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Abstract

We address the evolution of effective number of individuals under androdioecy and gynodi-
oecy. We analyze dynamic models of autosomal modifiers of weak effect on sex expression.3

In our zygote control models, the sex expressed by a zygote depends on its own genotype,
while in our maternal control models, it depends on the genotype of its maternal parent.
Our analysis unifies full multi-dimensional local stability analysis with the Li-Price equation,6

which for all its heuristic appeal, describes evolutionary change over a single generation. We
define a point in the neighborhood of a fixation state from which a single-generation step in-
dicates the asymptotic behavior of the frequency of a modifier allele initiated at an arbitrary9

point near the fixation state. A concept of heritability appropriate for the evolutionary mod-
ification of sex emerges from the Li-Price framework. We incorporate our theoretical analysis
into our previously-developed Bayesian inference framework to develop a new method for12

inferring the viability of gonochores (males or females) relative to hermaphrodites. Applying
this approach to microsatellite data derived from natural populations of the gynodioecious
plant Schiedea salicaria and the androdioecious killifish Kryptolebias marmoratus, we find15

that while female and hermaphrodite S. salicaria appear to have similar viabilities, male K.
marmoratus appear to survive to reproductive age at less than half the rate of hermaphro-
dites.18

Keywords:
sex ratio evolution, gynodioecy, androdioecy, effective population size, Li-Price equation
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1 Introduction21

Changes in the breeding system and the effective number of individuals induce genome-
wide transformations of the context in which evolution operates. Here, we address the
evolution of effective number under androdioecy and gynodioecy. This analysis seeks to24

unify questions regarding evolutionary stability (Maynard Smith and Price 1973) of the sex
ratio, the nature of heritability as defined within the Li-Price framework (Li 1967; Price
1970), and the evolution of effective number.27

We begin with a description of the empirical finding of Redelings et al. (2015) that pro-
vides the major motivation of this study: that a measure of effective number appears to
be nearly maximal in three natural populations exhibiting partial hermaphroditism (Section30

1.1). Among the possible explanations for this trend is that evolution of the sex ratio in
each population has coincidentally brought effective number to near maximal values (Section
1.2). However, existing theory for the evolution of the sex ratio in gynodioecious and an-33

drodioecious populations indicates that major genes for sex expression evolve to the optimal
sex ratio only under complete dominance of genes inducing the development of gonochores
(males or females). Accordingly, we here undertake a full analysis of the fate of rare genes36

of minor effect on sex expression (Section 1.3). In addition to resolving the question of the
evolutionary attractiveness and stability of the optimal sex ratio, this change in perspective
provides a framework for the Bayesian estimation of the viability of gonochores relative to39

hermaphrodites.

1.1 Effective number

Relative effective number: Wright (1931) introduced the notion of effective number42

in the context of generalizing fundamental aspects of evolutionary change to populations
structured by sex, fluctuations through time in numbers of individuals, or other factors. In
their analysis of the concept, Ewens (1982) and Crow and Denniston (1988) showed that45

the various definitions give rise to different expressions for effective number in even simple
models.

Let NH and NG respectively denote the number of reproductive hermaphrodites and48

gonochores (males or females). We refer to the probability that a pair of autosomal genes,
randomly sampled from distinct reproductives in the present (offspring) generation, derive
from the same reproductive in the preceding (parental) generation as the rate of parent-51

sharing (1/NP ):
1

NP

=
C2

NH

+
(1− C)2

NG

. (1)

for C the probability that an autosomal gene randomly sampled from a reproductive in
the offspring generation derives from a hermaphroditic parent. Here, we treat as equivalent54

the interpretation that C represents the collective contribution to the offspring generation
from hermaphrodites in the parental generation. Descent of the gene pair from the same
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hermaphrodite entails that both derive from hermaphrodites (with probability C2) and from57

the same individual (with probability 1/NH). Similarly, the second term on the right side
of (1) corresponds to the descent of the gene pair from the same gonochore. Crow and
Denniston (1988) designated the inverse of the rate of parent-sharing (NP ) as “inbreeding60

effective size.”

Redelings et al. (2015) defined relative effective number as the ratio of inbreeding effective
size and the total effective number of reproductives (N = NG +NH):63

R =
NP

N
. (2)

From (1), we obtain

R =
NP

NH +NG

=
1

C2

h
+ (1−C)2

1−h

=
h(1− h)

h(1− h) + (h− C)2
, (3)

for h the proportion of hermaphrodites among reproductives:

h =
NH

NG +NH

. (4)

Clearly, relative effective number cannot exceed unity (R ≤ 1), attaining unity only for

h = C, (5)

at which the proportion of hermaphrodites among reproductives (h) is identical to C, the66

probability that a random gene sampled from reproductives derives from a hermaphrodite
in the parental generation. Both (1) and (2) differ conceptually and quantitatively from
indices proposed by Laporte et al. (2000), who explored effective number in gynodioecious69

populations. That distinct concepts of effective number exist is not unexpected under even
the most basic forms of population structure, including sex (Ewens 1982; Crow and Denniston
1988).72

Empirical observations: Redelings et al. (2015) developed a Bayesian method for
the estimation of the rate of self-fertilization in pure hermaphrodite, gynodioecious, and
androdioecious populations. It provides a means of inferring all model parameters, including75

the determinants of relative effective number R (2).

Figure 1 presents posterior distributions of R (2) for the three data sets studied by
Redelings et al. (2015), including those derived from two populations of the androdioecious78

killifish Kryptolebias marmoratus (Mackiewicz et al. 2006; Tatarenkov et al. 2012). An
intriguing empirical observation is the near-maximization of relative effective number R in
all three populations. A primary question motivating the present study is whether this81

apparent skewing reflects adaptive evolution of the sex ratio.
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Figure 1: Posterior distributions of relative effective number R (2).

1.2 Evolution of the sex ratio

We address whether the near-maximal values of relative effective number (Fig. 1) reflects84

evolutionary pressures on the sex ratio rather than on effective number itself.

Fisher (1958) explored the evolutionary modification of the sex ratio under gonochorism,
with Nf females and Nm males participating in reproduction. Under the assumption that87

reproduction is limited by the number of females, the total number of zygotes is proportional
to Nf and the reproductive value of a male relative to a female corresponds to Nf/Nm. Under
gonochorism, males and females make equal collective contributions at each autosomal locus,90

which then implies that autosomal modifiers evolve toward equal investment in male and
female offspring (Fisher 1958). Edwards (2000) provides an account of the origins of this
insight.93

The evolution of the sex ratio has also been addressed in the context of the marginal
value of parental investment in offspring of each sex (e.g., Shaw and Mohler 1953; Lloyd
1975; Charnov et al. 1976). Increased investment in the sex with the highest marginal value96

affords increased transmission to the grandoffspring generation. For sexual forms corre-
sponding to hermaphrodites and gonochores, the per capita contribution of hermaphroditic
offspring to the grandoffspring generation corresponds to C/NH , reflecting the partitioning99

among NH reproductive hermaphrodites of the collective contribution to the gene pool by
hermaphrodites (1). The marginal value of investing in hermaphroditic offspring exceeds the
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marginal value of investing in gonochorous offspring only if102

C

NH

>
Z(1− C)

NG

, (6)

for Z the expected number of gonochores of reproductive age that can be produced with the
investment required to produce a single hermaphrodite of reproductive age. In this context,
the reproductive value of a sex is proportional to a ratio of marginal values.105

An evolutionarily stable strategy (ESS, Maynard Smith and Price 1973) corresponds to
an investment allocation against which no other allocation can increase when rare. Equal
marginal value among mating types implies that all investment strategies give equal returns.108

Candidate ESS hermaphrodite proportions (h∗) among offspring at reproductive age (Adults
in Table 1) correspond to points of equality between the marginal values of hermaphrodites
and gonochores:111

h∗

1− h∗
=

C

Z(1− C)
(7a)

(a rearrangement of (6), using (4)). If the departure of the relative cost of a hermaphrodite
(Z) from unity derives entirely from differential viability of gonochorous and hermaphroditic
offspring between their conception and attainment of reproductive age, this candidate ESS114

corresponds to a sex ratio among offspring at conception (Zygotes in Table 1) of

ĥ

1− ĥ
=

C

1− C
. (7b)

Lloyd (1975) used arguments similar to those motivating (7b) to propose ESS sex ratios
under gynodioecy and androdioecy. Results of dynamic models (Ross and Weir 1975, 1976;117

Charlesworth and Charlesworth 1978; Wolf and Takebayashi 2004) indicate that changes in
frequency of major genes for sex expression evolve to those ESS values only under complete
dominance of the allele inducing gonochores (males or females), similar to a mammalian Y120

chromosome.

Among model systems for gynodioecy and androdioecy, evidence supporting sex deter-
mination by a dominant major gene appears to be uncommon. In their analysis of sex123

within broods generated by controlled crosses between females and hermaphrodites of the
gynodioecious Schiedea salicaria, Weller and Sakai (1991) recognized two major groups of
hermaphroditic pollen donors: those that generated hermaphroditic offspring almost ex-126

clusively and those that generated the female and hermaphrodites in approximately equal
proportions. Weller and Sakai (1991) proposed that male sterility derives from a recessive al-
lele at a single locus, and reported approximate agreement between the population sex ratio129

and the ESS proposed by Lloyd (1975). However, Ross and Weir (1975) had already shown
that short-term evolution of a recessive major allele for male sterility in a gynodioecious
population induces an equilibrium population sex ratio that departs from the ESS.132
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1.3 Analytical and empirical exploration

Here, we address the evolutionary modification of the sex ratio under androdioecy and gyn-
odioecy by minor genes and its implications for effective number. We then apply this theoret-135

ical framework to empirical observations to infer Z (6), the relative viability of gonochores, in
natural populations of the androdioecious Kryptolebias marmoratus and the gynodioecious
Schiedea salicaria.138

Evolution of the sex ratio: Among the major questions regarding the evolution of
breeding systems is the nature of Darwinian fitness in this context. Reproductive success of
an individual may depend not only on its own sex expression but on the sex expression of141

other members of the present or descendant populations. Numerous authors have explored
definitions of Darwinian fitness under androdioecy and gynodioecy (Ross and Weir 1975;
Lloyd 1975; Charlesworth and Charlesworth 1978). An alternative approach, and the one144

we have adopted here, entails modeling the genetic dynamics without appeal to an external
definition of fitness (Ross and Weir 1975, 1976; Wolf and Takebayashi 2004).

While previous work has explored short-term change in the frequencies of major genes,147

our analysis addresses long-term change in parameter space (Eshel and Motro 1981; Tay-
lor 1989; Christiansen 1991) by means of mutations of minor effect arising at modifier loci
across the genome. A candidate hermaphrodite proportion (7b) would in fact correspond to150

an ESS only if any rare modifier of the sex ratio fails to increase at a geometric rate in a
monomorphic population exhibiting the candidate sex ratio. Further, ĥ would correspond to
an ESS that is locally attracting in parameter space if rare autosomal enhancers of herma-153

phrodite production invade a population with hermaphrodite proportion hc only if hc < ĥ
and suppressors invade only if hc > ĥ. Such an investment allocation has been described as a
continuously stable strategy (Eshel and Motro 1981) or as showing m-stability (Taylor 1989)156

or convergence stability (Christiansen 1991). We show that within the context of long-term
changes in minor genes, rather than short-term changes in major genes, candidate sex ratios
satisfying (7b) do in fact correspond to attracting evolutionary strategies.159

Sex expression in the androdioecious killifish Kryptolebias marmoratus reflects epigenetic
regulation of genes throughout the genome in response to temperature and other variables.
Ellison et al. (2016) studied methylation patterns in brain tissue isolated from fish derived162

from eggs incubated at controlled temperatures, demonstrating significant genome-wide dif-
ferences due to multiple factors, including sex, temperature, and laboratory strain. Loci
showing responses in methylation levels included candidates for major sex determination165

genes and also amplified fragment length polymorphism regions across the genome. These
observations are consistent with the conceptual framework of our models, which envisions
many loci with the potential to influence sex expression in response to temperature and168

other factors. Whether enhancement of gonochore development by a particular allele is
advantageous depends on genome-wide expression patterns.

