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ABSTRACT 

Prokaryotic genome annotation is highly dependent on automated methods, as manual 

curation cannot keep up with the exponential growth of sequenced genomes. Current 

automated methods depend heavily on sequence context and often underestimate the 

complexity of the proteome. We developed REPARATION (RibosomeE Profiling Assisted 

(Re-)AnnotaTION), a de novo algorithm that takes advantage of experimental protein 

translation evidence from ribosome profiling (Ribo-seq) to delineate translated open 

reading frames (ORFs) in bacteria, independent of genome annotation. REPARATION 

evaluates all possible ORFs in the genome and estimates minimum thresholds based on 

a growth curve model to screen for spurious ORFs. We applied REPARATION to three 

annotated bacterial species to obtain a more comprehensive mapping of their 

translation landscape in support of experimental data. In all cases, we identified 

hundreds of novel (small) ORFs including variants of previously annotated ORFs. Our 

predictions were supported by matching mass spectrometry (MS) proteomics data, 

sequence composition and conservation analysis. REPARATION is unique in that it 

makes use of experimental translation evidence to perform de novo ORF delineation in 

bacterial genomes irrespective of the sequence context of the reading frame. 
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INTRODUCTION 

In recent years, the advent of next generation sequencing has led to an 

exponential growth of sequenced prokaryotic genomes. As curation based methods 

cannot keep pace with the increase in the number of available bacterial genomes, 

researchers have reverted to the use of computational methods for prokaryotic genome 

annotation (Richardson and Watson 2013; Land et al. 2015). However, advanced 

genome annotation should entail more than simply relying on automatic gene 

predictions or transferred genome annotation, as these often introduce and propagate 

inconsistencies (Richardson and Watson 2013). Moreover, the dependence on sequence 

contexts of the open reading frame (ORF) by automatic methods often introduces a bias 

in gene prediction, as studies have shown that translation can occur irrespective of the 

sequence composition of the ORF (Michel et al. 2012; Fields et al. 2015). Further,  gene 

prediction methods that depend solely on the genomic template often lack the 

capabilities to capture the true complexity of the translation landscape (Fields et al. 

2015), overall stressing the need for non in silico based gene prediction approaches. 

Ribosome profiling (Ingolia et al. 2009) (Ribo-seq) has revolutionized the study 

of protein synthesis in a wide variety of prokaryotic and eukaryotic species. Ribo-seq 

provides a global measurement of translation in vivo by capturing translating ribosomes 

along an mRNA. More specifically, ribosome protected mRNA footprint (RPFs) are 

extracted and converted into a deep sequencing cDNA library. When aligned to a 

reference genome, these RPFs provide a genome-wide snapshot of the positions of 

translating ribosomes along the mRNA at the time of the experiment (Ingolia et al. 

2009). This genome-wide positional information of translating ribosomes allows for the 

identification of translated regions.  

With the advent of Ribo-seq, numerous computational methods have been 

developed to detect putatively translated regions in eukaryotes, all taking advantages 

of inherent Ribo-seq based metrics to identify translated ORFs. In the studies of Lee et 

al. (2012) and Crappé et al. (2014), a rule based peak detection algorithm was used to 

identify translation initiation sites, while Bazzini et al. (2014) and Calviello et al. (2015) 

take advantage of the triplet periodicity property of Ribo-seq data. Fields et al. (2015) 

and Chew et al. (2013) developed an ensemble classifier that aggregate multiple 

features to predict putative coding ORFs. In addition to these tools Michel et al. (2016) 

developed a quality control toolbox available from Galaxy (RiboGalaxy) and Chung et 
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al. (2015) developed a method to infer frameshifting events within coding regions. 

However, all these methods focus mainly on eukaryote genomes with a pre-defined 

transcriptome and are not directly transferable to prokaryotes genomes. Thus far, no 

computational method has yet been reported to systematically delineate ORFs in 

prokaryotic genomes based on Ribo-seq data. In this work, we aimed at developing an 

algorithm that makes use of experimental evidence of translation from Ribo-seq to 

perform de novo ORF delineations in prokaryotic genomes. 

Our algorithm, REPARATION (RibosomeE Profiling Assisted (Re-)AnnotaTION) 

trains an ensemble classifier to learn Ribo-seq patterns from a set of confident protein 

coding ORFs for a de novo delineation of ORFs in bacterial genomes. REPARATION 

deduces intrinsic characteristics from the data and thus can be applied to Ribo-seq 

experiments targeting elongating ribosomes. We evaluated the performance of 

REPARATION on three annotated bacterial species. REPARATION was able to identify a 

multitude of putative coding ORFs corresponding to previously annotated protein coding 

and non-protein coding regions, variants of annotated ORFs (i.e. in-frame truncations 

or 5’ extensions) and intergenic ORFs. Further, we validated our findings using matching 

proteomics, sequence composition and phylogenetic conservation analyses and 

compared to other methods in the field. 

 

 

MATERIAL AND METHODS 

REPARATION performs de novo ORF delineation by training a random forest classifier 

to learn Ribo-seq patterns exhibited by protein coding ORF. A random forest model was 

chosen over other algorithms for training because of its robustness to outliers, low bias 

and optimal performance with few parameter tuning (Hastie and Tibshirani 2009). The 

REPARATION pipeline (figure 1A) starts by traversing the entire prokaryotic genome 

sequence to generate all possible ORFs that have an arbitrary length of at least 10 

codons (30nt) and initiate with either an ATG, GTG or TTG codon (the most frequently 

used start codons in a variety of prokaryotic species (Panicker, Browning, and Markham 

2015)) until the next in-frame stop codon. 

