetic alterations which represent single nucleotide 70

polymorphisms (SNPs) that can be either passenger or driver. Driver mutations increase the 71

growth rate by a factor 1 + s, where s ≥ 0 is the average selective advantage of a driver 72

mutation. 73

At t = 0, the simulation begins with a single cell that already has an unlimited growth 74

potential. The TumorSimulator algorithm then proceeds to grow the tumor through the 75

following steps: 76

1. Select a random cell to be the mother cell. 77
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2. Set the cell birth rate to b′ = b(1 + s)k, where b is the initial tumor birth rate, s is 78

the average selective advantage of a driver mutation, and k is the number of driver 79

mutations present in the mother cell. 80

3. Randomly select a lattice point adjacent to the mother cell. If empty, create a genet- 81

ically identical daughter cell at that position with a probability proportional to the 82

birth rate, b′. If no cell created, or no empty sites are found proceed to 5. 83

4. Independently give mother and daughter cells additional passenger and driver muta- 84

tion. The number of passenger and driver mutations are drawn according to Poisson 85

distributions with mean λp and λd, respectively, and are drawn independently for the 86

mother and daughter cell. Each mutation is unique and there is no back-mutations or 87

recurrent mutations. 88

5. Kill (i.e., remove) the mother cell with probability proportional to the death rate d. 89

6. Update time by a small increment dt = 1/(bmaxN), where N is the total number of 90

cancer cells in the tumor and bmax is the maximum birth rate in the population of cells. 91

We consider three turnover scenarios corresponding to three values of the death rate 92

d: (i) No turnover (d = 0), corresponding to simple clonal growth; (ii) Surface Turnover 93

(d(x, y, z) > 0 only if x, y, z is on the surface), corresponding to a quiescent core model [33] 94

(iii) Turnover (d > 0 everywhere), a model favored in [32] to explore ITH. 95

The birth rate (b = ln(2)), and selective advantage (s = 1%) were kept consistent with 96

[32]. In addition to varying the turnover model (full, surface, or none), we vary its intensity 97

by controlling the death rate, d ∈ {0.05, 0.1, 0.2, 0.65}. TumorSimulator also has a parameter 98

that controls migration of cells to form new independent cancer lesions. We did not allow 99

such local migrations, as they would have little effect on the very fine-scale diversity in the 100

primary tumor. We tried two values for the passenger mutation rate: λp = 0.02 to facilitate 101

comparison with simulations from [32], and λp = 0.0375 to match experimental observations 102

from [34]. 103

CTC cluster synthesis 104

Experimental evidence suggests that CTC clusters are formed from neighboring cells in the 105

primary tumor and not by agglomeration or proliferation of single CTCs in the blood [5,35]. 106

To represent circulating tumor cell clusters, we therefore sampled spherical clusters of cells 107

in different areas of the tumor. We varied the number of cells in the cluster from 2 to 30 to 108

allow comparison to empirical findings [11]. 109

Results 110

Global composition 111

To determine the effect of the growth dynamics on global intra-tumor heterogeneity, we first 112

consider the allele frequency spectra for different turnover models (Fig 1, S1). In all cases, a 113
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majority of driver and passenger genetic variants are at frequency less than 1%, as expected 114

from theoretical and empirical observations [36]. Passenger mutations represent the bulk 115

of ITH, consistent with the theoretical and experimental evidence that neutral evolution 116

drives most ITH [37]. For simulations with low to moderate death rate, d = {0.05, 0.1, 0.2}, 117

we find that the frequency spectra are indistinguishable between the three turnover models 118

(Fig 1, S1). 119
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Figure 1: Frequency Spectra for the Primary Tumor at (a) low death rate and (b) high death
rate. A histogram of the allele frequencies in the tumor for S, the number of somatic mutations (circles),
and Sd the number of driver mutations (triangles). (a) At low death rate, the frequency spectra are indis-
tinguishable, whereas for (b) higher death rate, the turnover model produces elevated diversity across the
frequency spectrum for both driver and neutral mutations.

