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Abstract: 

Structural Variation (SV) detection from short-read whole genome sequencing is error 

prone, presenting significant challenges for analysis, de novo mutations in particular. Here we 

describe SV2, a machine-learning algorithm for genotyping deletions and tandem duplications 

from paired-end whole genome sequencing data. SV2 can rapidly integrate variant calls from 

multiple structural variant discovery algorithms into a unified callset with low rates of false 

discoveries and Mendelian errors with accurate de novo detection.   

Introduction: 

Structural Variation (SV) is a change of the structure of a chromosome larger than 50bp. 

SV is a major contributor to human genetic variation with 13% of the human genome defined as 

structurally variable1, and is also implicated in a variety of human diseases2,3. De novo germline 

SV contribute risk for many congenital disorders, particularly where there is no family history, 
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such as idiopathic autism or intellectual disability4. Putative de novo mutations are enriched for 

errors as they require only a single false SV genotype, either a false positive in the child or a 

false negative in the parent. Conversely, errors in inherited variants occur if both the parent and 

child have false positive genotypes at the same locus. Accurate genotyping is therefore 

particularly important for de novo mutation discovery. Also, given that SV can range in size 

from 50bp to 50Mb, typically multiple tools are required to fully capture SVs1,5 with each 

operating as a standalone solution relying on read depth6,7 or discordant paired-ends and split-

reads8,9. Methods for harmonizing variant calls and scores from multiple methods into a unified 

set of SV genotypes are lacking. 

Here we present SV2 (support-vector structural-variant genotyper), a turn-key solution for 

unifying SV predictions into an integrated set of genotypes and likelihoods. SV2 

(https://www.github.com/dantaki/SV2) is an open source software written in Python that exploits 

read depth, discordant paired-ends, and split-reads in a supervised support vector machine 

classifier10. Required inputs include a BAM file with supplementary alignment tags (SA), a 

single nucleotide variant (SNV) VCF file with allelic depth, and either a BED or VCF file of 

deletions and tandem duplications to be genotyped. The final product is a VCF file with 

genotypes and annotations for genes, repeats, and other befitting statistics for SV analysis. 

Main 

The training set for the genotyping classifiers applies whole genome data and a gold 

standard of SV positions and genotypes with a reported false discovery rate (FDR) of 1-4%1 

from the 1000 Genomes Project (1KGP). SV2 combines features from paired-end reads that are 

descriptive of the copy number state, each of which are implemented in SV prediction tools for 
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next generation sequencing and SNV microarrays7-10. Features extracted from variants in 27 

unrelated high coverage (48x) samples include depth of coverage, discordant paired-ends, split-

reads, and heterozygous allelic depth (HAD) ratio (Figure 1A&B). Given the small number of 

duplications in the high coverage samples, the duplication training set included 2,493 low 

coverage (7x) genomes, altogether employing over 32,000 deletions and 22,000 tandem 

duplications (Supplementary Table 1) in six classifiers (Methods). 

We initially sought determination of SV2 genotyping performance with cross-validation. 

We calculated the mean receiver operating characteristic (ROC) curve of 7 folds, maintaining the 

proportion of classes in the full training set. We found the average area under the curve (AUC) 

for deletions as 0.98 and for tandem duplications as 0.88 (Figure 1B&D). ROC curves for the 

remaining classifiers (Supplementary Figure 1&2) produced similar AUCs with the exception of 

the hemizygous deletion classifier. We suspect the suboptimal AUC of the hemizygous deletion 

classifier to be driven by incorrect gold standard genotypes suggested by mean of normalized 

coverage in each genotype class (Hemizygous deletion: REF=1.15, ALT= 0.91), in contrast to 

the hemizygous duplication training set (Hemizygous duplication: REF=0.99, ALT=1.99) 

(Supplementary Figure 2B&D).  