 

Training Sets. 
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The set of positive examples is constructed by a comparative genomic approach. The 

algorithm uses Prodigal V2.6.3 (Hyatt et al. 2010) to generate an ORF set, this set is 

then BLAST searched against a database of curated bacterial protein sequences (e.g. 

UniprotKB-SwissProt). The BLAST search is performed using the UBLAST algorithm from 

the USEARCH package (Edgar 2010). ORFs that match at least one known protein 

coding sequence with a minimum e-value of 10-5 and a minimum identity of 75% are 

selected for the positive set. The negative set consist of ORFs starting with CTG viewing 

their infrequent occurrence as translation starts (<0.01%) in the annotations of the 

interrogated species (supplementary table T1) and at least the length of the shortest 

ORF in the positive set. We then grouped all CTG ORFs sharing the same in frame stop 

codon into an “ORF family”. Per ORF family we select the longest ORF as a 

representative member of that “ORF family”. 

 

Feature construction. 

To train the random forest classifier we constructed five features based on Ribo-seq 

signals of translated ORFs and complemented these with the ribosome binding energy 

measurements (Suzek et al. 2001). The meta gene profile shown in figure 1B illustrates 

a Ribo-seq signal pattern reminiscent to patterns previously reported for protein coding 

transcripts in prokaryotes for Ribo-seq experiments that targets elongating ribosomes 

(Woolstenhulme et al. 2015). The profile exhibits read accumulation within the first 40-

50nts downstream of the start and a slight increase just before the stop codon. The 

features used in the model are as follows: 

1) Start and stop region read density (RPKM). We defined a start region of an ORF by 

taking 3nt upstream (to account for any error in P-site assignment) and 45nt 

downstream of the ORF start position, while the stop region constitutes the last 21nt 

upstream of the stop position. Of note, for ORFs shorter than 63 nucleotides we used 

the first 70% and last 25% of the ORF length to model the start and stop regions of the 

ORF. The ORF RPF read count per nucleotide position is divided by the total RPF reads 

within the ORF to ensure that features are comparable across different ORFs. The start 

and stop region RPF read densities are subsequently calculated from the proportional 

reads. 
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2) ORF coverage and start RPF coverage. We defined the ORF (start) RPF coverage as 

the proportion of nucleotide positions covered by RPF reads within the entire ORF (start 

region). RPF coverage is calculated from the RPF positional read profile. 

3) Read accumulation proportion. This feature measures the ratio of the RPF reads 

accumulated at the start region (first 45nt) relative to RPF reads within the rest of the 

ORF. It is defined by equation 1 

 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  {

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑃𝐹 𝑐𝑜𝑢𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑂𝑅𝐹 𝑠𝑡𝑎𝑟𝑡 𝑟𝑒𝑔𝑖𝑜𝑛 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑃𝐹 𝑐𝑜𝑢𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑅𝐹
 

0,   𝑖𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑎𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑅𝐹 = 0

                   (1) 

 

We reasoned that since Ribo-seq reads tend to accumulate within the start region of a 

translated ORF relative to the rest of the ORF, correctly delineated ORFs will tend to 

have score greater than one. Spurious ORFs that overlap at the start or stop of 

translated ORFs will score lower as their non-overlapping regions would tend to have 

no reads, hence resulting to accumulation scores less than one. 

 

4) Ribosome binding site (RBS) energy. The interaction between Shine-Dalgarno (SD) 

sequence and its complementary sequence in the 16S rRNA (anti-SD), referred to as 

SD ribosome binding site (RBS) was proven to be very important in the recruitment of 

the ribosome for translation initiation in bacteria (Shultzaberger et al. 2001). As such, 

and to aid in the prediction of SD/anti-SD dependent translation events, the ribosome’s 

free binding energy or ribosome binding site (RBS) energy was included as in feature 

in the model. The RBS energy, representative of the probability that the ribosome will 

bind to a specific mRNA and thus proportional to the mRNA’s translation initiation rate, 

was calculated using the distance dependent probabilistic method and using the anti-

Shine Dalgarno (aSD) sequence GGAGG as described in Suzek et al. (2001).The 

inclusion of the  of the RBS energy features in the prediction model as well as the aSD 

sequence are user defined parameters to allow for bacterial species where non aSD/SD 

dependent translation events have been reported (Shultzaberger et al. 2001; Hyatt et 

al. 2010; Omotajo et al. 2015). 

 

Sigmoid (S)-curve model.  
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Since REPARATION pipeline was developed to allow for ORFs as short as 30nt, 

this results in an exponential increase of potential ORFs. To ensure the algorithm is 

traceable, we defined minimum threshold values to eliminate spurious ORFs. To do this 

we take advantage of the sigmoid curve (S-curve) relationship observed between ORF 

RPF coverage and the ORF log2 read density (RPKM) as depicted in figure 1C and 

supplementary figure S1. The fitted logistic curve (red), modelled by a 4-parameter 

logistic regression (equation 2) and describing the relationship between ribosome 

density and RPF coverage was used to estimate the minimum read density and ORF RPF 

coverage to allow for correct ORF delineation. We estimated the lower bend point of the 

fitted 4 parameter logistic regression using the method described in (Lutz and Lutz 

2009) and implemented in the R Package Sizer (Sonderegger et al. 2009). 

