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Summary

Cryo-electron microscopy has become a mainstream structural biology technique by enabling the
characterization of biological architectures that for many years have eluded traditional methods like X-
ray crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy. However, the translation
of cryo-electron microscopy data into accurate structural models is hampered by the presence of
random and systematic errors in the data, sample heterogeneity, data correlation, and noise correlation.
As a consequence, in integrative biology approaches, it has been difficult to objectively weigh EM-
derived restraints with respect to other sources of information. To address these challenges, here we
introduce a Bayesian approach that allows efficient and accurate structural modeling of cryo-electron
microscopy density maps at multiple scales, from coarse-grained to atomistic resolution. The accuracy
of the method is benchmarked using a set of structures of macromolecular assemblies. The approach is
implemented in the open-source Integrative Modeling Platform package
(http://integrativemodeling.org) in order to enable structural determination by combining cryo-electron
microscopy with other information, such as chemical cross-linking/mass spectrometry, NMR, and
small angle X-ray scattering data.
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Introduction

Over the last two decades, electron microscopy (EM) has enabled the structural characterization of
complex biological systems that were beyond the capabilities of more traditional techniques, such as
X-crystallography or Nuclear Magnetic Resonance (NMR) spectroscopy (/-3). This tremendous
progress has been fuelled by the continuous advances in both instrumentation and software for cryo-
EM image processing (4-6). As a result, cryo-EM is rapidly approaching the resolution of X-ray
crystallography, allowing the structural determination of complex systems of outstanding biological
importance, such as the cytoplasmic polyhedrosis virus at 3.88 A (7), the ribosome at 5.4 A (8), the
20S proteasome at 2.8 A (9), human gamma-secretase at 3.4 A (10) and [3-galactosidase at 2.2 A (11).
Most importantly, cryo-EM does not require to crystallize the system prior to data acquisition, like X-
ray crystallography, and it does not need large samples, isotopic enrichment, nor is limited by the size
of the system under study, like NMR spectroscopy. Furthermore, cryo-EM has the potential to identify
multiple different structural states (2-5), provided that they can be disentangled during the class-
averaging process.

Despite these recent advances, the translation of cryo-EM three-dimensional (3D) reconstructions
(cryo-EM density maps), into structural models still presents several challenges. First, cryo-EM maps
are affected by random and systematic errors (/2, 13), like all experimental data. In particular,
radiation damage to the sample upon prolonged exposure to the electron beam often results in regions
of the density map at resolution lower than the average. Second, despite the progress in the
development of classification software to group single-particle two-dimensional (2D) images into class
averages and to translate them into 3D reconstructions, the final density maps might still group
different conformations together (/4). As a result, areas of the map corresponding to regions of high
flexibility typically present lower resolution and, therefore, an individual structure might not be able to
fit the entire density map with the same accuracy and precision. Finally, density maps are typically
constituted by a set of data points (i.e., voxels) with correlated noise. This aspect is particularly
relevant when one wants to integrate EM data with other experimental data (/5), such as chemical
cross-linking/mass spectrometry or NMR data. In this case, the information content of each piece of
data needs to be accurately weighed to avoid biasing towards a specific dataset during modeling (/2).
Consequently, there is still a pressing need of modeling approaches that can tackle all these challenges
and generate accurate and precise structural models from EM density maps.

A number of approaches have been proposed over the years to model EM density maps. We refer to
existing reviews for a complete overview of the state of the art (/6, /7). Generally speaking, these
techniques can be classified in five groups: methods for rigid-body fitting, flexible fitting, homology
modeling, de novo modeling, and integrative approaches. The most popular methods in all these five
categories include: Chimera (/8), EMfit (19), Modeller (20), SITUS (27), MultiFit (22), EMFF (23),
MDFF (24), MDFIT (25), Fold-EM (26), ROSETTA (27), EM-fold (28), IMP (29), RELION (30), and
Phenix (37). The majority of these approaches generate structural models that minimize the deviation
between observed and predicted EM density maps, by means of Molecular Dynamics (MD), Monte
Carlo (MC) or Normal Modes Analysis techniques (/7). Typically, this deviation is measured in terms
of an electron density-based correlation coefficient (CC) between experimental and predicted maps
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calculated over a set of voxels. Additional pseudo-energy terms are routinely applied to enforce correct
stereochemistry. Despite the success of these methods, it is still a challenge to tackle all the issues
related to the modeling of cryo-EM data outlined above.