Our central theoretical result for the evolution of androdioecy and gynodioecy under both171

zygote and maternal control of sex expression is that the current population resists invasion
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of a mutation of weak effect at a modifier locus only if

(h− ĥ)(α0 − α1) > 0, (8)

for h the sex expression level of the population prior to the introduction of the mutation,174

ĥ the candidate ESS sex expression level (Section 2.1), and (α0 − α1) the average effect of
substitution of the new mutation inferred from the Li-Price approach extended to inbreeding
(Section 2.2). This expression signifies that the population resists the introduction of a new177

mutation if the current sex expression level exceeds the ESS ((h − ĥ) > 0) and the average
effect of the mutation would raise the sex expression level even further ((α0−α1) > 0), or if
both conditions are reversed.180

Estimation of relative viability: Merging our theoretical analysis with a previously-
developed Bayesian inference framework (Redelings et al. 2015), we develop a new method
for inferring the viability of gonochores (males or females) relative to hermaphrodites.183

Attainment of the presumptive ESS sex ratio (7) implies maximization of relative effective
number (2) only if gonochores and hermaphrodites have equal viability (Z = 1). The
departure from unity of relative effective number provides a basis for inferring the relative186

viability of gonochores (Z). Under the assumption that the natural populations under study
have in fact evolved to the ESS sex ratio at conception, we use the Bayesian sampler of
Redelings et al. (2015) to obtain posterior densities for the relative viability of gonochores (Z)189

in Kryptolebias marmoratus and Schiedea salicaria. Our results suggest that K. marmoratus
males have significantly lower viability than hermaphrodites in populations with both high
(TC) and low (BP) frequencies of males.192

2 Methods

2.1 Candidate ESS sex expression levels

We derive candidate ESS values under zygote and maternal control of sex expression in195

populations comprising NH hermaphrodites and NG gonochores (males or females). These
candidate ESS levels extend those proposed by Lloyd (1975). Our full local stability analysis
(Section 3) demonstrates that these candidates do in fact correspond to continuously stable198

strategies.

Life cycle: Table 1 summarizes offspring production by maternal parents through the
major phases of the life cycle. In the androdioecy models, all maternal parents are her-201

maphroditic. In the gynodioecy models, females produce offspring at rate σ̃ relative to
hermaphrodites (σ̃ corresponds to σ in Redelings et al. 2015). A proportion s̃ of egg cells
produced by hermaphrodites are self-fertilized (uniparental) and all egg cells produced by204

females are outcrossed (biparental). Inbreeding depression occurs between the zygote and
juvenile stages, with uniparental offspring (“Uni”) surviving to the juvenile stage at rate
τ relative to biparental offspring (“Bi”). Under a rescaling at the juvenile stage, a female207
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Table 1
Offspring production

Life Stage

Maternal Parent Zygotes Juveniles Adults

Hermaphrodite
Uni s̃ s = s̃τ

s̃τ+1−s̃

Bi 1− s̃ 1− s = 1−s̃
s̃τ+1−s̃

Female Bi σ̃ σ = σ̃
s̃τ+1−s̃

has an average of σ surviving offspring relative to a hermaphrodite and a proportion s of
the surviving offspring of a hermaphrodite are uniparental. Sex-specific viability selection
occurs between the juvenile and adult stages, with gonochores (males or females) surviving210

to reproductive age at rate Z relative to hermaphrodites, irrespective of whether they are
uniparental or biparental.

Our full dynamical models depict evolving autosomal modifiers of sex expression. In213

contrast, derivation of the ESS values assumes the absence of heritable variation in sex
expression: for example, upon the fixation of a modifier allele that induces the ESS sex
ratio. Under this assumption, offspring sex (gonochore or hermaphrodite) is independent of216

parental sex and independent of the level of inbreeding. Accordingly, the relative proportions
of uniparental and biparental offspring (s and σ in Table 1) are identical at the juvenile and
adult stages and the sex ratio among zygotes is identical to the sex ratio among juveniles.219

Further, C, the probability that a random gene derives from a hermaphroditic parent (1), is
identical for sampling from juvenile offspring (before sex-specific selection) and from adult
offspring (after sex-specific selection).222

Androdioecy: Under androdioecy (NG males and NH hermaphrodites), outcrossing en-
tails fertilization of egg cells from the pollen cloud, to which female-sterile (male) individuals
contribute at rate ω relative to hermaphrodites. In accordance with the laboratory experi-225

ments of Furness et al. (2015) on Kryptolebias marmoratus, our Kryptolebias model imposes
the additional assumption that all biparental individuals have a male parent (ω =∞).

Under androdioecy, all egg cells derive from hermaphrodites, with a proportion s̃ of those228

egg cells fertilized by self-pollen. The uniparental proportion among juveniles,

sA =
s̃τ

s̃τ + 1− s̃
, (9)

is independent of the population sex ratio.

The probability that an autosomal gene randomly sampled from juvenile offspring (Table231
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1) derives from a hermaphrodite in the parental generation corresponds to

CA = 1− (1− sA)GA/2, (10)

in which GA reflects the relative contribution of males of the parental generation to the
pollen pool:234

GA =
ωNG

ωNG +NH

=
ω(1− h)

ω(1− h) + h
, (11)

for (1−h) the frequency of males among reproductives in the parental generation (4). In the
Kryptolebias model, in which all biparental offspring have a male parent (GA = 1, ω =∞),
the collective contribution of hermaphrodites reduces to

CA = 1− (1− sA)/2 = (1 + sA)/2.

As indicated in our exposition of the life cycle (Table 1), the absence of heritable genetic
variation for sex expression (e.g., at a genetically monomorphic ESS state) implies that
the uniparental proportion sA is identical at the juvenile and adult stages. At such an237

ESS state, CA corresponds to the probability that a random autosomal gene derives from
a hermaphrodite in the preceding generation, whether sampled at the juvenile or the adult
stage.240

Candidate ESS sex ratios at reproductive age (7) satisfy

h∗

1− h∗
=

1− (1− sA)/2
[

ω(1−h∗)
ω(1−h∗)+h∗

]
Z(1− sA)/2

[
ω(1−h∗)

ω(1−h∗)+h∗

] .

Solving, we obtain candidates for the unbeatable sex ratio at reproduction under androdi-
oecy:

h∗A
1− h∗A

=

{
ω(1+sA)/2

Zω(1−sA)/2−1 if (12b) holds

∞ otherwise.
(12a)

Maintenance of androdioecy (0 < h∗A < 1) requires that the expected contribution of a243

juvenile male to the subsequent generation exceed that of a juvenile hermaphrodite by at
least twofold:

Zω(1− sA) > 2. (12b)

This condition becomes more stringent as the rate of outcrossing (1 − sA) or the relative246

viability of males (Z) decline. If (12b) fails, the sole candidate ESS corresponds to pure
hermaphroditism (hA = 1).

At the juvenile (rather than adult) stage, the candidate ESS (12a) corresponds to a sex249

ratio of
ĥA

1− ĥA
=

{
Zω(1+sA)/2
Zω(1−sA)/2−1 if (12b) holds

∞ otherwise.
(12c)

indicating that the composite parameter Zω represents the net effects on the ESS of differen-
tial viability and pollen success of males. Appendix A describes conditions under which the252
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unbeatable sex ratio proposed by Lloyd (1975) corresponds to our non-zero ESS candidate
(12).

Gynodioecy: Under gynodioecy (NG females and NH hermaphrodites), females set
seeds at rate σ̃ relative to hermaphrodites (Table 1). An autosomal gene randomly sampled
from a juvenile offspring derives from a hermaphrodite parent with probability

CG =
NGσ̃/2 +NH(τ s̃+ 1− s̃)
NGσ̃ +NH(τ s̃+ 1− s̃)

=
(1− h)σ/2 + h

(1− h)σ + h
(13)

for h the proportion of hermaphrodites among parents in the preceding generation (4) and
σ the scaled seed fertility of females (Table 1). This expression also corresponds to

CG = 1− (1− sG)GG/2,

for the uniparental proportion among juveniles given by255

sG =
NHτ s̃

NGσ̃ +NH(τ s̃+ 1− s̃)
=

hs

(1− h)σ + h
, (14)

and the proportion of biparental offspring that have a female parent by

GG =
NGσ̃

NGσ̃ +NH(1− s̃)
=

(1− h)σ

(1− h)σ + h(1− s)
. (15)

In contrast with androdioecy (9), the uniparental fraction sG (14) depends on the population
sex ratio. Once again, at a monomorphic ESS (absence of heritable genetic variation for258

sex expression), CG provides the probability that a random autosomal gene derives from a
hermaphrodite in the preceding generation, whether sampled at the juvenile or the adult
stage.261

From (7) and (13), the candidate ESS at reproductive age corresponds to

h =
(1− h)σ/2 + h

(Z + 1)(1− h)σ/2 + h
.

Solving, we obtain candidates for the unbeatable sex ratio under gynodioecy:

h∗G
1− h∗G

=

{
σ

Zσ−2 if (16b) holds

∞ otherwise.
(16a)

Maintenance of gynodioecy (0 < h∗G < 1) requires that the expected number of offspring
produced by a juvenile female exceed that of a juvenile hermaphrodite by at least twofold:264

Zσ > 2. (16b)

11
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More intense inbreeding depression (smaller τ) and higher female viability or fertility (larger
Z or σ̃) tend to promote gynodioecy. For cases in which (16b) fails, the sole candidate ESS
corresponds to pure hermaphroditism (h∗G = 1).267

At the juvenile stage (Table 1), the candidate ESS (16a) corresponds to

ĥG

1− ĥG
=

{
Zσ
Zσ−2 if (16b) holds

∞ otherwise,
(16c)

with composite parameter Zσ comprising the net effects on the ESS of differential viability
and seed set of females. As in the androdioecy case (12), our non-zero ESS candidate (16)270

corresponds to the unbeatable sex ratio proposed by Lloyd (1975) under the conditions
described in Appendix A.

2.2 Li-Price framework273

Li (1967) and Price (1970) expressed the one-generation change in the frequency of an allele as
a covariance between fitness and the frequency of the allele across genotypes. Here, we extend
this framework to the evolution of effective number and sex ratio in inbred populations.276

Table 2 presents measures associated with genotypes at a biallelic autosomal locus. In the
population, genotypes AA, Aa, and aa occur in frequencies to u0, u1, and u2 (

∑
i ui = 1).

The locus may influence the expression of a trait, with genotype i associated with trait

Table 2
Phenotypic and genetic values

Genotypes

AA Aa aa

Frequency u0 u1 u2

Trait deviation P0 − P̄ P1 − P̄ P2 − P̄
Additive genotypic value 2α0 α0 + α1 2α1

Fitness deviation T (u′0 − u0)/u0 T (u′1 − u1)/u1 T (u′2 − u2)/u2

deviation (Pi − P̄ ), in which the average value of the trait corresponds to

P̄ =
∑
i

uiPi.