 

𝑅𝑃𝐹 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑑 +  
𝑎 − 𝑑

1 + (
𝑙𝑜𝑔2𝑅𝑃𝐾𝑀

𝑐 )𝑏
                  (2) 

 

Where d represents the ORF coverage for infinite read density (RPKM) and a the 

minimum ORF coverage at RPKM zero while b and c represents the slope of the curve 

and the RPKM value at (d – a)/2 respectively. 

 

Post Processing Random Forest predicted ORFs.  

We implement a rule based post processing algorithm to eliminate false positives 

that might be called because they share overlapping regions with actual coding ORFs 

(supplementary figure S2). First, considering the simplified assumption that bacterial 

genes can have only one possible translation start site, we group all predicted ORFs 

sharing the same in frame stop codon into an “ORF family”. Supplementary figure S2 A 

depicts an ORF family with two predicted starts, if start S1 has more reads than S2 then 

we select S1 as the gene start. If there are no Ribo-seq reads between S1 and S2 then 

we select S2 as the gene start since S1 adds no extra information to the gene profile. 

If S1 has more reads than S2 but if S1 falls within the coding region of an out-of-frame 

upstream predicted ORF on the same strand, we select S1 as the most likely start if 

there is a peak (i.e. kurtosis > 0) within a window of -21 to +21 around S1. 
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Next we consider two overlapping ORFs on different frames as depicted in 

supplementary figure S2 B. If the read density and RPF coverage of the non-overlapping 

region of F1 are less than the S-curve estimated thresholds, then F1 is dropped in favor 

of F2 and vice versa. If both non-overlapping regions have a read density and RPF 

coverage greater than the minimum, then we assume both are expressed. Finally, we 

drop all internal out-of-frame ORFs falling completely within another ORF 

(supplementary figure S2 C).  

 

RESULTS 

To assess the performance and utility of our REPARATION algorithm (figure 1A), 

besides two publicly available bacterial Ribo-seq datasets from Escherichia coli K12 str. 

MG1655 and Bacillus subtilis subsp. subtilis str. 168 (Li et al. 2014), we generated 

ribosome profiling data and matching RNA-seq data from a monosome and polysome 

enriched fraction (Heyer & Moore 2016) of Salmonella enterica serovar Typhimurium 

strain SL1344 (experimental details in supplementary methods). 

REPARATION starts by traversing the entire prokaryotic genome sequence to 

generate all possible ORFs that have an arbitrary length of at least 10 codons (30nt) 

and initiate with either an ATG, GTG or TTG codon (the most frequently used start 

codons in a variety of prokaryotic species (Panicker et al. 2015)) until the next in-frame 

stop codon. REPARATION applies a random forest classifier trained on features derived 

from the meta-gene profile of known protein coding ORFs (figure 1B). These features 

encompass 1) the start region (first 45nt of the ORF) read density, 2) the stop region 

(last 21nt) read density (Fields et al. 2015) 3) ORF RPF coverage refers to the proportion 

of nucleotides within the ORF covered by positional RPF reads (Chew et al. 2013), 4) 

start region RPF coverage, i.e. the proportion of nucleotides within the start region 

covered by RPF reads, 5) the ratio of the average RPF read count within the start region 

divided by the average RPF read count within the rest of the ORF and 6) ribosome 

binding site (RBS) energy (see material and methods). The classifier’s training set 

consisted of positive examples generated using a comparative genomic approach. First 

we used prodigal (Hyatt et al. 2010) to generate a set of ORFs, which were subsequently 

BLAST searched against a curated set of bacterial protein sequences from UniProtKB-

SwissProt, ORFs with e-values less than 10-5 and a minimum identity score of 75% were 
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retained. Viewing their infrequent occurrence as translation starts (<0.01%) in the 

annotations of the interrogated species, the negative set consisted of all CTG-starting 

ORFs (supplementary table T1). The algorithm then estimates a minimum read density 

and ORF RPF coverage to discard spurious ORFs by exploiting the sigmoid relationship 

between these features (figure 1C). Using a four-parameter logistic regression curve on 

the positive set, REPARATION estimates the lower bend point of the fitted curve 

representing a two-dimensional threshold (read density and ORF RPF coverage) 

(supplementary table T2). All ORFs with read density and ORF RPF coverage below these 

thresholds were discarded, including those in the training set. When trained on these 

sets, the random forest classifier achieved on average an 89, 90 and 92% 10-fold cross 

validation accuracy with area under the curve values of 0.92, 0.92 and 0.93 for the 

Salmonella, E. coli and Bacillus data sets respectively (supplementary figure S3 A). 

Of the three species evaluated, REPARATION mapped putative coding ORFs 

corresponding to regions annotated as protein coding, as well as to non-coding and 

intergenic. 

 

Figure 1: REPARATION pipeline for de novo ORF delineation in prokaryotes. (A) 

REPARATION workflow diagram. The entire prokaryotic genome is traversed and all 

possible NTG-starting ORFs are generated. Next, ORF-specific positional Ribo-seq signal 
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information is calculated based on the metagenic gene profile (B). To discard spurious 

ORFs, the minimum log2 RPKM and ORF RPF coverage thresholds are estimated using 

a four-parameter logistic S-curve (C). (B) Metagenic profile of salmonella data indicating 

read accumulation at the start and stop of ORFs (stitched together in the middle for 

visualization purposes). (C) S-curve with fitted four parameters logistic curve (red) and 

indication of predicted ORFs with support from N-terminal proteomics data (green) in 

the case of E. coli. 

 

REPARATION-predicted ORFs predominantly match to, or overlap with 

annotated ORFs and follow the reference model of start codon usage. 