Here we introduce a novel approach to model EM density maps based on a Bayesian framework (32),
which provides an objective way to interpret experimental data and integrate them with prior
knowledge. This technique is based on an analytical representation of the input data in terms of a
Gaussian Mixture Model (GMM) (33-35), rather than the more standard voxel-based approach. This
choice has several advantages: a) it circumvents the problem of data-point correlation, by clustering the
voxels into independent components (i.e., the Gaussians); b) it is computationally efficient; c) it is
compatible with a multi-scale representation of the model, from coarse-grained for initial efficient
sampling to atomistic for refinement of high-resolution maps. Furthermore, our approach models the
structure of the system and simultaneously quantifies, in an automated way, the level of noise in the
data, thus allowing the balanced integration of different experimental data by weighing each piece of
information according to its noise content.

In the following, we first outline the modeling protocol, introduce the theory of our Bayesian approach,
and then benchmark its accuracy using synthetic low-resolution data of several protein/DNA
complexes. This method is implemented in the open-source Integrative Modeling Platform (IMP;
http://integrativemodeling.org) (29), thus enabling integrative structure determination of biological
systems based on a variety of experimental data, including FRET and NMR spectroscopies, chemical
cross-linking coupled with mass spectrometry, small angle X-ray scattering (SAXS), and various
proteomics data. Furthermore, this approach can be used with a variety of different representations of
the system, from coarse-grained to atomistic, for a multi-scale modeling of cryo-EM data.

Materials and Methods

Protocol for low-resolution modeling of EM data.

We implemented a pipeline that enables the low-resolution modeling of cryo-EM data given partial
knowledge of subunits structures, and the final atomistic refinement. The procedure is as follows (Fig.
1):

1) Gather the data in the form of protein sequences, crystallographic or NMR structures of
domains, homology models, or models predicted from evolutionary covariance data, along with
the target 3D density map reconstructed form the electron microscopy data.

2) Generate a Gaussian Mixture Model representation of the 3D density map by using the divide-
and-conquer algorithm described below (33). Assign a representation to the different
components of the complex. Subunits are represented by strings of spherical beads and a set of
3D Gaussians. For a given domain, the conformation of the corresponding beads and Gaussians
is either constrained into a rigid body or allowed to move flexibly, depending on the availability
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of a structure or a model for that domain. The beads represent one or more contiguous residues,
depending on the coarse-graining of the model (34, 36, 37). The Gaussians describe the electron
density of the model and are used to compute the fit to the EM density map.

3) The score, which ranks the models according to how well they fit the input information, is
derived from the posterior probability, which includes a likelihood function for the EM data,
and prior terms such as the sequence connectivity of macromolecules and excluded volume.

4) The different degrees of freedoms of the model are sampled using Monte Carlo (MC) coupled
with Replica Exchange (38) and Simulated Annealing (39) using IMP (29). Each replica
outputs models that are stored in files for later analysis. The ensemble of models resulting from
the sampling are ranked and analyzed.

5) Sampling exhaustiveness is tested and models are validated.

A Bayesian scoring function for EM data

In general terms, the Bayesian approach (32) estimates the probability of a model, given information
available about the system, including both prior knowledge and newly acquired experimental data. The
posterior probability p(M|D) of model M, which is defined in terms of its structure X and other
Bayesian parameters, given data D and prior knowledge is:

p(M|D) < p(DIM) - p(M) (1)

where the likelihood function p(D|M) is the probability of observing data D given M and the prior
p(M) is the probability of model M given the the prior information. To define the likelihood function,
one needs a forward model f(X) that predicts the data point that would be observed for structure X in
the absence of experimental noise, and a noise model that specifies the distribution of the deviation
between the experimentally observed and predicted data points. The Bayesian scoring function is
defined as S(M) = —log[p(D|M) - p(M)], which ranks the models in the same order as the posterior
probability p(M|D). The prior p(M) includes the sequence connectivity, the excluded volume and
rigid body constraints. To compute these priors, the domains of the proteins are coarse grained using
beads of varying size. The sequence connectivity term is a sum of upper harmonic distance restraint
that connects all the beads in the sequence, and emulates the covalent structure of the
polypeptide/polynucleotide main-chain. The excluded volume is computed from a soft-sphere potential
where the radius of a bead is estimated from the sum of the masses of the residues it represents. The
structures derived from X-ray data or homology models are coarse-grained using two categories of
resolution, where beads represented either individual residues or segments of up to 10 residues. All
these beads are constrained into a rigid body, in which relative distances are constrained during
sampling. Strings of beads represent parts without structural information, and are kept flexible. In the
following, we define the components of the Bayesian scoring function specifically for EM density
maps.
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Experimental electron density maps. We represent the experimental density map ¥p in terms of a

Gaussian Mixture Model (GMM) (,‘bg with j components:
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This description presents several advantages. First, it circumvents the problem of dealing with

correlations in the data and noise that are typical of voxel-based representations, as each qb[];’i(x) might
be regarded as an independent component of the density map. Second, it provides a computationally-
convenient representation of the data in terms of analytical functions. In addition, the fit of the GMM
representation can be evaluated by using the correlation coefficient of the GMM with the EM density
map.