Price (1970) defined the fitness of genotype i as proportional to the number of gametes
transmitted to the offspring generation. In panmictic populations, in which genotypic fre-
quencies at the point of zygote formation conform to Hardy-Weinberg proportions, this279
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definition of fitness corresponds to the expected rate of survival to reproduction, as assumed
by Li (1967). Because fitness in the present context may include various components, we
here define the fitness of genotype i as the ratio of numbers of individuals of genotype i at282

the same point in the life cycle in consecutive generations:

Wi =
Tu′i
ui

, (17)

for the prime representing the next generation forward in time. Here, T converts the ratio
of frequencies (u′/u) to the ratio of numbers of individuals; in fully-specified genetic models285

(Section 2.3), T denotes the normalizer that ensures that gene and genotypic frequencies
sum to unity. Denniston (1978) observed that (17) departs from more conventional notions
of fitness: high genotypic fitness reflects high production of the genotype rather than by the288

genotype. Under this definition, fitness is virtually always frequency-dependent: even for
the most basic model of constant viability selection, (17) ceases to change only at equilibria
(u′i = ui).291

To genotypes AA, Aa, and aa, we associate additive genotypic values 2α0, α0 + α1,
and 2α1. Much previous work, designed for panmictic populations, has defined additive
genotypic value as the frequency of allele A in a genotype (Li 1967; Price 1970). Here,294

we use the definition of Fisher (1941), under which the additive effects αi are obtained by
minimizing the mean squared deviation (MSD) of the phenotype from the additive genotypic
value across genotypes:297

MSD = u0[P0 − P̄ − 2α0]
2 + u1[P1 − P̄ − (α0 + α1)]

2 + u2[P2 − P̄ − 2α1]
2. (18)

For general systems of mating, the average effect of substitution (Fisher 1941), the expected
effect on the trait of substituting allele A for allele a, corresponds to

α0 − α1 =
2u0(P0 − P̄ ) + u1(P1 − P̄ )

4p(1− p)− u1

=
F (P0 − P2) + (1− F )[p(P0 − P1) + (1− p)(P1 − P2)]

1 + F
,

(19)

for p representing the frequency of allele A (p = u0 +u1/2) and F the fixation index (Wright
1933). In the additive case, in which

(P0 − P2) = 2(P1 − P2),

the average effect reduces to
α0 − α1 = (P1 − P2),

irrespective of the magnitude of F .300

Using the definitions summarized in Table 2, we obtain the covariance across genotypes
between fitness W (17) and additive genotypic value Gα with respect to the trait:

Cov(WGα) = u0
T (u′0 − u0)

u0
2α0 + u1

T (u′1 − u1)
u1

(α0 + α1) + u2
T (u′2 − u2)

u2
2α2

= 2(α0 − α1)T∆p,

(20)
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in which ∆p represents the change in frequency of allele A over a single generation. This303

expression indicates that the frequency of the A allele increases (∆p > 0) if either (1)
its average effect of substitution on the trait is positive ((α0 − α1) > 0) and the trait is
positively correlated with fitness (Cov(WGα) > 0) or (2) its average effect of substitution306

on the trait is negative ((α0 − α1) < 0) and the trait is negatively correlated with fitness
(Cov(WGα) < 0). To address Fisher’s (1930) fundamental theorem of natural selection, Li
(1967) and Price (1970, 1971) assigned the trait of interest as fitness itself, in which case the309

covariance Cov(WGα) reduces to the additive variance in fitness.

For all its heuristic appeal, the Li-Price equation (20) provides a one-dimensional de-
scription of evolutionary change across a single generation. In the present context, the trait312

of interest corresponds to the long-term evolution of sex expression in a multi-dimensional
state space. Unless sex expression is uncorrelated with fitness (Cov(WGα) = 0) or the focal
modifier locus has no additive variance with respect to this trait ((α0 − α1) = 0), natural315

selection will induce genetic change. Because both the average effect of substitution (19)
and the covariance Cov(WGα) depend on genotypic frequencies in the general case, the re-
lationship between the one-generation description provided by (20) and the outcome of the318

evolutionary process needs clarification.

Key to the application of the Li-Price framework to the evolution of sex expression is the
elucidation of the component of the population to which the genotypic frequencies (ui) in321

Table 2 correspond. In the present context, populations may comprise both gonochores and
hermaphrodites, and sex expression in a zygote depends on either its own genotype or the
genotype of its maternal parent. This genotypic distribution (ui) defines both the average324

effect of substitution (19) and heritability for the evolutionary process under study.

2.3 Dynamic models of sex ratio evolution

We address two genetic mechanisms for the determination of sex expression. In the zygote327

control models, zygotes of genotypes AA, Aa, and aa respectively develop into hermaphro-
dites at rates h0, h1, and h2 (0 ≤ hi ≤ 1, i = 0, 1, 2), with the remaining zygotes developing
into gonochores. In the maternal control models, it is the genotype of the maternal parent330

of the zygotes that determines sex expression rates.

Hermaphrodites set a proportion s̃ of seeds by self-fertilization. Uniparental offspring
survive to reproduction at rate τ relative to biparental offspring, with this differential survival333

occurring immediately upon zygote formation, even before sex expression.

2.3.1 Zygotic control of sex expression

The juvenile stage of the life cycle (Table 1) follows the expression of inbreeding depression, in336

which uniparental and biparental offspring may have different rates of survival, but precedes
sex expression and sex-specific selection in the surviving offspring. At the end of the juvenile
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phase, genotypes AA, Aa, and aa occur in proportions z0, z1, and z2 (z0 + z1 + z2 = 1).339

Androdioecy: In the next generation forward in time, genotypic frequencies correspond
to

z′0 ∝ s̃τ(z0h0 + z1h1/4) + (1− s̃)(z0h0 + z1h1/2)q

z′1 ∝ s̃τz1h1/2 + (1− s̃)[(z0h0 + z1h1/2)(1− q) + (z1h1/2 + z2h2)q]

z′2 ∝ s̃τ(z1h1/4 + z2h2) + (1− s̃)(z1h1/2 + z2h2)(1− q),

for q denoting the frequency of the A allele in the pollen pool:

q =
h0z0 + h1z1/2 + ωZ[(1− h0)z0 + (1− h1)z1/2]

h0z0 + h1z1 + h2z2 + ωZ[(1− h0)z0 + (1− h1)z1 + (1− h2)z2]
. (21a)

These expressions imply

Tz′0 = sA(z0h0 + z1h1/4) + (1− sA)(z0h0 + z1h1/2)q

Tz′1 = sAz1h1/2 + (1− sA)[(z0h0 + z1h1/2)(1− q) + (z1h1/2 + z2h2)q]

Tz′2 = sA(z1h1/4 + z2h2) + (1− sA)(z1h1/2 + z2h2)(1− q),
(21b)

for sA given in (9) and the normalizer by342

T = h0z0 + h1z1 + h2z2. (21c)

In the absence of selection on the modifier locus (h0 = h1 = h2), recursion system (21)
indicates that allele frequency in seeds and pollen (z0 +z1/2 = q) remains at its initial value,
with asymptotic convergence at rate sA/2 of the frequency of heterozygotes (z1) to

2q(1− q)(1− Fneut),

for Fneut the fixation index (Wright 1933):

Fneut =
s

2− s
, (22)

with sA substituted for s.

Gynodioecy: Genotypic frequencies in the next generation forward in time correspond
to

z′0 ∝ s̃τ(z0h0 + z1h1/4)

+ {(1− s̃)(z0h0 + z1h1/2) + σ̃Z[z0(1− h0) + z1(1− h1)/2]}q
z′1 ∝ s̃τz1h1/2

+ {(1− s̃)(z0h0 + z1h1/2) + σ̃Z[z0(1− h0) + z1(1− h1)/2]}(1− q)
+ {(1− s̃)(z1h1/2 + z2h2) + σ̃Z[z1(1− h1)/2 + z2(1− h2)]}q

z′2 ∝ s̃τ(z1h1/4 + z2h2)

+ {(1− s̃)(z1h1/2 + z2h2) + σ̃Z[z1(1− h1)/2 + z2(1− h2)]}(1− q),
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in which q represents the frequency of the A allele in the pollen pool (which derives entirely345

from hermaphrodites),

q =
h0z0 + h1z1/2

h0z0 + h1z1 + h2z2
. (23a)

After division by (s̃τ + 1− s̃), we obtain

Tz′0 = s(z0h0 + z1h1/4)

+ {(1− s)(z0h0 + z1h1/2) + σZ[z0(1− h0) + z1(1− h1)/2]}q
Tz′1 = sz1h1/2

+ {(1− s)(z0h0 + z1h1/2) + σZ[z0(1− h0) + z1(1− h1)/2]}(1− q)
+ {(1− s)(z1h1/2 + z2h2) + σZ[z1(1− h1)/2 + z2(1− h2)]}q

Tz′2 = s(z1h1/4 + z2h2)

+ {(1− s)(z1h1/2 + z2h2) + σZ[z1(1− h1)/2 + z2(1− h2)]}(1− q),

(23b)

for the normalizer corresponding to348

T =
2∑
i=0

zi[hi + σZ(1− hi)]. (23c)

In the absence of selection on the modifier locus (h0 = h1 = h2 = h), allele frequency in
seeds and pollen (z0 + z1/2 = q) remains at its initial value. Unlike the uniparental fraction
sA (9) under androdioecy, sG (14) depends on the population sex ratio. The frequency of
heterozygotes (z1) converges asymptotically at rate sG/2 (14) to

2q(1− q)(1− Fneut),

for Fneut given in (22) but with sG (14) substituted for s. Selective neutrality at the modifier
locus entails that the transformation (23) has an eigenvalue of unity (reflecting no changes in
allele frequency) and an eigenvalue of sG/2 (reflecting convergence of z1 under inbreeding).351

2.3.2 Maternal control of sex expression

Under the maternal control model, the genotype of the maternal parent determines sex
expression in zygotes. While the recursions for the zygote control models describe genotypic354

frequencies at the end of the juvenile stages of the life cycle, the census point for the maternal
control models occurs at the end of the adult stage (Table 1), following both inbreeding
depression and sex-specific selection. At this point, genotypes AA, Aa, and aa occur in357

proportions x0, x1, and x2 in hermaphrodites and y0, y1, and y2 in gonochores (x0 + x1 +
x2 + y0 + y1 + y2 = 1).

Androdioecy: At the point of reproduction, genotypic frequencies among hermaphro-360

dites correspond to

Tx′0 = sA(x0h0 + x1h1/4) + (1− sA)(x0h0 + x1h1/2)q

Tx′1 = sAx1h1/2 + (1− sA)[(x0h0 + x1h1/2)(1− q) + (x1h1/2 + x2h2)q]

Tx′2 = sA(x1h1/4 + x2h2) + (1− sA)(x1h1/2 + x2h2)(1− q),
(24a)
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for q the frequency of the A allele in the pollen cloud,

q =
x0 + x1/2 + ω(y0 + y1/2)

x0 + x1 + x2 + ω(y0 + y1 + y2)
, (24b)

and sA given in (9). Substitution of Z(1 − hi) for hi in the hermaphrodite recursion Tx′i363

produces the male recursion Ty′i, which implies the normalizer

T =
2∑
i=0

xi[hi + Z(1− hi)]. (24c)

Because male genotypic frequencies (yi) affect transmission only through the pollen cloud
(24b), description of the transformation requires a smaller set of variables, including x0, x1,366

x2, (y0 + y1/2), and (y1/2 + y2).