 Viewing the previously reported similarities in the translation properties of 

monosomes and polysomes (Heyer & Moore (2016)) and the high correlation observed 

between the two samples (supplementary figure S3 B), we considered the Salmonella 

monosome and polysome samples as replicate samples for the purpose of translated 

ORF delineation.  

For Salmonella, REPARATION predicted a total of 3957 and 3881 putative ORFs 

in the monosome and polysome sample respectively. Of these, 3421 (88%) ORFs found 

common in both datasets were considered as the high confident ORF set (supplementary 

file F1).  For E. coli, a high confident set of 3202 (90%) was selected based on the 3594 

and 3569 predicted ORFs in replicate samples 1 and 2 respectively (supplementary file 

F2). Thirdly, in the Bacillus sample, 3435 putative coding ORFs were predicted 

(supplementary file F3).  

 From the high confident set of predicted ORFs in Salmonella and E. coli, 82% 

(2822) and 89% (2855) correspond to previously annotated ORFs (respectively), while 

80% (2733) of the Bacillus predicted ORFs corresponds to previously annotated ORFs 

(figure 2). 14, 8 and 14% of predicted ORFs in the Salmonella, E. coli and Bacillus 

samples (respectively), correspond to variants of previously annotated ORFs, potentially 

giving rise to N-terminally truncated or extended protein variants referred to as N-

terminal proteoforms (Gawron, Gevaert, and Damme 2014). Consequently, in 

Salmonella and E. coli 3% belong to novel putative coding regions while in Bacillus 7% 

belong to novel ORFs.  

 On average the truncations were 26, 26 and 51 codons downstream of the 

annotated starts while the extensions where 18, 13 and 9 codons upstream for 
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Salmonella, E. coli and Bacillus (respectively). Of note, 60, 53 and 77 of the predicted 

variants display only a 1 codon shift from the annotated starts in Salmonella, E. coli and 

Bacillus respectively (supplementary table T3). 

 

 

Figure 2: Proportion of REPARATION predicted ORFs per ORF category for the high 

confident ORF sets in Salmonella and E. coli as well as for the Bacillus predictions. 
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Overall, 71%, 74% and 77% (including the variants) of all ENSEMBL annotated protein 

coding ORFs in Salmonella, E. coli and Bacillus (respectively) were predicted by 

REPARATION. 

 In our evaluation of REPARATION, we allow for the three commonly used start 

codons in prokaryotes ATG, GTG and TTG as translation initiation triplet. Of note 

however, REPARATION was designed without any bias in start codon selection for ORF 

prediction. The hierarchy of start codon usage over all predicted ORFs are consistent 

with the standard model for translation initiation in the ENSEMBL annotation of the 

corresponding species i.e. in case of Salmonella and E. coli, a preference of ATG over 

GTG and TTG and ATG>TTG>GTG in Bacillus (table 1) could be observed. 

 

 ENSEMBL 

Annotation 

All 

predictions  

Matching 

Annotated 

Extensions Truncations Novel 

Salmonella        

ATG 4093 (88.0%) 2942 (86%) 2576 (91.2%) 166 (58%) 139(64%) 61 (62%) 

GTG 429 (9.20%) 344 (10%) 206 (7.4%) 64 (24%) 52(24%) 18 (18%) 

TTG 126 (2.70%) 135 (4%) 40 (1.4%) 51 (18%) 25(12%) 19 (20%) 

E. coli       

ATG 3747 (90.1%) 2776 (87%) 2591 (91%) 76 (42%) 49 (70%) 60 (62%) 

GTG 386 (9.2%) 284 (9%) 209 (7%) 44 (25%) 9 (13%) 22 (22%) 

TTG 71 (2.0%) 142 (4%) 55 (2%) 59 (33%) 12 (17%) 16 (16%) 

Bacillus       

ATG 3253(77.7%) 2502 (73%) 2176 (80%) 141 (41%) 75 (56%) 110(49%) 

GTG 386 (9.2%) 413 (12%) 237 (9%) 108 (31%) 29 (22%) 39 (17%) 

TTG 529 (12.6%) 520 (15%) 320 (12%) 94 (29%) 30 (22%) 76(34%) 

 

Table 1: Start codon usage distribution of the predicted putative coding ORFs. 

The predicted ORFs in all three species follow the starts codon usage distributions of 
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the corresponding species annotation. In case of Salmonella and E. coli, only ORFs from 

the high confident set were considered. 

 

 

Interestingly however, we observe that novel and variant ORFs are enriched for being 

initiated at near-cognate start codons when compared to annotated ORFs. In case of 

the variants, this bias is most likely due to the preference of automatic gene prediction 

methods to select a neighbouring ATG as the start codon (Salzberg et al. 1998; Hyatt 

et al. 2010).  

 

 Novel ORFs are evolutionary conserved and display similar amino acid 

sequence patterns as compared to annotated ORFs. 