We extended our evaluation of genotype performance using Illumina 2.5M SNV arrays 

taken from 17 previously published4 families, totaling 57 individuals. In brief, SV calls were 

generated using LUMPY9 and Manta8 on high coverage whole genomes, merged according to 

50% reciprocal overlap, and genotyped by SV2 (Methods). False discovery rates (FDR) of SV2 

genotypes were estimated via the Intensity Rank Sum test, which produced a FDR of 40% for 

both unfiltered deletions and duplications (Figure 2A).  We then formulated genotype likelihood 
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filters for standard SV analysis and de novo variant discovery (Methods & Supplementary Table 

2) and found the FDR of SV2 standard filters to be 1.24% for deletions and 4.41% for 

duplications. Unfiltered de novo variants carry a high FDR of 60% for deletions and 86% for 

duplications (Figure 2A), which fell to 0.54% for deletions and 0% for duplications with SV2 de 

novo filters (Supplementary Figure 3).  

Estimation of the FDR using SNV arrays may not provide accurate estimates for all 

classes of SV, because SNV probes overlap with a very small fraction of small SVs (<100 bp in 

length) and could be biased toward genomic regions with less repetitive sequence where SV 

detection by WGS is also optimal. Therefore, we also estimated SV2 genotyping performance 

with PacBio Single Molecule Real-Time (SMRT) long read technology obtained from the 1KGP. 

SVs called with LUMPY and Manta were genotyped and merged with SV2 using complementary 

paired-end high coverage (74x) genomes for three probands. We then queried PacBio SMRT 

alignments for supporting reads, defined as split-reads with breakpoints overlapping at least 80% 

to the paired-end prediction on chromosome 1. SVs were omitted if the PacBio coverage was 

less than 5 standard deviations from the chromosome mean; likewise, SVs intersecting our 

genome mask were removed (Methods). We defined true positive variants as those with at least 

one supporting read, which resulted in a FDR for unfiltered deletions at 20% and duplications at 

35% (Figure 2A). With SV2 standard genotype likelihood filters, the FDR for deletions fell to 

12.5% and for duplications 20.1%. However, for de novo genotype likelihood filters, the FDR 

for deletions was 11.9% and 21.1% for duplications. These estimates are likely overestimating 

the FDR since we are limited by our ability to validate SV with PacBio SMRT sequences with 

the currently available tools. Other methods of validating SV from PacBio SMRT sequences, 

such as de novo assembly, have been described11, but these data are not yet publicly available.  
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Next, we further complemented our performance analysis by leveraging family-based 

inheritance, providing an alternative route for estimating genotyping accuracy12. We calculated 

the mean rate of Mendelian errors in 630 probands and their parents, resulting in a total 1,852 

samples: 1,554 of which were provided by the Simons Simplex Collection (https://sfari.org/). 

Briefly, these samples were sequenced to high depths (>30x, read lengths > 100bp) and had SV 

called by ForestSV7, LUMPY9, and Manta8 with accompanying SV2 genotype scores. SVs were 

merged and then excluded if the overlap to repetitive elements and gaps exceeded 50% 

(Methods). For each proband, we determined the average Mendelian error rate at varying 

genotype likelihood cutoffs and allele frequencies. Rare variants with lower genotype likelihood 

scores were more prone to Mendelian inconsistencies, in contrast to rare variants with higher 

scores, suggesting that SV2 reliably assigns low scores to false positives. Common variants had 

higher rates of Mendelian errors at higher genotype likelihoods, which has been observed 

previously for SVs13 (Figure 2B). The average Mendelian error rate with standard filters was 

0.026 (95% CI [0.025,0.027]) for deletions and 0.068 (95% CI [0.062,0.074]) for duplications, 

while stringent de novo filters produced a Mendelian error rate of 0.012 (95% CI [ 1.11x10-2,1.17 

x10-2] for deletions and 0.031 (95% CI [0.03,0.033]) for duplications (Supplementary Figure 3). 