When the death rate is increased to d = 0.65, as in [32], the different models produce 120

distinct frequency spectra (Fig 1b). As in [32], we find that the number of high-frequency 121

drivers is higher in the turnover model than in the no turnover model. Whereas [32] inter- 122

preted this observation as an indication that turnover reduces diversity, we find that diversity 123

is in fact increased for all types of variants and at all frequencies. The number of somatic 124

mutations in the turnover model is 3.4 times higher than in the surface turnover model and 125

6.2 times higher than in the no turnover model. This is primarily due to a higher number 126

of cell divisions required to reach a given tumor size when cell death occurs throughout the 127

tumor (Table S1). The Waclaw et al model uses a death rate of d = 0.65, which is a stag- 128

gering 95% of the birth rate. The turnover model therefore has 8.3 times more cell divisions 129

to reach a given size, and the surface turnover has 4 times more cell divisions than the no 130

turnover model (Table S1). 131

Cluster diversity depends on sampling position and turnover rate 132

To study the effect of cluster size, position of origin, and evolutionary model on CTC cluster 133

composition, we sampled groups of cells across tumors. To assess genetic heterogeneity within 134

clusters, we consider the number of distinct somatic mutations, S(n), among cells in clusters 135

of size n. 136
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As expected, we find that larger CTC clusters have more somatic mutations (Fig 2, S2). 137

By contrast with global diversity patterns, we find that moderate turnover has a profound 138

impact: Clusters from models with low turnover have many more somatic mutations than 139

in the no turnover model (Fig 2a,b). Surface turnover has little effect on cluster diversity 140

(Fig S2). 141

50 100 150 200 250 300
Distance from Centre 

 of Tumor (cells)

0

5

10

15

20

25

30

M
ea

n 
# 

S
om

at
ic

 M
ut

at
io

ns (a) No Turnover

0.0

0.2

0.4

0.6

0.8

1.0

Tum
or C

ell D
ensity

50 100 150 200 250 300
Distance from Centre 

 of Tumor (cells)

0

5

10

15

20

25

M
ea

n 
# 

S
om

at
ic

 M
ut

at
io

ns (b) Turnover, d=0.05

0.0

0.2

0.4

0.6

0.8

1.0

Tum
or C

ell D
ensity

50 100 150 200 250 300
Distance from Centre 

 of Tumor (cells)

0
5

10
15
20
25
30
35

M
ea

n 
# 

S
om

at
ic

 M
ut

at
io

ns (c) Turnover, d=0.1

0.0

0.2

0.4

0.6

0.8

1.0

Tum
or C

ell D
ensity

50 100 150 200 250 300 350
Distance from Centre 

 of Tumor (cells)

0

10

20

30

40

50

60

M
ea

n 
# 

S
om

at
ic

 M
ut

at
io

ns (d) Turnover, d=0.2

0.0

0.2

0.4

0.6

0.8

1.0

Tum
or C

ell D
ensity

1 2-7 8-12
13-17

18-22
23-30

Cluster Sizes

Figure 2: Number of somatic mutations per cluster as a function of cluster size and position for a model
with (a) no turnover, (b) turnover with d = 0.05, (c) turnover with d = 0.1 and (d) turnover with d = 0.2.
A higher number of somatic mutations increases the likelihood that a metastatic progression mutation is
present. The number of mutations in single CTCs increases at the edge, reflecting the larger number of cell
divisions. The trend is reversed for larger clusters with at higher death rate. The shaded gray area represents
the density of tumor cells at each position. The smoothed curves were obtained by a Gaussian weighted
average using weight wi(x) = exp(−(x− xi)

2), with xi is the distance from the centre of the tumor.

Fig 2 also shows the relationship between a CTC cluster’s shedding location (i.e. its 142

distance to the tumor center-of-mass when it was sampled) and its genetic content. No 143

turnover and surface turnover models show similar trends of increasing diversity with distance 144

(Fig S2). Full turnover models show an opposite trend of decreasing diversity with distance 145

in clusters of intermediate size (Fig 2b-d and S3 for d ∈ {0.1, 0.2} and {0.65}, respectively). 146

However, these trends revert again when considering large clusters with thousands of cells 3. 147

Comparison with multi-region sequencing data 148

To validate predictions of our model, we used multi-region sequencing data from a Hepato- 149

cellular Carcinoma (HCC) patient presented in [34] (Fig 3a). The HCC data contained 23 150

sequenced samples each with ≈ 20, 000 cells, therefore we used our sampling scheme that 151

produces CTCs to produce 23 biopsies of comparable sizes (20, 000 cells). The distance 152

measurements were made using ImageJ [38] and Fig S1 from [34]. Since [34] could only 153

reliably call variants at more than 10% frequency, we used a similar frequency cutoff in our 154

simulations. Interestingly, even though the spatial trend in diversity are undetectable in 155

large clusters (Fig S6), they are restored if we impose a frequency cutoff (Fig 3c, d). The 156

spatial trends therefore strongly depends on our choice of sample size and frequency cutoff 157

(Fig S6), with low cutoff showing weaker spatial patterns. For large samples and low cutoffs, 158

the large number of rare, recent variants overwhelms the signal for older common variants. 159