To gain insight into the novel predictions, we analysed and compared their 

evolutionary conservation pattern to that of predicted annotations. Novel and extended 

ORFs exhibit similar conservation patterns to annotated ORFs, with higher nucleotide 

conservation from the start codon onwards and within the upstream ribosomal binding 

site or Shine Dalgarno region positioned -15 to -5nt upstream of the predicted start 

(figure 3), a region aiding in translation initiation by its base pairing with the 3'-end of 

rRNA (Shultzaberger et al. 2001; Suzek et al. 2001). The higher conservation and triplet 

periodicity observed upstream of the truncations is likely because in some cases 

multiple forms of the gene (i.e. N-terminal proteoforms) are (co-)expressed 

(supplementary table T4). A manual inspection of the alignments indeed indicates that 

different forms of the genes are expressed across different species. Of the 66 

truncations used in the Salmonella conservation analysis, 45% shows evidence of the 

existence of multiple forms across different bacterial species, while in case of E. coli and 

Bacillus these percentages were 40 and 28 from 26 and 25 truncations respectively. 
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Figure 3: Conservation pattern of REPARATION predicted ORFs. Nucleotide 

conservation scores are calculated using the Jukes cantor conservation matrix for 

nucleotides. Site conservation scores are calculated using the rate4site algorithm and 

displayed for a +/- 25nt window around the predicted start site. The site conservation 

score was calculated only for ORFs with at least 5 orthologous sequences from a 

collection of randomly selected bacteria protein sequences from species within the same 

family as Salmonella/E. coli and Bacillus and outside the family.  833 annotated, 161 

extensions, 99 truncations and 12 novel ORFs had at least 5 orthologous sequences in 

case of Salmonella, while the E. coli profile consisted of 2359 annotated ORFs, 70 

extensions, 26 truncations and 18 novel ORFs were considered. In the case of Bacillus 

there are 1886 annotated, 112 extensions, 19 truncations and 2 novel ORFs 

  

Of the 98 novel ORFs predicted in Salmonella, 48% (47) had at least one reported 

orthologous sequence (supplementary file F1). While 59% (58 out of 98) and 19% (42 
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out of 225) in E. coli and Bacillus (respectively) had at least one orthologous sequence 

(supplementary files F2 & F3). 

To further confirm that the newly identified ORFs do not represent random noise, 

we compared the amino acid composition of predicted annotations to that of novel 

putative coding ORFs and to a set of randomly generated amino acid sequences of equal 

lengths to predicted ORFs matching annotations. In all three species, we observe a very 

high correlation (≥0.80) between the amino acid compositions of novel and annotated 

ORFs (supplementary figure S4). While a generally poor correlation (≤0.19) was 

observed when comparing novel or annotated ORFs against a random set of ORFs. 

Since evolutionarily conserved significant biases in protein N- and C-termini were 

previously reported for pro- as well as eukaryotes, often with pronounced biases at the 

second amino acid positions (van Damme et al. 2011; Palenchar 2008), we next 

investigated whether the amino acid usage frequency at second position of the novel 

and re-annotated ORFs exhibited a similar pattern to that of annotated ORFs.  Compared 

to amino acid frequency in the species matching proteomes, clearly the overall 

distribution is similar for the two ORF categories. More specifically, a significant 

enrichment of Lys (about 3-fold) at the second amino acid position was observed in 

case of all three species analysed. For Salmonella and E. coli, Ser and Thr at the second 

amino acid position was equally enriched while in case of Bacillus, Asn was slightly more 

frequent in the second position while other amino acids are clearly underrepresented 

(i.e. Trp and Tyr) (supplementary figure S5), observations very well in line with previous 

N-terminal biases observed (Palenchar 2008). 

 

 

Proteomics assisted validation of REPARATION predicted ORFs. 

To validate our predicted ORFs we generated N-terminal and shotgun proteomics 

data from matching E. coli and Salmonella samples respectively. While N-terminomics 

enables the isolation of N-terminal peptides, making it appropriate for the validation of 

translation initiation events, shotgun proteomics provides a more global assessment of 

the expressed proteome. Three different proteome digestions were performed in the 

shotgun experiment to increase proteome coverage. The shotgun and N-terminal 

proteomics data were searched against a six-frame translation database of the E. coli 

and Salmonella genomes. In both experiments, and based on identified peptides, 
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longest non-redundant peptide sequences were aggregated to map onto the 

REPARATION predictions. 

In case of Salmonella, 10751 unique peptides belonging to 2235 ORFs in the six-

frame translation database were identified by means of shotgun proteomics. Of these, 

92% (9891) correspond to 1794 REPARATION predicted ORFs (figure 4A), the 9% 

missed by REPARATION mostly represent lowly expressed ORFs (Supplementary figure 

S6 A). While most shotgun peptides support previously annotated regions (figure 4B), 

we additionally identified peptides in support of novel ORFs and ORF reannotations (i.e. 

N-terminal protein extensions). More specifically, supportive evidence was found in the 

case of 8 novel ORFs and 21 extensions having at least one identified peptide with a 

start position upstream of the annotated start (supplementary file F1). 

For E. coli, N-terminal proteomics identified a total of 785 blocked N-terminal 

peptides that are compliant with the rules of initiator methionine processing (see 

supplementary methods) belonging to 781 ORFs. Under the assumption that none of 

these ORFs have multiple initiation sites we choose the most upstream N-terminal 

peptide and overlapped these with the REPARATION predictions. Of the 781 ORFs with 

peptide support 725 pass the S-curve estimated minimum thresholds. 86% (620) of 

these matched REPARATION predicted N-termini (figure 4C & D), while in 6% of the 

cases, a different translation start was predicted by REPARATION downstream in 10 

cases (with an average distance of 8 codons) and upstream in 40 cases (with an average 

distance of 39 codons) from the TIS matching the identified N-terminal peptides. The 

remaining 8%, not predicted by REPARATION, mainly represent N-termini originating 

from lowly expressed ORFs (supplementary figure S6 B). Most of the N-terminal 

supported ORFs matched annotations, while 21 correspond to re-annotations or novel 