Further validation incorporated the group-wise transmission disequilibrium test14, a 

robust measure of specificity15. Bias towards under-transmission signifies either an abundance of 

type I errors in the parents, and/or of type II errors in the child, complicating tests of family-

based association and de novo mutation calling. We calculated the average percent of transmitted 

variants in 630 probands described above. Unfiltered variants exhibited an under-transmission 

bias of 39.8% for deletions and 35.08 for duplications (deletions P=9.61x10-51, duplications 

P=7.8x10-18) (Figure 2C). However, standard genotype likelihood filters reduced under-
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transmission bias to 48.2% (P=1.32x10-2) for deletions and 47.3% (P=3.39x10-3) for 

duplications. SV2 de novo filters further reduced under-transmission bias to 49.1% (P=1.32x10-2) 

and 49.3% (P=1.0) for duplications (Supplementary Figure 3), confirming SV2’s capacity to 

mitigate false positives. 

After confirming SV2 genotypes deletions and tandem duplications accurately, we 

compared SV2 filters to default filters for SVTyper and Manta and determined the FDR of rare 

variants filtered by either SVTyper, Manta, or SV2 genotype likelihoods (Supplementary Figure 

4). Deletions filtered by SVTyper and Manta carried a 1.0% and 1.6% FDR respectively, in 

contrast to SV2 with 1.24% for standard and 0% de novo filters. Likewise, a 7.9% FDR was 

observed for duplications filtered by SVTyper and 9.6% for Manta, but with 4.4% and 0% FDR 

for standard and de novo SV2 filters respectively. We then assessed the FDR of putative de novo 

mutations filtered by either method. SVTyper's filters returned 18 putative de novo mutations 

with a 22.2% FDR, Manta's filters produced 13 with 46.2% FDR, and SV2 standard filtering 

resulted in 21 variants with 19% FDR. However, SV2 stringent de novo filters produced 9 

variants with 0% FDR demonstrating SV2’s ability to accurately resolve putative de novo 

mutations.  

SV2 compared to other SV genotyping software is noteworthy because of its exploitation 

of machine learning to reliably genotype and score deletion and tandem duplication predictions 

without compromising sensitivity. One advantage of SV2 to comparable SV genotyping solutions 

is the ability to genotype breakpoints overlapping repetitive elements using read depth. 

Additionally, the incorporation of heterozygous allelic depth is better able to genotype tandem 

duplications, which are more prone to false positive genotypes due to fluctuations in read depth. 
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However, relying on the presence of SNVs tends to limit accurate genotyping to events larger 

than 3kbp. A caveat of SV2 is that it cannot assign a copy number greater than 4, but this can be 

addressed with the addition of more gold standard examples. Ultimately, SV2's strength is 

harmonizing genotypes and likelihoods from multiple callers and genotypers, simplifying 

analysis of SV and providing a much-needed tool for accurately resolving de novo mutations.   

Figure Legends: 

Figure 1: SV2 Training Set and Cross Validation Performance 

A: Kernel density estimates of 1000 Genomes phase 3 deletions less than 1000bp (left) and 

duplications (right) in 27 high coverage samples. Colors represent the gold standard phase 3 

genotype with copy number on the X axis is a function of depth of coverage. B: Depicts the 

average ROC curve of 7-fold cross validation of the training sets in A, shaded areas represent the 

95% confidence interval. The average AUC across all copy numbers for deletions was 0.98 and 

for duplications 0.88. 