Such trends are similar across turnover models (Fig 2c, d) and are barely detectable with the 160

current sample size (Fig 3b). The trends observed in the HCC data (Fig 3a) are consistent 161

with these but not sigificant. 162
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Figure 3: Comparison of simulated multi-region NGS with empirical hepatocellular carcinoma.
Spatial distribution of the number of somatic mutations of 23 samples (20,000 cells each) in the (a) hepato-
cellular carcinoma patient, and (c) no turnover and (d) turnover simulated models. (b) shows the number of
samples necessary to detect spatial trends from a regression analysis for CTCs and biopsies in the turnover
model (d = 0.2). The shaded gray area of (a) represents the tumor purity of the samples at each position.
The shaded gray area of (c) and (d) represents the density of tumor cells at each position.

Fig 3b shows the number of different samples necessary to reliably identify spatial trends. 163

For biopsies containing tens of thousands of cells, the number of spatially distributed samples 164

needed is ≈ 40, roughly twice the size of the HCC dataset. Furthermore, these show similar 165

qualitative trends for both models, with an increase in diversity at the edge (Fig 3b and 166

S7). Alternatively, ≈ 30 small cluster (23-30 cells) samples are necessary to detect spatial 167

patterns. Furthermore, intermediate-sized clusters show qualitatively opposite trends in the 168

different models (Fig 3b and S7). Thus small cluster sequencing may increase our power in 169

discriminating between leading models. 170

CTC clusters derived from turnover models are more likely to con- 171

tain virulent mutations 172

Metastasis is an inefficient process [4] in that most CTCs are eliminated from the circu- 173

latory system or fail to survive in the new microenvironment. We hypothesize that the 174
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genetic composition of CTC clusters influences the likelihood of implantation into a new mi- 175

croenvironment. More specifically, genetic heterogeneity within a cluster may contribute to 176

implantation by increasing the likelihood that a metastasis progression mutation is present. 177

If a cluster has S somatic mutations, and each mutation has a small probability p � 1 of 178

being a metastasis progression or virulence gene, the probability of having at least one such 179

metastasis virulence gene is 1− (1− p)S ≈ Sp. 180

Diverse CTC clusters do not carry more virulent mutations, on average, than homoge- 181

neous ones, but they are more likely to carry some virulent mutations because of the increased 182

diversity. Unless implantation probability is exactly proportional to the number of cells car- 183

rying virulent mutations in a cluster, which seems unlikely, diversity will impact implantation 184

rate. 185

To compare the increased likelihood that CTC clusters possess metastatic progression 186

genes compared to single CTCs, we determine the relative increase in the number of distinct 187

somatic mutations in a CTC cluster versus a single CTC, i.e., A(n) = S(n)
S(1)
− 1, where S(n) 188

is the number of somatic mutations in a cluster of size n. We refer to A(n) as the cluster 189

advantage. A higher cluster advantage indicates that a CTC cluster is more potent relative 190

to a single CTC from the same tumor. In other words, a higher cluster advantage means less 191

genetic redundancy within a cluster. To disentangle the contributions from the microscopic 192

and macroscopic diversity, as well as cluster size effects, we compute the cluster advantage 193

for clusters composed of neighboring cells, as well as for random sets of cells sampled across 194

the tumor (Fig 4). 195
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Figure 4: ‘Cluster advantage’ A(n), or the increase in number of distinct somatic mutations in
a CTC cluster relative to single CTC, as a function of cluster size for a random subset of 500 clusters
drawn uniformly across the tumor. A law of diminishing returns applies to all models because of redundancy
of mutations. The turnover model shows a 2-fold increase in the cluster advantage over the no turnover
model.

Whereas randomly sampled sets of cells show similar and almost linear increase of the 196

cluster advantage with sample size, cell clusters show more variability. Turnover models have 197

the highest cluster advantage, followed by the surface turnover model, and the no turnover 198

model (Fig 4). Higher turnover increases the cluster advantage (Fig S4). Even low turnover 199

with at a death rate of d = 0.05 doubles the cluster advantage compared to the no turnover 200
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and surface turnover model (Fig S4). 201