In the absence of selection on the modifier locus (h0 = h1 = h2 = h), the population
ratio of hermaphrodites to males converges in a single generation to369 ∑

i x
′
i∑

i y
′
i

=
h

h+ Z(1− h)
(25a)

and the genotypic frequencies in hermaphrodites and males are proportional:

x′i
y′i

=
h

Z(1− h)
. (25b)

Accordingly, the frequencies of allele A among hermaphrodites (x0+x1/2), males (y0+y1/2),
and pollen (q) converge to equality in a single generation,

q′ =
x′0 + x′1/2∑

i x
′
i

=
y′0 + y′1/2∑

i y
′
i

,

and attain their common equilibrium value in two generations,

p =
x0 + x1/2∑

i xi
(1 + sA)/2 + q(1− sA)/2, (26)

in which the uniparental proportion sA is given in (9) and xi and q represent the initial
values of those variables. The frequency of heterozygotes converges asymptotically, at rate
sA/2, to

x1 + y1 = 2p(1− p)(1− Fneut),

for p given in (26) and Fneut in (22), with sA (9) substituted for s.372

Near the state of fixation of the a allele, the neutral transformation has a single eigenvalue
of unity (corresponding to allele frequency), a single eigenvalue of sA/2 (governing conver-
gence of the frequency of heterozygotes to the value dictated by Fneut and allele frequency),375

and two eigenvalues of zero (representing the near-instantaneous convergence to equality of
allele frequencies in hermaphrodites, males, and pollen).
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Gynodioecy: Genotypic frequencies in the next generation forward in time correspond378

to

Tx′0 = s(h0x0 + h1x1/4) + q[(1− s)(h0x0 + h1x1/2) + σ(h0y0 + h1y1/2)]

Tx′1 = sh1x1/2 + (1− s)[(1− q)(h0x0 + h1x1/2) + q(h1x1/2 + h2x2)]

+ σ[(1− q)(h0y0 + h1y1/2) + q(h1y1/2 + h2y2)]

Tx′2 = s(h1x1/4 + h2x2) + (1− q)[(1− s)(h1x1/2 + h2x2) + σ(h1y1/2 + h2y2)]

(27a)

for q the frequency of A in the pollen cloud (to which hermaphrodites alone contribute):

q =
x0 + x1/2

x0 + x1 + x2
. (27b)

Similar to the androdioecy model, the Ty′i have the same form as Tx′i, but with hi replaced381

by Z(1− hi), which implies

T =
2∑
i=0

(xi + σyi)[hi + Z(1− hi)]. (27c)

In the absence of selection on the modifier locus (h0 = h1 = h2 = h), the population
converges in a single generation to the state (25), with the yi now representing genotypic
frequencies in females. Frequencies of allele A among hermaphrodites, females, and pollen
in the first generation correspond to

q′ =
x′0 + x′1/2∑

i x
′
i

=
y′0 + y′1/2∑

i y
′
i

=
(x0 + x1/2) + (y0 + y1/2)σ + σ

∑
i yi

(
x0+x1/2∑

i xi
− y0+y1/2∑

i yi

)
/2∑

i(xi + yiσ)
,

for the xi and yi representing genotypic frequencies at initialization, and attain their common
equilibrium value in two generations. The frequency of heterozygotes converges asymptoti-
cally, at rate sG/2 (14), to

x1 + y1 = 2q(1− q)(1− Fneut),

for Fneut given by (22), with sG (14) substituted for s.

Near the state of fixation of the a allele, the neutral transformation has a single eigen-384

value of unity (corresponding to allele frequency), a single eigenvalue of sG/2 (governing
convergence of the frequency of heterozygotes to the value dictated by Fneut and allele fre-
quency), and two eigenvalues of zero (representing the convergence in two generations of387

allele frequencies in hermaphrodites and females to their common equilibrium value).
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2.4 Weak selection

To explore the nature of selection on the sex ratio, we restrict most of the remaining analysis390

to weak selection on the modifier of the sex ratio, viewed as a perturbation from selective
neutrality. Selective neutrality of the variation segregating at the focal locus entails that all
genotypes induce identical hermaphrodite fractions:393

h0 = h1 = h2. (28)

Weak selection implies that differences among genotypes,

d0 = h0 − h2
d1 = h1 − h2,

(29)

are sufficiently small to justify treating as negligible quantities of the second or higher order
in the di (i = 0, 1). This assumption of weak selection at the modifier locus implies no396

restriction on the magnitude of differences viability or fertility between inbred and outbred
offspring or between the sexes.

For each of the four models under study, we determine the conditions for local stability399

of the fixation of the a allele against the introduction of the A allele in small frequencies.
In the preceding section, we have shown that in the absence of selection on the modifier lo-
cus (28), all systems show rapid convergence to a state in which associations between genes402

within genotypes reflect inbreeding and associations between allele frequency and sex are ab-
sent. For each model, we enumerated the eigenvalues of the neutral transformation: a single
eigenvalue of unity (representing allele frequency) and a single eigenvalue of s/2 (reflecting405

asymptotic convergence of the frequency of heterozygotes), with any additional eigenvalues
corresponding to zero. Because eigenvalues are continuous in complex space (e.g., Serre 2010,
Chapter 5), the eigenvalues of the perturbed (weak-selection) transformation depart contin-408

uously in the di (29) from those of the neutral transformation. Accordingly, the dominant
eigenvalue of the weak-selection transformation lies near unity, with the moduli of the other
eigenvalues remaining strictly less than unity. Because the maternal control models have411

two eigenvalues of zero under neutrality, the perturbed transformation may have conjugate
pairs of imaginary eigenvalues. Even so, any imaginary eigenvalues do not determine asymp-
totic local stability because the dominant eigenvalue of a non-negative matrix corresponds414

to a simple, real root of the characteristic polynomial (Gantmacher 1959). Accordingly, the
dominant eigenvalue of the perturbed transformation lies near unity, with the moduli of the
other eigenvalues remaining strictly less than unity. These properties of the weak-selection417

transformation imply that examination of the sign of the characteristic polynomial of the
local stability matrix evaluated at unity is sufficient to determine local stability.

While a full local stability analysis (including, if necessary, terms of second order in420

the perturbations in genotype frequencies) offers a definitive determination of the fate of
modifiers with weak effects on sex expression, we further undertake to elucidate the process
of evolution by interpreting the results of our local stability analysis in terms of the Li-423

Price equation (Li 1967; Price 1970). Appendix B describes this method, which modifies an
approach developed previously (Uyenoyama 1988, 1991).
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3 Analysis426

We perform local stability analyses for each of the four multidimensional models of the evo-
lutionary modification of sex expression in androdioecious and gynodioecious populations
(Section 2.3). We demonstrate that under both zygote and maternal control of sex expres-
sion, the condition for local stability corresponds to (8):

(h− ĥ)(α0 − α1) > 0.

for h the initial sex expression level, ĥ the candidate ESS (Section 2.1), and (α0 − α1) the
average effect of substitution (18) under the Li-Price approach extended to inbreeding.

3.1 Evolution of androdioecy429

3.1.1 Zygote control of sex expression

Under zygote control of sex expression (21), genotype i occurs with frequency zi, of which a
proportion hi develop into hermaphrodites and the complement into males.432

Local stability condition: A necessary condition for the exclusion of allele A in-
troduced in low frequency into a population monomorphic for the a allele, which induces
hermaphroditism at rate h2, is positivity of the characteristic polynomial of the local stability435

matrix evaluated at unity. Under zygote control (21), this condition corresponds to

(h2 − ĥ)[d0h2s/2 + d1h2(1− s)− d0d1s/2] > 0, (30)

in which the uniparental proportion s corresponds to sA (9), ĥ to the ESS candidate (12c),
h2 the proportion of the common aa genotype that develop into hermaphrodites, and the di438

(29) the phenotypic deviations of genotypes bearing the rare A allele. Under weak selection
(small di), this condition reduces to

(h2 − ĥ)[d0s/2 + d1(1− s)] > 0, (31)

and is also sufficient for local stability. For the Kryptolebias model, in which males alone441

fertilize outcrossed eggs (ω = ∞), we show in Appendix C that the sole condition for local
stability corresponds to

(ĥ− h2)(h2 − rL) > 0, (32)

in which rL denotes the larger root of the bracketed term in (30), viewed as a quadratic444

in h2, under arbitrary dominance levels and intensities of selection on the modifier of sex
expression (di).

Average effect of substitution: A fundamental notion of heritability of sex expression447

is that hermaphrodites and gonochores differ in the frequencies of alleles that modify sex
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expression. In any generation, the difference in frequency of the A allele between herma-
phrodites and gonochores corresponds to450

z0h0 + z1h1/2∑
i zihi

− z0(1− h0) + z1(1− h1)/2∑
i zi(1− hi)

=
z0(h0 − h̄) + z1(h1 − h̄)/2

h̄(1− h̄)
, (33)

for
h̄ =

∑
i

zihi.

This expression corresponds to the average effect of substitution (19), with the genotypic
frequencies at the point of sex expression (zi) assuming the role of the ui in Table 2.

New basis system: In accordance with (33), we designate as the new basis vectors near453

the fixation of the a allele (small z0 and z1)

t0 = z0 + z1/2

t1 = z0 − (z0 + z1/2)Fneut,
(34a)

for Fneut corresponding to (22) with the uniparental fraction sA (9) substituted for s. To the
first order in the frequencies of rare genotypes, the genotypic frequencies correspond to456

z0 = t0Fsel

z1 = 2t0(1− Fsel),
(34b)

for Fsel the fixation index under weak selection. From (34) we obtain

Fsel = Fneut +
t1
t0
. (35)

Near the fixation of the a allele, the average effect of substitution (19) corresponds to

z0d0 + z1d1/2

4(z0 + z1/2)− z1
=
d0Fsel + d1(1− Fsel)

1 + Fsel

. (36)

For Fsel determined at the key vector (B.1) defined in Appendix B, this expression (36) for459

the average effect of substitution corresponds to the bracketed factor in (30).

Under weak selection (29), t1 is O(di) (Appendix B), implying that the departure between
Fsel and Fneut is also O(di). To the first order in the intensity of selection on the modifier
locus (O(di)), the average effect of substitution (36) corresponds to

d0Fneut + d1(1− Fneut)

1 + Fneut

= d0s/2 + d1(1− s),

confirming that (31) corresponds to (8).
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3.1.2 Maternal control of sex expression462

Under maternal control of sex expression (24), genotype i occurs with frequency xi among
maternal parents, all of which are hermaphrodites, and with frequency yi among reproductive
males.465

Local stability condition: The conditions for local stability under maternal control
mirror those under zygote control. The characteristic polynomial evaluated at unity is posi-
tive (necessary for local stability) only if (30) holds. Under weak selection (29), (31) provides468

the necessary and sufficient condition for local stability.

Average effect of substitution: To address heritability, we again address differences
between hermaphrodites and gonochores in the frequency of a modifier of sex expression.
In the next generation forward in time, the difference in frequency of the A allele between
hermaphrodites and gonochores corresponds to

x′0 + x′1/2∑
i x
′
i

− y′0 + y′1/2∑
i y
′
i

= (1 + sA)/2

[
x0h0 + x1h1/2∑

i xihi
− x0(1− h0) + x1(1− h1)/2∑

i xi(1− hi)

]
= (1 + sA)/2

[
x0(h0 − h̄) + x1(h1 − h̄)/2

h̄(1− h̄)

]
, (37)

for
h̄ =

∑
i

xihi.

This expression suggests that the average effect of substitution corresponds to (19) with the
ui replaced by471

xi(1 + sA)/2∑
i xi(1 + sA)/2

=
xi[s̃τ + (1− s̃)/2]∑
i xi[s̃τ + (1− s̃)/2]

. (38)

Under maternal control model of androdioecy, the maternal genotypic frequencies (xi) are
weighted by the production of uniparental offspring, at rate

s̃τ

s̃τ + (1− s̃)/2
,

and of biparental offspring, at rate

(1− s̃)/2
s̃τ + (1− s̃)/2

,

in which the 1/2 appears to represent the relatedness of biparental offspring to their maternal
parent relative to the relatedness of uniparental offspring.

New basis system: We use (38) to specify the change in basis. Under androdioecy,474

males contribute to future generations only through pollen or sperm. In populations fixed
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for the a allele, the ratio of hermaphrodites to males at reproductive age corresponds to

x2
y2

=
h2

Z(1− h2)
. (39)

Near this fixation state, we designate as the new basis vectors477

t0 = x0 + x1/2

t1 = x0 − (x0 + x1/2)Fneut

t2 =
x0 + x1/2

h2
− y0 + y1/2

Z(1− h2)
,

(40)

for Fneut corresponding to (22) with the uniparental fraction sA (9) substituted for s.