Figure 2: SV2 Genotyping Evaluation 

A: False discovery rate estimates from SNV microarrays and PacBio SMRT long reads for 

deletions (left) and tandem duplications (right). Black dotted line indicates 5% FDR. Unfiltered 

SV call sets have high rates of false positives (~40%) for both SNV arrays and PacBio SMRT 

reads. Likewise, unfiltered (raw) de novo mutations, had a FDR of 60% for deletions and 86% 

for duplications, estimated from SNV arrays. B: Mendelian error rates in 630 probands for 

deletions (left) and duplications (right). SV2 reliably assigns poor genotype scores to false 

positives. Rare variants with high genotype scores tended to have fewer Mendelian 
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inconsistencies. C: Group-wise transmission disequilibrium tests in 630 probands for deletions 

(left) and duplications (right) with shaded regions representing 1 standard deviation. Unfiltered 

calls were biased towards under-transmission of variants with an average bias of 39.8% 

(P=9.61x10-51) for deletions and 35.1% (P=7.8x10-18) for duplications. 

Supplementary Figure 1: Additional Training Set Cross Validation Performance 

A: Cross validation performance of the >1000bp deletion training set was performed in similar 

fashion to Figure 1B. The Mean AUC of 7 folds for all copy number classes was determined to 

be 0.98. Shaded area represents 95% confidence interval. B: Depicts the cross validation 

performance of the paired-end duplication training set, with 2,494 low coverage samples. The 

mean AUC across all copy number classes was determined to be 0.84.  

Supplementary Figure 2: Hemizygous Training Set Cross Validation Performance 

A: Cross validation performance of the hemizygous deletion classifier with a mean AUC of 0.68 

with shaded areas indicating 95% confidence intervals. We suspect the suboptimal results of 

cross validation to be possibly due to incorrect genotyping in the gold standard indicated in B 

where the distribution of coverage between the two classes is not as drastic in comparison to the 

hemizygous duplication training set in D. In contrast, the hemizygous duplication classifier 

performance in C had a mean AUC of 0.98 with distinct separation of copy number groups in D. 

Sample weights applied to each training method compensate for possible genotype errors in the 

gold standard (Methods). 

Supplementary Figure 3: Performance of SV2 Genotype Likelihood Filters 
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A: Genotyping performance of unfiltered (top) and SV2 filtered (bottom) of deletions at varying 

bins of SV lengths. False discovery rates (left), Mendelian error rates (center), and transmission 

bias (right) were estimated for variants called by ForestSV, LUMPY, and Manta and genotyped 

by SV2. Unfiltered variants had high rates of false positives at all size bins. However, SV2 

filtering controlled for false positives with SVs<100bp contributing most of the errors. De novo 

filters consistently produced fewer errors than standard filters with the exception of SVs <100bp, 

which had a larger under-transmission bias attributed to the small number of variants (standard 

stringency: 3551, de novo stringency: 705). Error bars for Mendelian error rates represent 95% 

confidence intervals. Error bars for transmission disequilibrium test represent 1 standard 

deviation. B: Genotyping performance of unfiltered (top) and SV2 filtered (bottom) tandem 

duplications. Similar to deletions, unfiltered duplications contain many false positives which are 

mitigated with SV2 filters. De novo filters produce fewer false positives than standard filters, 

allowing for accurate discovery of de novo mutations. 

Supplementary Figure 4: Comparison of Genotype Likelihood Filters and De Novo 

Prediction Performance 

False discovery rates for deletions (left) and duplications (center) filtered by default filters for 

Manta, SVTyper, and SV2. FDRs were estimated using SNV arrays and binned according to size. 

While the default filters for Manta and SVTyper perform well with FDRs less than 2% for 

deletions and 10% for duplications, SV2 standard filters result in a 1.24% and 4.4% FDR for 

deletions and duplications respectively. De novo filters produced a 0% FDR for both deletions 

and duplications. For putative de novo mutations (right), SV2 de novo filters produced a 0% FDR 

in contrast to standard filters.  
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Methods: 