The posterior probability of model M given the EM density ¥, can be written in terms of all possible
GMMs that can be used to represent the data:

p(MI¥5) = D p(M|6]) p(dh|¥p) @

J

In the following, we will assume that the conditional probability p(d)l])' |lPD) can select a single GMM
¢p with Np components, which optimally represents the data. In this situation:

p(M|¥p) x p(M|dp) x p(¢pp|M) - p(M) (5)

Divide-and-conquer fit of the experimental map. To fit the experimental density map ¥, with a GMM
¢p, we used an Expectation Maximization algorithm (33). This approach determines the parameters of
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the GMM (mean, weight, and covariance matrix of each Gaussian) by maximizing the likelihood that
the GMM density function generates the density of the voxels in ¥p. As the resolution of the map
increases, the number of Gaussians required for the GMM to accurately reproduce all the features of
the experimental map exponentially increases, also increasing the computational time and memory
required to perform the fit. To overcome these problems, we developed a divide-and-conquer approach
(Fig. 2). First, the map ¥, is masked and all voxels with a density lower than the threshold
recommended in the EMDB (www .ebi.ac.uk/pdbe/emdb/) are removed. Second, a recursive procedure
starts from iteration 1 by fitting the map ¥ (Fig. 2A) with a GMM consisting of a small number of
Gaussians Ny, (typically 2 or 4) (Fig. 2B). Each of the components ¢, ; of this initial GMM is used to
define a partition of the original map into submaps ¥, ; (Fig 2C):

¢D,i(x)
232 ¢p (%)

This partitioning has two properties: a) each submap isolates the part of the original map that

Wp,i(x) = ¥p(x) - (6)

overlapped with the component (¢p, ;); b) the sum of all submaps results in the original density map:
Y, (x) = Z?’:Dl Wp,i(x). The process is repeated, and each submap Wp; is fitted using a GMM with
small number of Gaussians Np (Fig 2D). At each iteration, the portion of the original map that is fit by
a given GMM is reduced, so that a small number of Gaussians will eventually be sufficient to
accurately reproduce high-resolution details. Furthermore, because of property b), the global GMM
defined by the sum of all the GMMs obtained at any given iteration also fits the original map (Fig. 2E).
The procedure can be repeated until the global GMM reaches the desired accuracy (Fig. 2F), measured
for example in terms of correlation coefficient with the original map ¥p, which is computed at each
iteration (Fig. 3). The whole process can be efficiently run on a computer cluster, being highly parallel.

The forward model. We developed a forward model to predict a EM density map from a single
structural model. As for the data representation, the forward model ¢, is a GMM with Ny,
components:

Ny

Nm
() = Y bui®) = Y wps Gl X Z) ()

i=1

For high-resolution maps, each atom can be represented by a single Gaussian, whose parameters can be
obtained by fitting the electron atomic scattering factors for a given atomic species (40). For low-
resolution maps or for an efficient initial sampling of high-resolution maps, we use a single Gaussian to
represent each coarse-grained bead, with the Gaussian width proportional to the size of the bead. If
multiple coarse-grained beads of the model are part of the same rigid body, the parameters of the GMM
associated to these beads are computed by applying the Expectation-Maximization algorithm to the
positions of the centers of the beads, weighed by their mass. The number of components in the model-
GMM is chosen so as to match the number of Gaussians per unit of mass in the data-GMM.
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The noise model. The likelihood p(¢p|M) is written in terms of the overlap ovyp, of the k-th
component of the data GMM ¢, , with the entire model ¢, , defined as:

oV = [ dx o dox®) (®)

Being ¢, a GMM, we can write the overlap as the sum overlaps of the individual components:

oV = Y [ @ B0 Box @) )
J
where the overlap between two Gaussians ¢y, ; and ¢p i is given by:

[ % 1, 0400
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- (2m)3/2| 2y ; + Zp k]
- x| (10

We use a log-normal noise model and treat the N, individual components of ¢ as independent pieces
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where oy, is the unknown tolerance associated with the k-th component of the data GMM and ovpp, i, is
the overlap of the k-th component with the entire data GMM.