At the key vector (B.1) defined in Appendix B, t2 (40), representing the difference in
allele frequency between hermaphrodites and males, is proportional to the average effect of480

substitution (36). Also at this key vector, the fixation index under selection Fsel corresponds
to (35) and the average effect of substitution (36) again corresponds to the bracketed factor
in (30).483

Maternal and zygote control of androdioecy entail distinct definitions of the average effect
of substitution (α0 − α1) (18) and the new basis system. Even so, the condition for local
stability (31) again corresponds to (8).486

3.2 Evolution of gynodioecy

3.2.1 Zygote control of sex expression

For the zygote control model of gynodioecy (23), the condition for positivity of the charac-489

teristic polynomial of the local stability matrix evaluated at unity is identical to (30), with
the uniparental proportion s now corresponding to sG (14) and ĥ to the ESS candidate (16c).
Under weak selection (29), (31) provides the necessary condition for local stability of the492

fixation state.

Also identical to the expressions under zygote control of androdioecy are the average
effect of substitution (33) and the definition of the new basis system (34), but with sG (14)495

substituted for s in Fneut (22).

3.2.2 Maternal control of sex expression

Local stability condition: For the maternal control model (27), the condition for local498

stability under weak selection corresponds to

(h2 − ĥ){B[h2 + (1− h2)Zσ](1 + sG)− (d0 − d1)[d0sG + d1(1− sG)]sGZσ/2} > 0, (41)
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in which sG corresponds to the uniparental proportion (14), ĥ to the ESS candidate (16c),
and B the bracketed factor in (30):501

B = d0h2sG/2 + d1h2(1− sG)− d0d1sG/2. (42)

Under weak selection (29), (41) reduces to (31), which provides the necessary and sufficient
condition for local stability of the fixation state.

Average effect of substitution: To address heritability, we return to (37). From the
full system of recursions for maternal control of sex expression (27), we obtain

x′0 + x′1/2∑
i x
′
i

− y′0 + y′1/2∑
i y
′
i

= Γ1

(
x0 + x1/2∑

i xi
− y0 + y1/2∑

i yi

)
+ Γ2{(1− s)[x0(h0 − h̄) + x1(h1 − h̄)/2]

+ σ[y0(h0 − h̄) + y1(h1 − h̄)/2]}

in which

Γ1 =
σs
∑

i yi
∑

i xi(hi − h̄)

2
∑

i(xi + σyi)hi
∑

i(xi + yiσ)(1− hi)

Γ2 =

∑
i(xi + yiσ)

2
∑

i(xi + σyi)hi
∑

i(xi + yiσ)(1− hi)

and

h̄ =

∑
i{xi(1 + s) + yiσ}hi∑
i{xi(1 + s) + yiσ}

.

Under weak selection, for which terms of the form (hi−hj) are small, the difference in allele504

frequency between the sexes are also small, with the difference converging rapidly to

x′0 + x′1/2∑
i x
′
i

− y′0 + y′1/2∑
i y
′
i

=
E

2h(1− h)
∑

i(xi + yiσ)
+ o(d) (43a)

in which

E = (1 + s)[x0(h0 − h̄) + x1(h1 − h̄)/2] + σ[y0(h0 − h̄) + y1(h1 − h̄)/2], (43b)

h represents any of the hi, and o(d) comprises quantities smaller than terms of the form507

(hi − hj).

Expression (43b) suggests that the average effect of substitution corresponds to (19) with
the ui replaced by510

xi[s̃τ + (1− s̃)/2] + yiσ̃/2∑
i{xi[s̃τ + (1− s̃)/2] + yiσ̃/2}

. (44)

A major feature that distinguishes this gynodioecy model from the corresponding androdi-
oecy model (37) is that gonochores (females) as well as hermaphrodites may serve as maternal
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parents, the individuals that control sex expression. Comparison of (38) and (44) indicates513

that the weighting of the contributions to the offspring generation of hermaphroditic to
female maternal parents corresponds to

s̃τ + (1− s̃)/2
σ̃/2

=
(1 + s)

σ
, (45)

implying a twofold weighting of uniparental offspring relative to biparental offspring.516

New basis system: In defining the new basis system, we adopt the weighted average
of allele frequencies in hermaphrodites and females described in (45):

t0 =
(x0 + x1/2)(1 + s) + (y0 + y1/2)σ

h2(1 + s) + Z(1− h2)σ

t1 =
[x0 − (x0 + x1/2)Fneut](1 + s) + [y0 − (y0 + y1/2)Fneut]σ

h2(1 + s) + Z(1− h2)σ

t2 =
x0 + x1/2

h2
− y0 + y1/2

Z(1− h2)
t3 =

x0
h2
− y0
Z(1− h2)

(46)

for Fneut corresponding to (22) with the uniparental fraction sG (14) substituted for s. These519

expressions reflect that near the fixation state, the ratio of hermaphrodites to gonochores in
the population (x/y) lies close to (39).

At the key vector (B.1) defined in Appendix B, both t2 (46), representing the difference522

in allele frequency between hermaphrodites and males, and the factor of (h2 − ĥ) in local
stability condition (41) are proportional to the average effect of substitution (43b). As in
each of the other models explored, these results confirm key condition (8).525

4 Data analysis

We use our new theoretical results to infer the viability of gonochores (males or females) rela-
tive to hermaphrodites in an androdioecious killifish and a gynodioecious Hawaiian endemic.528

We caution that even if a conceptual model is appropriate for a given data set, evolutionary
modification over the long-term may have not yet achieved the ESS in the natural population
under study.531

Redelings et al. (2015) developed a Bayesian method for the analysis of multilocus data
sampled from populations reproducing through pure hermaphroditism, androdioecy, or gyn-
odioecy. Using an explicitly coalescent-based framework, it generates posterior distributions534

for the uniparental fraction (probability that a random individual is uniparental), the ana-
logue to estimates of selfing rates generated by earlier methods (e.g., Ritland 2002; Enjalbert
and David 2000; David et al. 2007).537

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2017. ; https://doi.org/10.1101/113605doi: bioRxiv preprint 

https://doi.org/10.1101/113605
http://creativecommons.org/licenses/by-nc-nd/4.0/


From three microsatellite data sets derived from natural populations, Redelings et al.
(2015) generated posterior distributions of the basic parameters of the models, including the
population sex ratio among reproductives (7a). Figure 2 presents posterior distributions of

0.6 0.7 0.8 0.9 1.00.6 0.7 0.8 0.9 1.00.6 0.7 0.8 0.9 1.0

Collective contribution of hermaphrodites

K. marmoratus (BP)

K. marmoratus (TC)

S. salicaria

Figure 2: Posterior distributions of the collective contribution of hermaphrodites to the pop-
ulation gene pool (1) inferred from microsatellite data derived from androdioecious Kryp-
tolebias marmoratus and gynodioecious Schiedea salicaria. For K. marmoratus, the curves
correspond to CA (10), and for S. salicaria, CG (13).

540

the collective contribution of hermaphrodites (C). For the androdioecious killifish Kryp-
tolebias marmoratus, the curves correspond to CA (10), and for the gynodioecious Schiedea
salicaria, CG (13). The collective contribution of K. marmoratus hermaphrodites appears to543

be greater in the more highly inbred BP population than in the TC population. In S. sali-
caria, the collective contribution of females (1−CG) lies close to the population proportion
of females of 12% reported by Campbell et al. (2010).546

From the collective contribution of hermaphrodites to the next generation (Fig. 2), we
infer the sex ratio at the juvenile stage (7b). Under the assumption that the natural pop-
ulations under study have converged on the attracting ESS sex ratio, we use the departure549

between the inferred sex ratio among adults and the expected sex ratio at conception ((7a)
and (7b)) to obtain the posterior distribution of the viability of gonochores relative to her-
maphrodites (Z).552

Figure 3 presents posterior distributions of Z for the Schiedea and Kryptolebias popu-
lations studied. We find little evidence of a difference in viability between females and her-
maphrodites in gynodioecious S. salicaria (median=1.08, 95% BCI=(0.34, 1.78)), in which555
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the Bayesian Credible Interval (BCI) denotes the interval comprising the highest posterior
density. In contrast, male K. marmoratus appear to have substantially lower viability than
hermaphrodites in both the BP population (median=0.45, 95% BCI=(0.20, 0.81)) and the558

TC population (median=0.48, 95% BCI=(0.25, 0.77)), even though the frequency of males
is several-fold higher in the TC population (0.17 versus 0.01; Turner et al. 1992; Tatarenkov
et al. 2012; Mackiewicz et al. 2006).

0.0 0.5 1.0 1.5 2.0 2.50.0 0.5 1.0 1.5 2.0 2.50.0 0.5 1.0 1.5 2.0 2.5

Relative viability of gonochores

K. marmoratus (BP)

K. marmoratus (TC)

S. salicaria

Figure 3: Posterior distributions of the viability of gonochores relative to hermaphrodites
(Z).

561

5 Discussion

We have explored the evolution of androdioecy and gynodioecy under the influence of autoso-
mal modifiers of weak effect. Our central theoretical finding (8) unifies full multi-dimensional564

local stability analysis with the heuristically-appealing Li-Price framework (Li 1967; Price
1970) and evolutionary stability. In addition, we have used our theoretical results to infer the
viability of gonochores (males or females) relative to hermaphrodites in the gynodioecious567

plant Schiedea salicaria and the androdioecious killifish Kryptolebias marmoratus.
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5.1 Relative viability of gonochores

In generalizing the Fisherian (1958) argument for the evolution of the sex ratio to androdioecy
and gynodioecy, we show that C (1), the collective contribution of hermaphroditic parents
to the offspring generation, is a central determinant of the evolutionary modification of the
sex ratio. Natural selection on modifiers of weak effect promotes convergence in parameter
space to the evolutionarily stable sex ratio among juveniles (Table 1) of

ĥ

1− ĥ
=

C

1− C

(7b), for ĥ the ESS proportion of hermaphrodites among juveniles and C corresponding to
CA (10) under androdioecy and to CG (13) under gynodioecy. At reproductive age, the sex
ratio corresponds to

h∗

1− h∗
=

C

Z(1− C)

(7a), for Z the relative rate of survival of juvenile gonochores to adulthood and h∗ the570

proportion of hermaphrodites after operation of sex-specific viability selection.

In the absence of sex-specific differences in rate of survival to reproductive age (Z = 1),
relative effective number (2) is maximized (R = 1) at the ESS sex ratio. Here, we use573

the departure of relative effective number R from unity to infer the intensity of sex-specific
differences in viability. As the Bayesian MCMC method of Redelings et al. (2015) permits
inference of h∗ and C, it also yields posterior distributions for Z, the relative viability of576

gonochores (Fig. 3).

The near-maximal relative effective numbers (Fig. 1) inferred for a natural population of
the gynodioecious Schiedea salicaria (Wallace et al. 2011) suggests close convergence to the579

ESS (7b), and indeed the posterior distribution of the relative viability of gonochores (Z, Fig.
3) provides little evidence of differential viability between the sexes. In contrast, males of the
androdioecious killifish Kryptolebias marmoratus (Tatarenkov et al. 2012) appear to have582

twofold lower viability than hermaphrodites (Fig. 3). Our analysis suggests a substantial
reduction in male viability both in the highly inbred BP population, in which reproductively
mature males are very rare (posterior median = 1%), and in the more outbred TC population,585

in which males are more abundant (posterior median = 17%, Redelings et al. 2015).

Turner et al. (2006) suggested that the maintenance of males in highly inbred popula-
tions of K. marmoratus may require “implausibly large” male fertility. Low male viability588

would further increase the stringency of a necessary condition (12b) for the maintenance of
androdioecy under our model. However, our analysis indicates that if males alone fertilize
eggs that are not self-fertilized (ω = ∞, Furness et al. 2015), the existence of any viable591

biparental offspring (sA < 1) is sufficient to favor the maintenance of males.