SV2 Workflow 

 SV2 is a high-throughput SV genotyper that requires BAM alignments with 

supplementary reads (SA tags), a bgzipped and tabix indexed VCF with allelic depth for variants, 

and a BED or VCF file of deletion and tandem duplication positions to be genotyped. SV2 first 

performs a preprocessing step that records basic statistics of each chromosome such as median 

coverage, insert size, and read length. Then SV2 operates on each variant extracting informative 

features for genotyping with six support vector machine classifiers. The classifiers consist of 

three deletion classifiers and three duplication classifiers. One classifier of each SV type is 

dedicated to hemizygous variants, defined as those on male sex chromosomes, since there are 

only two states to classify. One of the two autosome deletion classifiers operates on SVs with 

lengths greater than 1000bp, where coverage was defined as the number of reads spanning a 

locus, and those smaller than 1000bp, where the median base-pair depth of coverage was 

considered. One autosome duplication classifier implements paired-end features: discordant 

paired-end and split-reads. When paired-end features were not available for duplications, the 

second duplication classifier instead relied on heterozygous allelic depth as a feature. After 

genotyping and scoring, a VCF is outputted with annotations for repeat elements, 1KGP phase 3 

variant overlap, and genes. 

Machine Learning Features of SV2  

We sought to leverage SV genotyping with four orthogonal features: depth of coverage, 

discordant paired-ends, split reads, and heterozygous allelic depth (HAD) ratio. Coverage was 
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defined as either the number of reads spanning a locus or as the median base-pair depth for 

lengths <=1kbp. Reads were excluded if they aligned within our genome mask comprising of 

segmental duplications, short tandem repeats, assembly gaps, telomeres, and centromeres. Raw 

coverage values were normalized according the chromosome average, and then adjusted based 

on GC content with respect to PCR or PCR-free chemistries, adapted from CNVator16. We 

defined discordant paired-ends to have insert sizes greater than the chromosome median plus 5 

times the median absolute deviation.  To reduce noise, we limited the search for discordant 

paired-ends and split-reads to +/-500bp of the start and end positions of the SV. Likewise, only 

discordant paired-ends and split-reads were included if the mate-pair or the supplementary 

alignment mapped to the opposite side of the breakpoint. The resulting number of discordant 

paired-ends and split-reads was then normalized to the number of concordant reads within the 

locus. Akin to B-allele frequency on SNV microarrays10, HAD was defined as the median ratio 

of coverage of the minor allele to the major allele for all heterozygous variants encompassing the 

SV.   

SV2 Training Set 

 Features were obtained from 27 PCR-free high coverage whole genomes (48x, 250bp 

read length) and 2,494 low coverage whole genomes (7x, 100bp read length) provided by 

1KGP17. SV positions were obtained from the 1KGP phase three structural variation call set1, 

retaining alleles with at least one alternate variant in the cohort. Due to the large number of 

samples for the paired-end duplication classifier, we randomly selected 100,000 homozygous 

reference examples for the final training set. Features were also excluded if the estimated copy 

number was greater than 10. Sample weights for training were defined as the inverse distance of 

expected coverage of the phase 3 genotype. The expected normalized coverage for homozygous 
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reference was 1.0. The remaining expected coverages either add or subtract 0.5 from 1.0 

according to the number of copies gained or lost. Training samples for the HAD classifier were 

weighted according to the inverse Euclidian distance of expected coverage and mean HAD value 

of each copy number class to compensate for allelic dropout.  

SV2 Classifier Parameter Selection  

 SV2 genotypes SV with a support vector machine model with a radial basis function 

kernel from scikit-learn18. Support vector machine classifiers are governed by the parameters C 

and gamma, which represent the error of classification and the influence of training samples. 

Parameter sweeps of varying C and gamma values were performed with balanced class weights, 

with the exception of the paired-end duplication classifier which used heuristic class weights.  

Parameters were chosen by optimizing false discovery rate (SVtoolkit) and sensitivity of 

validated de novo variants in a previously published cohort4. 

Cross Validation 

We assessed the performance of the training sets with seven-fold cross validation, where 

each fold maintained the proportion of copy number classes in the full training set. Using the 

1KGP phase 3 SV genotypes as truth, the mean ROC and area under the curve was determined 

for each genotype class (Figure 1B&D, Supplementary Figure 2).  