ORFs (13 extensions, 6 truncations and 2 novel). We also assessed the predicted ORFs 

against the 917 E. coli K-12 Ecogenes verified protein coding sequences, a set consisting 

of proteins sequences with their mature N-terminal residues sequenced using N-

terminal Edman sequencing (Krug et al. 2013). Of these, 893 pass the estimated 

minimum thresholds of which 89% (792) matched REPARATION predicted ORFs (figure 

4E). REPARATION predicted a different start sites in case of 54 of Ecogene verified ORFs, 

including 45 upstream (average distance of 8 codons) and 9 downstream TISs (average 

distance of 35 codons).  
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Figure 4: MS validation of REPARATION pipeline. A) Overlap between the protein 

sequences identified from shotgun proteomics and the REPARATION predicted ORFs in 

Salmonella. B) The number of ORFs per category with at least one identified peptide for 

the high confident set of Salmonella predicted ORFs. C) Overlap between ORFs with N-

terminal peptide support and REPARATION predicted ORFs in E. coli. D) Number of 

predicted ORFs for each category with N-terminal peptide support in the E. coli high 

confident set.  E) Overlap between REPARATION predicted ORFs and the Ecogene 

verified E. coli ORFs. 

 

REPARATION in the aid of genome re-annotation. 

 In case of the three species-specific translatomes analysed, REPARATION 

uncovered novel putative coding genes in addition to extensions and truncations of 

previously annotated genes with supporting proteomics and conservation evidence. 

More specifically, in the case of the gene adhP (Salmonella), REPARATION predicts that 

translation initiates 27 codons upstream of the annotated start, an ORF extension 

supported by an N-terminal peptide identification (figure 5A) and of which the 

corresponding sequence is conserved (supplementary figure S7 A). N-terminal peptide 
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support, next to the clear lack of Ribo-seq reads in the region between the novel and 

annotated start (figure 5B) of gene yidR (E. coli), also points to translation initiating 11 

codons downstream of the annotation start as predicted by REPARATION. A novel 

putative coding gene was found matching the intergenic region Chromosome:2819729-

2820319 (Salmonella) with Ribo-seq and RNA-seq signals complemented by two unique 

peptide identifications (figure 5C).  

Of note, there are currently 72, 182 and 70 annotated pseudogenes in the current 

ENSEMBL annotations of Salmonella, E. coli and Bacillus (respectively). REPARATION 

predicted conserved putative coding ORFs within 12, 35 and 11 pseudogene regions 

leading to 15, 47 and 11 predicted ORFs for Salmonella, E. coli and Bacillus 

(respectively). Since pseudogenes in bacteria are typically modified/removed rapidly 

during evolution, coupled with the fact that only uniquely mapped reads were allowed, 

the observed conservation with the existence of functional orthologues points to the 

genuine coding potential of these loci and thus functional importance of their translation 

product (Goodhead and Darby 2015; Lerat and Ochman 2005). One representative 

example is the identified putative coding ORF in the sugR pseudogene (Salmonella) 

which is supported by 3 unique peptide identifications (figure 5D). 
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Figure 5: REPARATION assisted reannotation of bacterial genomes. A) 

REPARATION predicted 5’ extension of the adhP gene (Salmonella) with supportive 

peptide evidence mapping upstream and in-frame with the annotated ORF. B) Gene 

yidR (E. coli) predicted as a 5’ truncation with N-terminal peptide support and Ribo-seq 

reads starting downstream of the annotated start. C) Novel putative coding intergenic 

ORF in the region Chromosome:2819729-2820319 (Salmonella) with supportive 

peptide evidence. D) Evidence of translation within pseudogene sugR (Salmonella), with 

two matching peptide identification.  E) Putative co-expression of a 3’ truncated ORF as 
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well as its 3’ extended counterpart due to a frameshifting event occurring during 

translation of the fdoG gene (E. coli). A magnification of the region beyond the stop 

codon displays a continuous, though ~100-fold lower pattern of Ribo-seq reads 

indicative of stop codon read-through.  

Interestingly, in case of fdoG (E. coli), REPARATION predicted two juxta 

positioned ORFs, both contained within a previously annotated ORF harbouring a stop 

codon read through event (figure 5E). In E. coli three other such read through events 

have been reported for genes fdnG, fdhF and prfB. The Ribo-seq read density within the 

C-terminal truncated ORF is about 100-fold higher as compared to the 5’ truncated ORF 

while only a 3-fold difference in RNA-seq density could be observed. The RNA-seq 

evidence supports the presence of the stop codon TGA at the end of the C-terminal 

truncated ORF. However, the observed continuous Ribo-seq signal is indicative of 

translation beyond the sequencing-verified stop codon and most likely points to a stop 

codon read through event (Feng et al. 2012). The so-called 3’ and 5’ truncations of the 

current annotation predicted by REPARATION are likely due to the algorithm not 

allowing for stop codon read through. A similar trend was observed in case of its 

Salmonella orthologue, with the Ribo-seq signal and RNA-seq 30- and 2-folds 

(respectively) higher for the C-terminal truncated ORF than the longer N-terminal 

truncated ORF (supplementary figure S7 B).  