Turner et al. (2006) conducted common garden experiments to address male development
in K. marmoratus, an emerging model system for environmental sex determination (Kelley594

et al. 2016). Lines derived from the progeny of individual hermaphrodites obtained from
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natural populations showed marked differences in the proportion of adult males under lab-
oratory conditions, with fewer males in broods derived from the rare-male population. In597

general, laboratory-reared broods showed substantially higher frequencies of males than ob-
served in the natural populations from which they descended. Turner et al. (2006) described
the orange-hued mature males as “highly conspicuous.” The considerable body of work on600

guppies indicates that predation can generate intense selection, with various indices of cryp-
sis responding rapidly to predator abundance under both laboratory and field conditions
(Endler 1980; Reznick et al. 1996). The observation of an excess of K. marmoratus males603

in laboratory populations is consistent with the view that predation or other sex-specific
processes operating in the wild may contribute to our inferred twofold reduction in survival
to reproductive age of males relative to hermaphrodites (Fig. 3).606

Our estimates of the relative viability of gonochores (Z) assume identity between the
proportions of uniparental zygotes before (juvenile stage) and after (adult stage) the mani-
festation of sex-specific differences in viability (Table 1). This constraint may be violated if609

sex expression is heritable. Because only hermaphrodites can generate uniparental offspring,
the heritability of sex may imply that hermaphroditic offspring have a higher chance both
of having descended from hermaphroditic parents and of being uniparental. Consistent with612

this scenario is the observation (Wolff et al. 1988; Collin and Shykoff 2003) that gonochores
appear to be more outbred than hermaphrodites in some gynodioecious species, including
Schiedea salicaria (Weller and Sakai 2005). As a consequence, our estimates of Z are sub-615

ject to the assumption that the population has attained the ESS level of sex expression as
a genetically monomorphic state: the long-term result of filtering newly-arisen mutations of
minor effect, for example.618

A well-documented positive association exists between frequency of males and level of
heterozygosity in natural K. marmoratus populations (e.g., Mackiewicz et al. 2006). Possible
mechanisms include that outcrossing or high heterozygosity directly induce male develop-621

ment (Turner et al. 2006) or that the greater availability of males favors the evolution of
higher outcrossing rates (Ellison et al. 2016). Our analysis suggests that higher outcrossing
rates favor higher frequencies of males (7a), a consequence of the reduction of the collective624

contribution of hermaphrodites (C). Factors influencing the rate of outcrossing may include
parasite loads, which appear to be greater in more inbred individuals (Ellison et al. 2011).

5.2 Evolution by means of major and minor genes627

A considerable body of work on the evolution of gynodioecy has addressed the joint control
of sex expression by major cytoplasmic and nuclear factors (reviewed by Bailey and Delph
2007; McCauley and Bailey 2009). Our analysis of autosomal modifiers does not exclude a630

history of cytoplasmic sex determination. For example, exclusive nuclear control may arise
upon the fixation in a population of a cytoplasm that induces cytoplasmic male sterility
(“cryptic CMS,” Schultz 1994; Fishman and Willis 2006). Similarly, the genetic basis of sex633

expression may shift from a single major locus to many loci of minor effect upon fixation
at the major locus. Further, segregation of major nuclear or cytoplasmic factors does not
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preclude simultaneous modification of the sex ratio by nuclear factors of small effect.636

5.2.1 Short-term changes in frequency of major genes

Lloyd (1977) acknowledged that the frequency of a major gene inducing gonochore devel-
opment converges directly to the state corresponding to the ESS (7a) only under complete639

dominance of the allele, under both androdioecy (Ross and Weir 1976; Wolf and Takebayashi
2004) and gynodioecy (Ross and Weir 1975). Clearly, the failure of major genes to evolve
directly to the ESS under general dominance schemes is still true.642

To account for the special attributes of complete dominance in existing models of short-
term dynamics, we now restrict consideration to the conditions assumed by those models,
including complete dominance of the gonochore allele (e.g., h0 = 1 and h1 = 0) and determi-
nation of zygote sex by its own genotype (zygote control model), in the absence of sex-specific
selection (Z = 1). At the equilibrium state, let γ denote the proportion of offspring that
have a gonochorous parent. The probability that a random autosomal gene sampled from
the offspring generation at the adult stage (or juvenile stage, under Z = 1) derives from a
gonochorous parent corresponds to

1− C = γ/2,

in which the half reflects the probability of sampling the allele contributed by the gonochorous
parent. Half of the offspring with a gonochorous parent receive the dominant gonochore
allele and themselves develop into gonochores. Accordingly, the equilibrium sex ratio in the
offspring generation corresponds to

h′

1− h′
=

1− γ/2
γ/2

=
C

1− C
,

in which the half now reflects segregation of the gonochore allele and C denotes CA (10) under
androdioecy and CG (13) under gynodioecy. This expression confirms that under complete
dominance of the gonochore allele and zygote control of sex expression, the equilibrium645

sex ratio does indeed correspond to the ESS (7a). However, this property holds neither
under other dominance schemes (e.g., recessive gynodioecy, Ross and Weir 1975) nor under
maternal determination of zygote sex, even under complete dominance.648

5.2.2 Long-term modification by minor genes

Departing from earlier work on short-term changes in gene frequency space, our models
accommodate general dominance among alleles of minor effect on sex expression at loci651

across the genome. In the androdioecious killifish Kryptolebias marmoratus, for example,
the genome-wide epigenetic response to environmental factors documented by Ellison et al.
(2016) is consistent with the view that loci throughout the genome may influence sex ex-654

pression.
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In shifting the focus to long-term changes in parameter space (Eshel and Motro 1981;
Taylor 1989; Christiansen 1991), we have demonstrated that the evolutionary stability of657

candidate ESS values (Section 2.1) has significance beyond complete dominance of a major
gene, the only domain in which short-term evolution to the ESS has been shown to occur
(Ross and Weir 1975, 1976; Charlesworth and Charlesworth 1978; Wolf and Takebayashi660

2004). Our results show that irrespective of the dominance of modifier genes of minor
effect, long-term convergence to the ESS is expected under maternal effects on sex expression
(maternal control) as well as determination of zygote sex by the zygote itself (zygote control).663

Our analysis of microsatellite variation in Schiedea salicaria indicates near-maximal val-
ues of relative effective number (R near unity in Fig. 1; Redelings et al. 2015), supporting
the view of Weller and Sakai (1991) of convergence to the ESS (7b) in the natural population666

studied. As noted in the Introduction (Section 1.2), their proposal of a recessive major gene
for male sterility in this species is inconsistent with direct convergence of the population sex
ratio to the ESS through short-term changes in the frequency of the major gene (Ross and669

Weir 1975). A possible reconciliation is that minor modifier loci distinct from the major gene
may have induced the convergence of the population sex ratio to the evolutionarily stable
strategy.672

5.3 Local stability, evolutionary stability, and heritability

We have conducted local stability analyses for each of the four multidimensional models of the
evolutionary modification of sex expression in androdioecious and gynodioecious populations
(Section 2.3). Our central theoretical finding,

(h− ĥ)(α0 − α1) > 0

(8), implies that a new mutation that induces small effects on sex expression fails to increase
when rare if the current level of hermaphroditic expression exceeds the ESS ((h − ĥ) > 0)675

and the average effect of the mutation would raise hermaphroditic expression even further
((α0 − α1) > 0), or if both inequalities are reversed. We have demonstrated that under
the weak-effects assumption, the conditions for local stability in multidimensional frequency678

space for arbitrary initial states and dominance relationships reduce to this single inequality
(Section 3). Our analysis shows that the sex ratios corresponding to (7a) represent attracting
evolutionarily stable strategies (ESSs) under arbitrary schemes for dominance of rare alleles681

at modifier loci across the genome.

5.3.1 Average effect of substitution

Our central theoretical finding (8) serves to elucidate the appropriate measure of (α0 − α1),684

the average effect of substitution of an allele modifying sex expression in inbred populations.
For general systems of mating, Fisher (1941) determined the average effect (α0 − α1) by
minimizing the mean squared deviation of phenotype from additive genotypic value (18).687
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Under random mating, the average effect of substitution of a rare mutation depends only on
the change in phenotype it induces in heterozygous form. Under inbreeding, determination
of (α0 − α1) depends on the full array of genotypic frequencies (Section 2.2). Accordingly,690

demonstration of (8) for populations undergoing inbreeding requires specification of a par-
ticular genotypic array within the inherently multidimensional state space.

The heuristically-appealing Li-Price framework (Li 1967; Price 1970) provides a one-693

dimensional, one-generational description of the evolutionary process (20). Our unification
of multidimensional local stability analysis with this framework entails specification of a
key state in the full multi-dimensional space such that the change in frequency of a rare696

allele over a single generation starting from this state indicates its asymptotic fate (invasion
or extinction) starting from arbitrary locations in a sufficiently small neighborhood of the
fixation state (Appendix B). It is at this key state at which average effect (α0 − α1) in (8)699

is determined.

We have shown that the change in frequency of the rare allele starting from the key
initial state (B.1) is proportional to the value of the characteristic polynomial, evaluated at702

unity, of the full transformation. Under our weak-effects assumption (29), this criterion pro-
vides necessary and sufficient conditions for local stability. However, under strong selection
(introduction of genes with major effects on sex expression), the sign of the characteristic705

polynomial evaluated at unity is not necessarily sufficient as an indicator of local stability.
In such cases, the key initial state (B.1) may become invalid or undefined (Fig. B1).

5.3.2 Heritability and relatedness708

The conceptual origins of the Li-Price equation (Li 1967; Price 1970) lie in Robertson’s
(1966) exploration of the effects of culling, on the basis of informal criteria, on the genetic
variance of a desired trait (high milk yield in dairy cattle). With respect to the evolution711

of mating systems, sex may influence various components of transmission of genes to future
generations.

Here, the focal trait corresponds to the propensity of a zygote to develop into a gonochore714

or a hermaphrodite depending on the genotype at a modifier locus of its maternal parent
(maternal control models) or its own genotype (zygote control models). The component of
the population (zygotes or maternal parents) that influences sex expression determines the717

genotypic distribution (ui in Table 2) with respect to which the average effect of substitution
(α0 − α1) is defined.

We adopt a notion of heritability that reflects associations between sex and allele fre-720

quency. In populations in which modifiers of sex expression segregate, the average effect of
substitution (19) at a modifier locus is proportional to the difference in allele frequency be-
tween gonochores and hermaphrodites. This property holds under both zygote and maternal723

control of androdioecy and gynodioecy ((33), (37), (43)).

An additional question concerns the relevance of relatedness of the controlling genotype to
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the two sex forms (see Lloyd 1975). Under zygote control of zygote sex for both androdioecy726

(21) and gynodioecy (23), the average effect is defined with respect to zygote genotypic
frequencies at the point of sex expression (33). In this case, the controlling entities (zygotes)
are maximally related to themselves regardless of sex.729

In contrast, relatedness plays a role under maternal control of sex expression. For the
androdioecy model (24), hermaphrodites alone determine offspring number, with gonochores
(males) serving only as pollen or sperm donors. Under our notion of heritability, the average732

effect is defined with respect to genotypic frequencies among maternal parents (hermaphro-
dites) at reproductive age (37). Uniparental offspring bear twofold higher relatedness to
their maternal parents than do biparental offspring, irrespective of the sex of the offspring.735

Among the unique features of maternal control of gynodioecy (27) is that gonochores
(females) as well as hermaphrodites contribute to offspring number. Accordingly, the average
effect of substitution depends on both sexes, with the offspring of females weighted by a factor738

of 1/2, reflecting their biparental derivation, and the biparental and uniparental offspring of
hermaphrodites weighted by 1/2 and 1, respectively (45).