Priors and marginalization. For simplicity, in the following we assume that different parts of the map

have the same tolerance o and we marginalize this variable using an uninformative Jeffreys prior
p(o) = 1/0. The resulting marginal data likelihood can be written as:

ENTS b 12 (OVmp\\ VO
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Alternatively, one can assume a variable level of noise in the map and marginalize each g, using a
Jeffreys prior. For the structure X, the prior p(X) depends on the resolution of the model. In case of
atomistic representations, we use a molecular mechanics force field, while for more coarse-grained
representation a simple excluded volume potential can be used to avoid steric clashes.

Bayesian scoring function. After defining the ingredients of our Bayesian approach and marginalizing
the single parameter representing the global uncertainty in the data, the final Bayesian score for cryo-
EM maps can be written, omitting constant quantities, as:

Np
N ov
S(X) = kgT - —log[p(X)] +—Dlog Zlog2< MD’k> (13)
2 £ OVpp k

Benchmark of the divide-and-conquer GMM calculation.

We assessed the accuracy of our divide-and-conquer approach to fitting EM density maps by using
experimental density maps of the exosome, a ~400 kDa 10-subunit protein complex (41-43) at different
resolutions, ranging from 4.2 to 23 A (Table 1). We used the divide-and-conquer approach described
above to obtain GMMs of each map with a number of Gaussians varying from 16 to 16384. The
accuracy of the fit is defined as the correlation coefficient (44) between the EM density map and the
map generated by rasterizing the GMM approximation into a 3D grid with the same mesh properties as
the original EM density map (i.e., same voxel size, position, and box lengths) (Fig. 3). Furthermore, to
leverage the effect of the noise, the correlation coefficient is computed using voxels whose density
exceeds the recommended threshold value reported in the EMDB. Finally, we heuristically choose the
map with the minimal number of Gaussians whose correlation coefficient exceeds 0.95. The simulated
GMMs were generated from the reference structures using the program gmconvert (33). From these
data, we determined the stretched-exponential dependence of the resolution of the EM density maps on
the number of Gaussians per unit of mass in a GMM with a correlation coefficient of 0.95 (Fig. 4).

Benchmark of the modeling protocol.

Data generation. We run the modeling protocol on a benchmark of 12 protein/DNA complexes
consisting of 2 to 6 subunits (45) (Table 2, Fig. 5). For each of these complexes, we generated a
simulated EM density map, using the coordinates of the PDB structures. We used one Gaussian every
1.090 kDa of assembly mass, which corresponded roughly to the mass of 10 residues and resulted in a
resolution of about 11 A, as obtained by extrapolating from the stretched-exponential regression (Fig.
4). For example, the human transferrin receptor complex (PDB 1suv) (46) is made of 6 subunits, it has
a molecular mass of 290 kDa, and therefore the simulated map was determined using 262 Gaussians.
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Subunits representation and forward model. Molecules (protein and DNA chains) are represented by a
set of spherical beads, each with the volume of the corresponding residue. When available, the
positions of beads are obtained from the PDB structures and are constrained into one or more rigid
bodies. Missing regions are constructed as strings of flexible coarse-grained beads (Figs. $1-S12).
When molecules are intertwined or if a molecule is composed of structurally independent domains, we
defined several rigid bodies (ie, 1Z5S, 3LUO, 3PUV, and 3SFD). Furthermore, in some cases, two
domains belonging to distinct molecules are merged into the same rigid body, such as the DNA double-
strands of 3V6D and 2Y7H or the helical bundle of 3PUV. The model GMM is computed as follows.
First, for each rigid body defined above we computed a GMM based on the corresponding atomic
coordinates using the implementation of the expectation-maximization algorithm available in the
scikit-learn python library (47). The number of Gaussians of the GMMs is determined by the molecular
weight of the corresponding rigid body, divided by 1090. The center and covariance matrix rotation of
each Gaussian are constrained into the corresponding rigid body. Second, each flexible bead is treated
as an individual spherical Gaussian.

Model sampling. The positions and the orientations of rigid bodies and flexible beads are initially
randomized. The generation of structural models is performed using MC coupled with Replica
Exchange (38). 40 replicas are used to cover a temperature range between 1 and 2.5 score units (SU).
Intermediate temperatures followed a geometrical progression. In addition, we use a simple simulated
annealing procedure (39) on the weight of the Bayesian EM restraint. We first perform 1000 MC steps
with a weight of 0.1, followed by 10000 MC steps with the weight set to 1.0. This alternating pattern is
repeated until reaching a total of 3*10° MC steps with a weight of 1.0. We then produce one
configuration every 10 MC steps with weight 1.0, for a total of about 300000 models for each system.