 

REPARATION in the aid of small ORF annotation 

Small ORFs have historically been ignored in most in silico predictions because of 

the assumption that they can easily occur by chance due to their small size (Hyatt et 

al. 2010). As 71 codons is the average length when considering the length of the 5% 

shortest annotated ORFs in the 3 species, we here arbitrarily define a sORF as a 

translation product with a length of ≤71 codons. In Salmonella, REPARATION predicted 

119 putative coding sORFs. Of these, 61 (51%) matched annotations and respectively 

17 (14%) and 41 (34%) represent re-annotations (i.e. 3 extensions and 14 truncations) 

and novel ORFs. Supportive proteomics data was found for 29 predicted sORFs. While 

in E. coli and Bacillus the algorithm predicted 125 (95 (76%) matching annotations, 1 

extension, 4 truncations and 26 novel) and 395 (161 (41%) matching annotations, 8 

extensions, 29 truncations and 197 (50%) novel) sORFs. An interesting example of a 
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possible re-annotation of gene yfaD (E. coli) is the REPARATION predicted 56 codon 

sORF representing a truncated form (figure 6A). In line with transcriptional data pointing 

to transcription of an mRNA not encompassing the annotated ORF, Ribo-seq indicates 

expression of a smaller ORF of which the start of the gene is located 243 codons 

downstream of the annotated start. Other representative examples are the intergenic 

47 codons long sORF Chromosome:2470500-2470643 (E. coli) (figure 6B), the 30 

codons long sORF located on the reverse strand of the fre gene (Salmonella) (figure 6C) 

and a 57 codon long intergenic Bacillus sORF that overlaps with the CDS of the sORF-

encoding hfq gene (figure 6D).  

 

Figure 6: Novel sORFs predicted by REPARATION.  Ribo-seq and RNA-seq profiles 

indicate expression of A) a truncated form of the annotated yfaD (E. coli) gene B) a 47 

codons sORF matching the region Chromosome:2470500-2470643 (E. coli.)   C) a sORF 

encoded on the reverse strand encoding the fre gene (Salmonella). D) a sORF 
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Chromosome:1867485-1867655 (Bacillus) that partially overlaps the annotated fhq 

sORF (Bacillus). The Ribo-seq profiles indicate translation initiation in another frame.   

 

 

DISCUSSION 

Experimental signals from ribosome profiling exhibit patterns across protein coding 

ORFs which can be exploited to accurately delineate translated ORFs. Although Ribo-

seq is not completely standardized (Diament and Tuller 2016) and certain experimental 

procedures such as treatments (e.g. no treatment versus antibiotic treatment) tend to 

have a noticeable influence on the translation patterns observed (Calviello et al. 2015), 

we here developed an algorithm that enables a de novo delineation of translated ORFs 

in bacterial genomes. Our algorithm delineates putative protein coding ORFs in bacterial 

genomes using experimental information deduced from Ribo-seq, aiming to minimize 

biases inherent to in silico prediction methods. 

Several methods that use ribosome profiling data to delineate open reading frames 

in eukaryotes have been reported, but due to peculiarities in prokaryotic genomes such 

as high gene density, occurrence of multiple overlapping genes (Huvet and Stumpf 

2014) and the requirement of methodological adaptations to perform ribosome profiling 

experiments in bacteria, these tools are not directly transferable to ORF predictions in 

prokaryotes. Among them, and as cautioned by the authors, ORF-RATER is currently 

not applicable for use in prokaryotes as it performs its analysis on individual genes but 

prokaryotic genomes may not be divisible into distinct genes (Fields et al. 2015). 

Another method proposed by Chew et al. (2013) define metrics calculated from RPF 

read discrepancies between the 5’ and/or 3’ untranslated regions and the relative coding 

region of the transcript, metrics which cannot be properly defined in bacterial genomes 

due to their polycistronic nature. Alternative available software packages enabling the 

delineation of eukaryotic ORFs such as riboseqR (Chung et al. 2015) and RiboTaper 

(Calviello et al. 2015) take advantage of triplet periodicity in Ribo-seq data to infer 

translated ORFs. The former is a tool for parsing and inferring reading frames and 

transcript specific behaviour of Ribo-seq data while the later explores the triplet 

periodicity across the three frames within an annotated coding region to infer all 

possible coding ORFs. Due to the breakdown of triplet periodicity because of read 

accumulation at the start of the ORFs (figure 1B) coupled with the fact that only ATG 
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starting ORFs are considered, applying RiboTaper on the Salmonella bacteria Ribo-seq 

data predominantly resulted in the prediction of 5’ truncated ORFs (supplementary table 

T5) and thus, while clearly some triplet periodicity can be observed, the strict reliance 

of RiboTaper on this feature makes it evidently not suited for TIS prediction and ORF 

delineation in bacteria. Further, all the afore mentioned tools heavily rely on an existing 

genome annotation and transcriptome structure which is often not available in the case 

of prokaryotic genomes. The limitations of the current existing methods coupled with 

the peculiarities of prokaryotic genome structures stresses the need for a dedicated 

method to delineate open reading frames in prokaryotes.  