In addressing questions regarding the definition and significance of heritability and relat-741

edness, we have permitted answers to emerge naturally from dynamic models. Our central
theoretical finding (8) reconciles full multidimensional local stability analysis, ESS analy-
sis, and the Li-Price framework. In addition, it has permitted insight into the meaning of744

heritability under zygote and maternal control of sex expression in inbred populations.
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Appendix A Lloyd’s (1975) unbeatable sex ratios

Equation (2) of Lloyd (1975) provides the unbeatable sex ratio under gynodioecy:

p

1− p
=
b− 2SX

bS
, (A.1)

for p the proportion of females at reproductive age, b the seed set of females, S the viability
of a hermaphrodite (described as “male”) relative to a female, and X the number of zygotes
produced by a hermaphrodite that survive to reproduction relative to a female. In Lloyd’s
notation,

X = i[a+ be(1− a)(1− w) + (1− be)(1− a)r] + be(1− a)w,

in which i corresponds to the relative viability of uniparental offspring (our τ), the bracketed
quantity the proportion of seeds of hermaphrodites set by self-pollen (our s̃), and be(1−a)w
the proportion of seeds of hermaphrodites set by pollen from the pollen cloud (our (1− s̃)).
Substitution of

i = τ

X = τ s̃+ 1− s̃
b = σ̃

1/S = Z.

into (A.1) corresponds to our non-zero ESS candidate (16a).873

In his treatment of androdioecy, Lloyd (1975, his equation (7)) proposed an unbeatable
proportion of males of

q =
t− 2lv[t+ i(1− t)]

2iv(1− t)(1− l) + t(1 + v − 2lv)
, (A.2)

for q the proportion of males at reproductive age, t the proportion of seeds set by non-self
pollen, l the pollen production of a hermaphrodite (described as “female”) relative to a
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male, v the rate of survival to reproduction of a hermaphrodite relative to a male, and i the
viability of uniparental offspring relative to biparental offspring. Substitution of

t = 1− s̃
1/l = ω

1/v = Z

i = τ.

into (A.2) corresponds to our non-zero ESS candidate (12).876

Appendix B Change of basis

Here, we describe the relationship between the one-generational, one-dimensional description
of evolution given by the Li-Price equation (20) and a full asymptotic, multi-dimensional local879

stability analysis. We describe a state of the population from which the change in allele
frequency over a single generation does in fact correctly reflect the asymptotic condition for
initial increase in the full multi-dimensional system under weak selection.882

B.1 Weak selection

Under selective neutrality of variation at the modifier locus, the genotypic frequencies ini-
tiated at any state comprising both alleles rapidly converge to a configuration character-885

ized by equality between sex forms of genotypic frequencies (xi = yi) and fixation index
(Wright 1933) given by (22). In the absence of differences among genotypes in sex expres-
sion (28), the multi-dimensional transformations we address (Section (2.3)) have a dominant888

eigenvalue of unity, reflecting preservation of allele frequency, with all remaining eigenval-
ues, corresponding to classical measures of disequilibrium, having moduli strictly less than
unity. Weak-selection systems (29) represent perturbations in parameter space of such neu-891

tral transformations. For cases, including the maternal control model of gynodioecy (27),
in which the neutral transformation has repeated eigenvalues, the perturbed transformation
may have conjugate pairs of imaginary eigenvalues. Even so, any imaginary eigenvalues do894

not determine asymptotic local stability because the dominant eigenvalue of a non-negative
matrix corresponds to a simple, real root of the characteristic polynomial (Gantmacher 1959).
Because eigenvalues are continuous in complex space (e.g., Serre 2010, Chapter 5), the eigen-897

values of the weak-selection transformation depart continuously in the di = (hi − h2) (29)
from those of the neutral transformation. In particular, the dominant eigenvalue of the local
stability matrix under weak selection lies near unity, with the moduli of the other eigenval-900

ues remaining strictly less than unity. As a consequence, examination of the value of the
characteristic polynomial of the local stability matrix under weak selection is sufficient to
establish local stability.903
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B.2 Elucidating the Li-Price equation

To relate the Li-Price equation (20) to the full multi-dimensional local stability analysis, we
introduce a change of basis from the genotypic frequencies of the rare genotypes (AA and Aa)906

in hermaphrodites and gonochores to allele frequency and disequilibrium measures. Here,
measures of disequilibrium reflect any departures of variables other than allele frequency
from their equilibrium values under the mating system in the absence of selection on the909

modifier locus (h0 = h1 = h2). In particular, disequilibrium corresponds to the departure of
the frequency of heterozygotes (Aa) from the frequency associated with Fneut (22) and not,
in particular, from Hardy-Weinberg proportions (F = 0).912

Change of basis: We determine a key vector such that the direction of change in allele
frequency over a single generation starting from this vector reflects the asymptotic behavior
of the system starting from an arbitrary position in the neighborhood of the fixation state.
Let M denote the local stability matrix under the original basis system. Because M is a
non-negative matrix, its dominant eigenvalue is non-negative and corresponds to a simple
root of its characteristic polynomial (Gantmacher 1959). Under the new basis, the local
stability matrix corresponds to

N = AMB,

for A translating from the old basis to the new basis and B translating from the new basis
to the old basis (AB = I). For z an arbitrary vector in the neighborhood of the fixation
state,

(I −N )z

describes change over a single generation. We define key vector z̃ such that change may occur
only in the first dimension (allele frequency), irrespective of the magnitude of disequilibria
in other dimensions:915

(I −N )z̃ =


−∆z

0
...
0

 , (B.1)

in which ∆z denotes the change in allele frequency over a single generation. For M and N
n-dimensional matrices, z̃ is determined by the last (n− 1) rows of (I −N )z̃.

Asymptotic behavior: Here, we show that under weak selection (29), a one-generation918

step from key vector z̃ (B.1) indicates the asymptotic behavior of the system initiated from
an arbitrary location in the neighborhood of the fixation state.

Let X represent the matrix obtained by replacing the first column of an n-dimensional921

identity matrix by z̃. Multiplication of (I −N ) by X on the right produces

(I −N )X =

(
−∆z R2

R1 (I −N )n−1

)
, (B.2)

in which R1 is an (n− 1)-dimensional column vector of zeros, R2 is an (n− 1)-dimensional
row vector with elements equal to the corresponding elements of the first row of (I −N ),924
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and (I −N )n−1 is the matrix obtained by removing the first row and column from (I −N ).
Taking the determinant of both sides of (B.2) produces

Det[I −N ]Det[X] = −∆zDet[(I −N )n−1], (B.3a)

for Det[(I −N )n−1] the principal minor obtained by deleting the first row and column of927

(I −N ).

To achieve our objective of relating the Li-Price equation (20) to a full multi-dimensional
local stability analysis, we demonstrate that

Det[I −N ] ∝ −∆z

under weak selection (di near zero). This expression implies that the direction of change
over a single generation of the system initiated at z̃ (B.1) corresponds to the sign of the930

characteristic polynomial of the multi-dimensional stability matrix evaluated at unity. Weak
selection (29) entails small differences among genotypes in sex expression (small di = hi−h2).
Because ∆z is O(di), (B.3a) implies933

Det[I −N ]Det[X] = −∆zDet[(I −N∗)n−1] + o(di), (B.3b)

for N∗ the linearized transition matrix under neutrality (di = 0). To show that

Det[(I −N∗)n−1] > 0, (B.4)

we note that under neutrality, the absence of all disequilibria implies invariant gene frequency
in all models studied here (Section 2.3). Accordingly,

(I −N∗)e = 0,

in which N∗ denotes the linearized transition matrix under neutrality and e the unit vector
with first element equal to 1 and zeros elsewhere. This expression implies that the element
in the first column and row of N∗ corresponds to unity. Further, that the neutral system
converges to the state in which all disequilibria are absent implies that all elements in the
first column of N∗ other than the first are zero. As a result, N∗ has the form

N∗ =

(
1 . . .
R1 (N∗)n−1

)
,

in which (N∗)n−1 denotes the submatrix obtained by removing the first row and column
from N∗ and R1 is again an (n− 1)-dimensional column vector of zeros. The characteristic
polynomial of N∗,

Det[λI −N∗] = (λ− 1)Det[(λI −N∗)n−1] = 0,

has a unit eigenvalue (corresponding to allele frequency), with the remaining eigenvalues
(corresponding to disequilibria) given by the roots of Det[(λI−N∗)n−1]. That all eigenvalues936

associated with disequilibria are strictly less than unity in absolute value implies (B.4).
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Appendix C Local stability analysis of Kryptolebias

model under zygote control of sex939

We address the local stability of recursion system (21) near the state of fixation of the a
allele at the modifier locus. Under Kryptolebias model, sex expression is determined by the
genotype of the zygote itself and only males fertilize outcrossed eggs (ω = ∞ and Z > 0).942

In the absence of males prior to the introduction of genetic variation at the modifier locus
(h2 = 1), eggs that are not self-fertilized fail to become zygotes. As a consequence, any allele
that induces the development of males (h0 > 0 or h1 > 0) derives an enormous selective945

advantage from the fertilization of the proportion (1−sA) of all eggs produced. Accordingly,
we restrict further consideration to cases in which the common genotype produces some
males (h2 < 1).948

We demonstrate that the sole condition for local stability corresponds to (32):

(ĥ− h2)(h2 − rL) > 0, (C.1)

for rL the larger root of the bracketed term in (30), viewed as a quadratic in h2:

qAZ(h2) = h2[d0sA/2 + d1(1− sA)]− d0d1sA/2, (C.2)

in which

d0 = h0 − h2
d1 = h1 − h2.

These results imply that the proposed ESS (12c) corresponds to an attracting evolutionarily951

stable strategy under arbitrary dominance levels and intensities of selection on the modifier
of sex expression.

C.1 Linearized recursion system954

At the fixation of the a allele, the population comprises only aa individuals (z2 = 1), with
normalizer

T = h2.

Upon the introduction of the rare alternative allele A, genotypes AA and Aa arise in low
frequencies (δ0 and δ1). Linearization of the full recursion system (21) by ignoring terms of
the second order in the δi produces

δ′0 =
sA(δ0h0 + δ1h1/4)

h2

δ′1 =
[δ1sAh1/2 + (1− sA)(δ0h0 + δ1h1/2)]

h2

+
(1− sA)[δ0(1− h0) + δ1(1− h1)/2]

1− h2
,
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with local stability determined by the dominant eigenvalue of

M =

(
sAh0
h2

sAh1
4h2

(1− sA)
(
h0
h2

+ 1−h0
1−h2

) [
sA

h1
h2

+ (1− sA)
(
h1
h2

+ 1−h1
1−h2

)]
/2

)
. (C.3)

Because this matrix is non-negative, its dominant eigenvalue is real and non-negative
(Gantmacher 1959, Chapter XIII). Its characteristic polynomial is proportional to957

CAZ(λ) = [(λ−1)(1−h2)− (h2− ĥ)]

[
λ− sA(h0 − h1/2)

h2

]
+ (h2− ĥ)

h1
h2

[
λ− sAh0

2h2

]
, (C.4)

in which the proposed ESS proportion of hermaphrodites at birth corresponds to (12c), with
all biparental offspring derived from male parents (ω =∞):

ĥ = (1 + sA)/2. (C.5)

Setting the resident hermaphrodite fraction to the proposed ESS (h2 = ĥ), we find that
CAZ(λ) (C.4) reduces to

(λ− 1)(1− h2)
[
λ− sA(h0 − h1/2)

h2

]
= 0,

confirming a dominant eigenvalue of unity near the fixation of an allele that induces the960

candidate ESS, as required for an ESS. Further, we show that ESS is evolutionarily attracting:
in a population fixed for an allele that specifies a sex ratio different from the ESS (h2 6= ĥ),
only alleles that locally bring the sex ratio closer to the ESS increase when rare (C.1).963

A necessary condition for local stability is positivity of the characteristic polynomial
CAZ(λ) (C.4) evaluated at unity. In addition, we determine the sign of CAZ(λ) at two
values:966

λ0 = 1 +
(ĥ− h2)(h0 − h2)

h2(1− h2)
≥ 0

λ1 = 1 +
(ĥ− h2)(h1 − h2)

h2(1− h2)
≥ 0.