SV Genotyping Performance with SNV Arrays 

 We evaluated false discovery rates at varying genotype likelihood cutoffs using Illumina 

2.5M SNV microarrays and SV calls from high coverage, paired-end whole genomes were 

obtained from 57 samples described previously4. Raw LUMPY9 and Manta8 calls were merged 

according to 50% reciprocal overlap, while removing any call that overlapped 50% of its length 
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to a repeat element or an assembly gap. False discovery rates were obtained for the resulting call 

set using the IRS test from SVtoolkit. 

SV Genotyping Performance with PacBio Single Molecule Real-Time Sequencing  

 We chose 3 probands sequenced using PacBio Single Molecule Real-Time (SMRT) from 

the 1KGP since they had higher coverage than the parents (proband mean depth = 38.9, parent 

mean depth=18.6). Raw reads (mean length= 8,345.2bp) were aligned to GRCh38 with bwa 

mem with the –x pacbio option. We then restricted our analysis to chromosome 1 to comply with 

1KGP data release policy for unpublished data. SV calls from LUMPY and Manta were 

genotyped and merged with SV2 using complementary Illumina paired-end whole genomes 

sequenced to deep depths (74.2X) with 125bp reads. We defined supporting reads as PacBio 

split-reads with breakpoints that reciprocally overlap 80% to SVs genotyped in the paired-end 

alignments. We omitted loci if the coverage of PacBio reads over a 10kb span of either the start 

or end position was less than 5 standard deviations from the mean chromosome coverage. Loci 

were also removed if either one of the breakpoints overlapped an element in our genome mask, 

in addition to removing calls if the region overlapped 50% to masked elements. False positives 

were defined as ALT genotypes without supporting PacBio spilt-reads, while true positives 

required 1 supporting read.    

SV Genotyping Performance Leveraging Inheritance 

We measured rates of Mendelian errors in 630 high coverage whole genome probands 

(1884 total individuals). 1,551 of the samples were obtained from the Simons Simplex 

Collection. SVs were called using ForestSV, LUMPY, and Manta. Raw calls were then 

genotyped by SV2 and then merged after filtering. SVs with greater than 50% overlap to regions 

defined in our genome mask were removed. For each proband the number of inconsistent 
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genotypes with respect to the parents was taken as a ratio to Mendelian consistent genotypes. We 

performed this analysis at varying alternate genotype likelihood cutoffs and allele frequencies 

and recorded the mean Mendelian error rate for the cohort. Rates of SV transmission were 

measured with group-wise transmission disequilibrium test (gTDT)14.  

Construction of Standard and De Novo Mutation Filters 

 Strict genotype likelihood filters were determined using the IRS test from SVtoolkit on 

previously mentioned sampled. For de novo filters, we leveraged variants previously validated by 

PCR and Sanger sequencing4 as a guide in determining appropriate filters. We created a set of 

conditions that consider feature availability and the length of the SV to determine appropriate 

cutoffs, which can be found in Supplementary Table 2.  

Comparison of Genotype Likelihood Filters 

 We compared SV2 standard filters and stringent de novo filters to default filters from 

SVTyper and Manta. Variants were called by these two methods and filtered as described above. 

We restricted this comparison to rare variants defined as less than 1% allele frequency in parents. 

The FDR for each filter were determined using the IRS test from SVtoolkit while binning on the 

size of the SV (Supplementary Figure 3). Variants less than 100bp were omitted since genotype 

poorly on SNV arrays. Putative de novo variants were defined as those were both parents are 

homozygous reference with the proband genotyping as a gain or loss of one copy.  
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Supplementary Table 1: SV2 Training Set Variant Counts 

Supplementary Table 2: SV2 Filters for Standard Analysis and De Novo Mutation 
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