We applied REPARATION on three annotated bacterial species to illustrate its wide-

applicability and ability to predict putative coding regions. Multiple lines of evidence, 

including proteomics data, evolutionary conservation analysis and sequence 

composition suggest that the REPARATION-predicted ORFs represent bona fide 

translation events. As expected, most predicted ORFs agreed with previous annotations, 

but additionally we could detect a multitude of ORF updates next to novel translated 

ORFs mainly within intergenic and pseudogene regions. While we clearly observed a 

shift towards near-cognate versus cognate start selection for the novel predictions, we 

nonetheless observe that the order of start codon usage follows the standard model in 

the respective species. Perhaps unsurprisingly viewing the difficulty to predict short ORF 

using classical gene predictions, the novel ORFs predicted by REPARATION are 

predominantly shorter than those previously annotated. Our predictions also point to 

possible errors in the current start site annotation of some genes, resulting in the 

identification of N-terminal truncations and extensions. The predicted extensions exhibit 

a similar conservation pattern to annotated ORFs while a higher conservation and triplet 

periodicity upstream of the truncated predictions (figure 3) is likely due to the 

expression of multiple proteoforms across species. The identification of multiple TIS-

indicative N-termini in our E. coli N-terminomics dataset point to the existence of 

multiple translation initiation sites in at least 10 genes (supplementary table T4), likely 

an underrepresentation due to the low steady-state levels of N-terminally formylated 

N-termini. The former observation is in line with the recently revealed and until then 

highly underestimated occurrence of alternative translation events in eukaryotes 

(Ingolia, Lareau, and Weissman 2011; Van Damme et al. 2014). It is noteworthy that 

we identified 11 genes with multiple TIS-evidence from N-terminomics data 
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(supplementary table T4 and figure S4 C), in case of REPARATION however, only a 

single ORF is selected per ORF family, therefore representing a bias toward the 

discovery of multiple proteoforms. 

A substantial portion of the novel ORFs, with at least one identified orthologous gene, 

overlaps with known pseudogene loci. By virtue of the fact that pseudogenes in bacteria 

tend to be (sub)genus-specific and are rarely shared even among closely related species 

(Goodhead and Darby 2015; Lerat and Ochman 2005), it is likely that (part of) these 

genes have retained their protein coding potential, a finding that is further corroborated 

by proteomics data. The relatively fewer peptide identifications corresponding to the 

translation products of novel ORFs may in part be due to the difficulty of identifying 

these by MS, mainly because of their predominantly shorter nature and thus likely lower 

number of identifiable peptides (Fields et al. 2015). An in-silico analysis of the 

identifiable tryptic peptide coverage shows that on average 85% of the annotated 

protein sequences are covered by identifiable tryptic peptides while on average only 

69% of the novel ORFs are covered by identifiable tryptic peptides. Furthermore, 

bacterial translation products of sORFs have previously been shown to be more 

hydrophobic in nature and therefore extraction biases might also (in part) contribute to 

their underrepresentation in our proteomics datasets (Hemm et al. 2008). 

Historically sORFs have been neglected both in eukaryotes as well as prokaryotes. 

However, recently renewed interest has been directed toward the identification and 

characterization of sORFs (Andrews and Rothnagel 2014; Bazzini et al. 2014; Olexiouk 

et al. 2016). Small proteins represent a particularly difficult problem because they often 

yield weak statistics when performing computational analysis, making it difficult to 

discriminate protein coding from non-protein coding small ORFs (Samayoa, Yildiz, and 

Karplus 2011; Pauli, Valen, and Schier 2015). Exemplified by the identification of tens 

of sORFs (with supportive metadata), REPARATION’s utilization of Ribo-seq signal 

pattern at least in part alleviates the pitfalls of traditional bacterial gene prediction 

algorithms concerning the identification of sORFs. 

Based on matching N-terminal proteomics evidence and the sequenced N-terminals 

from Ecogene, REPARATION accurately predicts 86 and 89% of the ORFs with 

experimental evidence. Overall, the high correlative second amino acid frequency 

patterns observed when comparing annotated versus re-annotated/new ORFs provide 
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further proof of the accuracy and resolution of start codon selection in case of 

REPARATION predicted ORFs. Nonetheless, start site selection by REPARATION resulted 

in a loss of 6% of the N-terminal supported gene starts which exceeded the S-curve 

thresholds. While the existence of multiple N-terminal proteoforms in bacteria in 

contrast to the single ORF selection by REPARATION is likely the main explanatory 

reason for this inconsistency, the discrepancy between predicted and N-terminally 

supported start, might especially in the case of short truncations also be contributed (in 

part) by the lack of accuracy of start codon selection. REPARATION could potentially 

take advantage of improved measures or features to increase the prediction power of 

the classifier. At present REPARATION is the first attempt to perform a de novo putative 

ORF delineation in prokaryotic genomes that relies on Ribo-seq data. With automated 

bacterial gene prediction algorithms estimated to have false prediction rate of up to 

30% (Angelova, Kalajdziski, and Kocarev 2010), machine learning algorithms that learn 

properties from Ribo-seq experiments such as REPARARTION pave the way for a more 

reliable (re-)annotation of prokaryotic genomes, a much desired need in the current era 

of (prokaryotic) genome sequencing. 

 

SOFTWARE 

REPARATION software is available at https://github.com/Biobix/REPARATION. 

 

ACCESSION NUMBERS 

Ribo-seq and RNA-seq sequencing data reported in this paper have been deposited in 

NCBI’s Gene Expression Omnibus with the accession number GSE91066. 

All MS proteomics data and search results have been deposited to the ProteomeXchange 

Consortium via the PRIDE (Vizcaino et al. 2016) partner repository with the dataset 

identifier PXD005844 for the Salmonella typhimurium SL1344 datasets and PXD005901 

for the E. coli K12 str. MG1655 dataset. Reviewers can access the Salmonella datasets 

by using ‘reviewer61164 @ebi.ac.uk’ as username and ‘Zg0VLXnS’ as password while 

the E. coli dataset can be accessed using ‘reviewer23743@ebi.ac.uk’ as username and 

‘cn5cG4jW’ as password. 
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