Discussion 202

Even though the results of our simulations are consistent with Waclaw et al. at the tumor- 203

wide level [32], we reach opposite conclusions about the effect of cell turnover on genetic 204

diversity. Waclaw et al. argued that turnover reduces diversity based on the observation that 205

more high-frequency variants were observed in the tumor with turnover: A small number 206

of clones make up a larger proportion of the tumor. Even though we can reproduce the 207

observation, we find that turnover models in fact vastly increase diversity according to more 208

conventional metrics, for example by increasing the number of segregating mutations across 209

the frequency spectrum. Both the increase in dominant clone frequency and increased overall 210

diversity have the same simple origin: A tumor model with turnover requires more cell 211

divisions to reach a given size. An early driver mutation has more time to realize a selective 212

advantage and occupy a high fraction of the tumor, but carrier cells are also more likely to 213

accumulate new mutations along the way leading to increased diversity (Figure 1 and Table 214

S1). 215

The impact of turnover on cellular heterogeneity is particularly pronounced when con- 216

sidering small cell clusters. These fine-scale patterns, observed in Figs 2 and S2, can be 217

interpreted by considering the expansion dynamics of each model and their impact on cell 218

division and mixing. In all turnover models, the number of somatic mutations in a given cell 219

is ≈ 2.75× higher at the edges than at the center of the tumor, reflecting the higher number 220

of divisions to reach the edge: The center of the tumor is occupied early, which slows down 221

cell division. 222

(a) No Turnover (b) Surface Turnover (c) Turnover

Direction of tumor 
front expansion

Cell mixing on 
the surface

Cell mixing within 
tumor mass

Figure 5: Migration and Quiescent Core Explains Spatial Patterns (a) In the no turnover model, the
tumor front expands in the outward direction with no cell dying. There is little to no mixing and no divisions
in the core: The number of somatic mutations increases with distance from the tumor center. (b) In the
surface turnover model, the cells dying on the surface permit a small amount of mixing. This accounts for
the higher number of somatic mutations per cluster. We still find increased diversity at the edge of the tumor
because of the quiescent core. (c) In the turnover model, cells that die within the tumor can be replaced by
cells from the surface as well as cells from the center. Continued division and cell mixing within the tumor
mass.

In the no turnover and surface turnover models, cell clusters show the same overall pattern 223

of additional diversity at tumor edge. In the turnover model, however, we observe the opposite 224

pattern: Even though edge cells still carry the most mutations, core clusters are now more 225

diverse than edge clusters. 226
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Turnover increases diversity by increasing the number of cell divisions required to reach 227

a given size, especially in the core. More cell divisions lead to more somatic mutations in 228

single cells: core cells in the model with d = 0.2 have ≈ 3.99 somatic mutations, compared 229

to ≈ 1.83 for the no turnover model. However, this has only a modest effect on the spatial 230

patterns of diversity: without turnover, the number of somatic mutations per cell is 3.5 times 231

higher at the edge than in the core, and the ratio is reduced to 2.2 when turnover is present 232

(d = 0.2). 233

More importantly for diversity, turnover allows for mixing of cells from nearby clones 234

(Fig 5c). This mixing has a smaller effect at the edge of the tumor, where the range expansion 235

produces serial bottlenecks which reduce the effective population size relative to the tumor 236

core. For moderate cluster sizes, this differential mixing effect overwhelms the “number 237

of divisions” effect, and core clusters are much more diverse than edge clusters, producing 238

distinctive gradients of diversity. 239

The difference in somatic diversity between single CTCs and CTC clusters, measured 240

through the cluster advantage, follows the expected law of diminishing returns: the more cells 241

in the cluster, the fewer the number of unique mutations per cell. However, the trends vary 242

by growth model and cluster origin. Cell mixing afforded by turnover reduces neighboring 243

cell similarity and increases cluster advantage. 244

Under the assumption that the presence or absence of a metastatic progression allele 245

modulates metastatic potential of tumor cell clusters, the proportion of metastatic lesions 246

that derive from circulating tumor cell clusters is highest in the turnover model. We can 247

think of this as interference occurring between cells within a cluster. Alternately, this is 248

an illustration of the advantage of not putting all one’s egg in the same basket, applied 249

to tumor metastasis: Assuming that there is a chance component to cluster implantation, 250

mixing increases the likelihood that at least one virulence cell makes it to a hospitable site. 251

Such an effect should be robust to details of the growth model. 252

In experiments, CTC clusters derived from primary breast and prostate tumors produced 253

more aggressive metastatic tumors [5] compared to single CTCs. This is likely due to differ- 254

ences in mechanical properties of the cluster or the creation of a locally favorable environment 255

by the cluster, rather than by genetic differences. However, the present analysis suggests that 256

this advantage can be enhanced by diversity within the cluster. 257

Both fine-scale mixtures of cell phenotypes and clonally constrained mutations have been 258

observed experimentally in tumors [17, 20]. Similarly, multi-region sequencing revealed high 259

tumor heterogeneity in clear cell renal carcinoma (ccRCC) [22], but low levels in lung adeno- 260

carcinomas [21]. This strongly suggests that the amount of migration and mixing varies sub- 261

stantially across tumors, with ccRCC data being better described by a model with turnover, 262

whereas lung adenocarcinoma data more closely resembles a model with low or no turnover. 263