(C.6a)

We find that CAZ(λ) changes sign between these values:

CAZ(λ0) ∝ (ĥ− h2)(h0 − h1)
CAZ(λ1) ∝ (ĥ− h2)(h1 − h0).

(C.6b)

C.2 Special cases

Under random mating (sA = 0), the ESS ĥ (C.5) reduces to 1/2 and the dominant eigenvalue
of local stability matrix M (C.3) corresponds to

1

2

(
h1
h2

+
1− h1
1− h2

)
.
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This condition implies that the fixation state is locally stable only if

(1/2− h2)(h2 − h1) > 0,

confirming both (C.1) and the classical results of Fisher (1958, Chapter VI): an equal sex969

ratio at birth corresponds to an attracting ESS under random mating.

Under complete selfing (sA = 1), the ESS ĥ (C.5) is equal to unity. Matrix M(C.3) is
triangular, with the fixation state locally stable to the introduction of the A allele only if

(1− h2)[h2 −max(h0, h1/2)] > 0,

again confirming (C.1).

Under complete dominance of the rare allele (h0 = h1), characteristic polynomial (C.4)
reduces to

[(λ− 1)(1− h2)− (h2 − ĥ)(h2 − h0)/h2][λ− sAh0/(2h2)],

and the larger (rL) and smaller (rS) roots of (C.2) correspond to

rL = h0

rS = h0sA/2.

Local stability requires that both972

(ĥ− h2)(h2 − rL) > 0

h2 > rS.
(C.7)

Because
ĥ > rS,

the necessary and sufficient condition for local stability under complete dominance corre-
sponds to the first inequality in (C.7), in accordance with (C.1).

C.3 General dominance and selection intensity975

In the remainder of this section, we assume partial inbreeding (0 < sA < 1) and h0 6= h1.
We first demonstrate that (C.1) implies positivity of the characteristic polynomial (C.4)
evaluated at unity for all h0 and h1. We then show that this necessary condition for local978

stability is in fact sufficient: the (non-negative) dominant eigenvalue of M (C.3) is less than
unity under (C.1).

Substitution of λ = 1 into the characteristic polynomial (C.4) indicates981

CAZ(1) ∝ −(ĥ− h2)qAZ(h2), (C.8)

for qAZ(h2) given in (C.2). In accordance with our earlier exposition of the full recursion
system (21), neutrality (d0 = d1 = 0) implies that the eigenvalue associated with allele
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frequency corresponds to unity, with the frequency of Aa heterozygotes converging to the984

state corresponding to Fneut (22) at rate sA/2.

We now assume that d0 or d1 is non-zero (h0 6= h2 or h1 6= h2). Because only hermaphro-
dites produce egg cells, the existence of the population monomorphic for the a allele implies987

h2 > 0. If the rare allele determines complete male development (h0 = 0 or h1 = 0), then
smaller root rS = 0 and

CAZ(1) ∝

{
(ĥ− h2)[h2 − h1(1− sA/2)] if h0 = 0

(ĥ− h2)(h2 − h0sA) if h1 = 0.
(C.9)

If h0 = 0 and CAZ(1) > 0, then (C.6) indicates that

h2 < ĥ⇒ λ0 < 1 and CAZ(λ0) < 0

ĥ < h2 ⇒ λ1 < 1 and CAZ(λ1) < 0,

Similarly, under h1 = 0 and CAZ(1) > 0,

h2 < ĥ⇒ λ1 < 1 and CAZ(λ1) < 0

ĥ < h2 ⇒ λ0 < 1 and CAZ(λ0) < 0.

These relationships indicate the existence of a root of characteristic polynomial CAZ(λ) in990

(0, 1), which confirms (32) and (C.1): CAZ(1) > 0 is both necessary and sufficient for local
stability under h0 = 0 or h1 = 0.

Restricting consideration to the remaining case (h0, h1, h2 > 0), we find that qAZ(h2)
(C.2) corresponds to a quadratic in h2 with a negative leading term with

qAZ(0), qAZ(max(h0, h1)) < 0 < qAZ(min(h0, h1)),

which implies that the larger (rL) and smaller (rS) roots of this quadratic lie in993

rL ∈ (min(h0, h1),max(h0, h1))

rS ∈ (0,min(h0, h1)).
(C.10)

We first establish that
rS < 1/2 ≤ ĥ (C.11)

for all h0 and h1 in (0, 1]. In cases satisfying

min(h0, h1) < 1/2,

the smaller root rS (C.10) lies below 1/2 and consequently ĥ. If

1/2 < min(h0, h1),

both d0 and d1 are positive for h2 = 1/2, which implies

qAZ(1/2) = [d1(1− sA) + d0sA(1− h1)]/2 > 0
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and confirms (C.11).

For small h2, satisfying996

h2 < rS < ĥ,min(h0, h1), (C.12)

CAZ(1) > 0 (C.8) and both λ0 and λ1 exceed unity (C.6). That the quadratic characteristic
polynomial (C.4) is negative at one of these values (CAZ(λ1) < 0 or CAZ(λ0) < 0) implies that
an eigenvalue in excess of unity exists. We conclude that under (C.12), alleles that increase999

the proportion of hermaphrodites beyond the level specified by the resident homozygote (h2)
increase when rare, confirming (C.1).

We now consider higher hermaphroditic frequencies at the fixation,1002

rS < h2, (C.13)

under which (C.8) indicates

CAZ(1) ∝ (ĥ− h2)(h2 − rL),

the left side of (C.1). Accordingly, (C.1) (CAZ(1) > 0) is a necessary condition for local
stability. We now demonstrate that it is in fact sufficient for local stability under (C.13).
For

rS < h2 < ĥ,

CAZ(1) > 0 implies
rS < min(h0, h1) < rL < h2 < ĥ.

Expressions (C.6) indicate that if h1 > h0, λ0 < 1 and CAZ(λ0) < 0 If h0 > h1, λ1 < 1 and
CAZ(λ1) < 0. We conclude that quadratic characteristic polynomial (C.4) is negative at a
value (λ0 or λ1) less than unity, which implies that that CAZ(1) > 0 (C.1) is sufficient for
local stability. We now restrict consideration to

ĥ < h2,

which together with CAZ(1) > 0 implies

ĥ < h2 < rL < max(h0, h1).

Similar to the preceding case, h1 > h0 implies λ1 < 1 and CAZ(λ1) < 0, while h0 > h1
implies λ0 < 1 and CAZ(λ0) < 0 (C.6). We again conclude that the quadratic characteristic
polynomial (C.4) has a root less than unity, which implies that (C.1) is indeed necessary and1005

sufficient for local stability.

C.4 Limits of the Li-Price equation

Here, we illustrate that the weak-selection assumption is essential to the heuristically-1008

appealing Li-Price equation (20) and the change of basis that relates it to a full local stability
analysis. We provide an example showing that under strong selection on the modifier locus,
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the key vector z̃ (B.1) can become invalid and the sign of the characteristic polynomial1011

evaluated at unity insufficient to determine the asymptotic fate of a rare allele introduced
into a population monomorphic at the modifier locus.

Local stability matrix M (C.3) represents the linearized transformation with respect to1014

a basis comprising the frequencies of rare genotypes AA (δ0) and Aa (δ1). We adopt the
new basis described in Appendix B, which comprises the frequency of the rare allele (A) and
the departure of the heterozygote frequency from the proportion expected under neutrality1017

(h0 = h1 = h2):

t0 = δ0 + δ1/2

t1 = δ0 − (δ0 + δ1/2)Fneut,
(C.14)

for
Fneut = sA/(2− sA),

the fixation index under uniparental fraction sA (9). Matrix A,

A =

(
1 1/2

1− Fneut −Fneut/2

)
, (C.15)

translates points from the original to the new coordinate system. In the original coordinate1020

system, the key vector (B.1) z̃ corresponds to

Bz̃ =

(
δ̃0
δ̃1

)
, (C.16)

for B = A−1.

For illustrative purposes, we assume additivity in sex expression,1023

h1 = (h0 + h2)/2, (C.17a)

and set

h2 = 1/4

sA = 3/4.
(C.17b)

Under these assignments, the ESS ĥ corresponds to 7/8 and the characteristic polynomial
evaluated at unity (C.8) reduces to

CAZ(1) ∝ (ĥ− h2)(h2 − h0)[h2(2 + sA)− h0sA].

The sole condition for local stability (C.1), which reduces to

(ĥ− h2)(h2 − h0) > 0,

indicates that the fixation of the a allele resists the invasion of the rare A allele only for

h0 < h2 = 1/4. (C.18)
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Figure B1: Relative magnitudes of the frequencies of rare homozygotes (δ̃0, increasing curve)
and heterozygotes (δ̃1, declining curve) at the key vector (C.16) as a function of h0, the
sex expression parameter associated with the rare homozygote. At the vertical bar (h0 =
3/4), both elements have a discontinuity, which corresponds to the passage through zero of
Det[(I −N )n−1] in (B.3).

Indeed, the characteristic polynomial evaluated at unity CAZ(1) is positive in this range and1026

changes sign at h0 = 1/4. However, under intense selection,

h0 > h2(2 + sA)/sA = 11/12, (C.19)

CAZ(1) is positive in spite of the local instability of the fixation state.

Key vector (B.1), which connects the local stability criterion to the Li-Price equation
(20), remains valid only in the range

h0 < 1/2.

Figure B1 plots δ̃0 and δ̃1, elements of key vector (C.16), as a function of the value of h0.1029

The relative frequency of heterozygotes (δ̃1) becomes non-positive for h0 ≥ 1/2. In addition,
at h0 = 3/4, the principal minor Det[(I −N )n−1] in (B.3) passes through zero, inducing a
discontinuity in the key vector (vertical line in Fig. B1).1032

This simple example illustrates that the connection between the Li-Price equation (20)
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and the full local stability analysis holds only for weak selection, which corresponds under
(C.17) to the range 0 < h0 < 1/2 under additivity of sex expression.1035
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Tables

Table 1
Offspring production

Life Stage

Maternal Parent Zygotes Juveniles Adults

Hermaphrodite
Uni s̃ s = s̃τ

s̃τ+1−s̃

Bi 1− s̃ 1− s = 1−s̃
s̃τ+1−s̃

Female Bi σ̃ σ = σ̃
s̃τ+1−s̃
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Table 2
Phenotypic and genetic values

Genotypes

AA Aa aa

Frequency u0 u1 u2

Trait deviation P0 − P̄ P1 − P̄ P2 − P̄
Additive genotypic value 2α0 α0 + α1 2α1

Fitness deviation T (u′0 − u0)/u0 T (u′1 − u1)/u1 T (u′2 − u2)/u2
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Figure 1: Posterior distributions of relative effective number R (2).
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Figure 2: Posterior distributions of the collective contribution of hermaphrodites to the pop-
ulation gene pool (1) inferred from microsatellite data derived from androdioecious Kryp-
tolebias marmoratus and gynodioecious Schiedea salicaria. For K. marmoratus, the curves
correspond to CA (10), and for S. salicaria, CG (13).
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Figure 3: Posterior distributions of the viability of gonochores relative to hermaphrodites
(Z).
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Figure B1: Relative magnitudes of the frequencies of rare homozygotes (δ̃0, increasing curve)
and heterozygotes (δ̃1, declining curve) at the key vector (C.16) as a function of h0, the
sex expression parameter associated with the rare homozygote. At the vertical bar (h0 =
3/4), both elements have a discontinuity, which corresponds to the passage through zero of
Det[(I −N )n−1] in (B.3).
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