Distinguishing between migration effects, turnover effects, and tumor growth idiosyn- 264

crasies is obviously challenging. Among limitations of our model, we note the assumption of 265

spherical tumor shape and the absence of complex physical contraints (which HCC tumors 266

may experience). Another limitation of the present model is the rigid computational grid 267

which prevents cells from pushing each other out of the way, which constrains growth rate 268

in the center of the tumor. This constraint plays a role in reducing diversity at the center of 269

the tumor, but it may not be realistic in the earlier stages of tumor growth. 270

The importance of such effects is largely unknown, and it is likely to vary between tumors 271
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and tumor types. Fortunately, we have shown that we are at the cusp of being able to test 272

such models quantitatively. A sampling experiment with twice as many samples than were 273

collected in the HCC patient studied above would enable us to either validate or reject the 274

current state-of-the-art models (Fig 3b), and sequencing of small clusters would further allow 275

us to discriminate between the different models studied here. The HCC data is from whole 276

exome sequencing, as are most deep tumor sequencing datasets. We expect that power would 277

be further increased in a whole-genome sequencing experiment, however, we were unable to 278

perform whole-genome simulations due to memory constraints. 279

Future data collection schemes including the lung TRACERx study [24] will help us put 280

the state-of-the-art models to the test and identify such important parameters of tumor 281

growth. Given our power analysis, we find that sequencing small contiguous cell clusters 282

provides a richer picture of tumor dynamics compared to larger biopsies, with little to no 283

loss in power, provided that few-cell sequencing can be performed accurately. 284

This work set out to answer two simple questions: First, should we expect substantial 285

heterogeneity at the cellular scale within tumors and within circulating tumor cell clusters? 286

The answer to the first question is most likely yes, as even the models with no turnover 287

exhibit measurable cluster heterogeneity. 288

The second question was whether this heterogeneity, sampled through liquid biopsies or 289

multi-region sequencing, is informative about tumor dynamics. Given that state-of-the-art 290

models produce very different predictions about the level of cluster heterogeneity, the answer 291

is also positive. This work identified some of the key factors that determine cluster diversity, 292

especially the interaction between range expansion, cell turnover, and mixing. Even if no 293

diversity were observed at all in CTC clusters, it would enable us to reject the present 294

models in favor of models including additional biological factors that favor the clustering 295

of genetically similar cells. Measuring diversity, or the lack of diversity, within circulating 296

tumor cell clusters or fine-scale multi-region sequencing is therefore a promising tool for both 297

fundamental and medical oncology. 298
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Supporting Information

Table 1: Average number of generations for a cell in each model (estimated from the number
of somatic mutations per cell divided by the mutation rate).

Average Number of Divisions in Model
(mutation rate = 0.02, birth rate = 0.69)

Death Rate (d) No Turnover Surface Turnover Turnover
0.05 218.23± 13.99 216.51± 13.99 224± 11.00
0.1 218.23± 13.99 219.73± 7.11 239.38± 8.06
0.2 218.23± 13.99 227.27± 6.24 279.80± 13.00
0.65 218.23± 13.99 439.90± 18.21 1799.05± 55.81
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Supplementary Figure 1: Allele frequency spectra for low death rates, d ∈ {0.1, 0.2} are
indistinguishable.
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Supplementary Figure 2: The spatial distribution of the number of somatic mutations per
cluster in the (a) no turnover model is indistinguishable compared to surface turnover models
with death rates (b) d = 0.05, (c) d = 0.1, (d) d = 0.2.
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Supplementary Figure 3: The spatial distribution of the number of somatic mutation per
cluster in a turnover model with d = 0.65.
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Supplementary Figure 4: Cluster advantage for weak turnover models: even weak mixing
(turnover model with d = 0.05) can lead to substantial differences in the cluster advantage.
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Supplementary Figure 5: Number of somatic mutations observed in a sample as a function
of the frequency cutoff.
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Supplementary Figure 6: The power to detect spatial trends in diversity as a function of
the frequency cutoff. With no frequency cutoff, the number of rare variants in a large
biopsy (n = 20, 000 cells) overwhelms the detectable spatial pattern contributed by common
variants.
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Supplementary Figure 7: The number of samples necessary to detect spatial trends from a
regression analysis for CTCs and biopsies in the no turnover model.
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