Each Monte Carlo step consists of a series of random transformations of the positions of the flexible
beads and the rigid bodies. Each flexible bead and rigid body is translated in a random direction by up
to 4 A. In addition, each rigid body is rotated around its center of mass by up to 0.04 radians about a
random axis. Furthermore, a similar transformation (random translation of up to 4A followed by a
random rotation of up to 0.04 radian) is applied to the whole system. Each MC step is accepted or
rejected according to the Metropolis criterion.

Structural metrics. To compare two models, we used multiple metrics: the root-mean square deviation
(rmsd) of residue positions, the rmsd(80), p(10), the positional error and the angular errors of subunits,
and the data-model correlation coefficient (CC). The rmsd(80) quantifies the structural difference
between two structures as the rms of the 80% smallest pairwise deviations of all residue positions. The
rmsd(80) is robust with respect to outliers. For accuracy measurements, the native structure is one of
the two structures compared. The deviation of the residue position in two structures is computed
between the positions of corresponding centers of the coarse-grained spheres, without structural
alignment. When multiple copies of the same protein are present (i.e., pdb codes 1suv, 2wvy, 2y7h,
31u0, 3nvq, 3pdu, 3puv, 3r5d and 3sfd) (46, 48-55), one has to determine the copy assignment. The rmsd
is initially computed between the two structures by permutation of all possible assignments between
the first and the second structure. The rmsd(80) is then computed using the assignment corresponding
to the minimal-rmsd permutation. p(10) is the percentage of residues whose deviation between the two
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structures is lower than 10 A. The positional error and the angular errors are respectively the deviation

of the positions of the centroids of a subunit in the two structures and the solid angle needed to best-
oVymp

—————and
VOvyMOVDpD

align two subunit structures. The data-model correlation coefficient is defined as CC =
quantifies the agreement of the forward model with the data.

Clustering. For each complex, the 1000 best scoring models are clustered using the following
procedure:

1) The best scoring model is assigned to cluster 0.

2) For each model, in order of increasing score, we compute the rmsd(80) with respect to the best
scoring model of each cluster. The model is added to the first cluster encountered for which this
rmsd(80) is lower than 5 A. If no cluster is found, then we create a new cluster that initially
contains only that model.

For each complex, we compute the cluster dispersion using the Shannon Entropy (SE) measure:

SE= ) —pelog (p) (14)
c € clusters
where p, is the population of cluster c. A dispersion SE close to 0 indicates very few highly-populated
clusters.

Analysis. All models were ranked by the score, and the 1000 best scoring models were considered for
further analysis. We clustered all models that had an rmsd(80) from the native structure lower than 5 A.
For each cluster, we computed the precision and the accuracy metrics. The precision is the average
rmsd(80) of cluster members with respect to the cluster center. The accuracy of the fit was assessed by
computing the rmsd(80), p(10), the overlap between the model- and data- GMMs, as well as the
positional and angular errors of the subunits placements for each cluster.

Software. All these steps were implemented using IMP.pmi scripts. In particular, the representations
and degrees of freedom of each complex were encoded in a standard way using the IMP.pmi topology
tables.
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Results

Benchmark of the divide-and-conquer GMM calculation.

We initially assessed the accuracy of our divide-and-conquer approach to fitting EM density maps by
using experimental density maps of the exosome complex at different resolutions (4/-43), ranging from
42 t0 23 A (Table 1). This benchmark revealed that the number of Gaussian components needed to
achieve a given accuracy of the final GMM, measured in terms of correlation coefficient with the input
map, varies with the resolution of the map (Fig. 3). Indeed, for a given number of components, the
data-GMM correlation coefficient is lower for higher-resolution maps. In other words, high resolution
maps contain more information and therefore require additional components to describe all their
features.

Interestingly, our benchmark allows us to classify the maps of this dataset in two clusters: first, the
low-information cluster contains all the maps of resolution worse than 10 A, and second, the high-
information cluster that contains all the maps of resolution better than 10 A. This threshold corresponds
to the resolution at which secondary structure elements become visible (56).

We calculated the dependence of the resolution of the EM density maps on the number of Gaussians
per unit of mass in a GMM with a correlation coefficient of 0.95 (Fig. 4). The relationship can be used
to: a) estimate the resolution of a GMM generated from a known structure, and b) estimate the number
of Gaussians needed to fit a EM density map of a given mass and resolution.

Finally, the divide-and conquer approach allows to overcome the memory and time limitations of the
expectation-maximization algorithm when using a large number of Gaussians. In the case of EMD-
3366, our approach takes 24 minutes and less than 1GB per process to generate GMMs with 4, 16, 64,
256, 1024 and 4096 components. When performed serially with the gmconvert software, a GMM with
4096 requires over 48 hours and 182 GB of memory.

Benchmark of the modeling protocol

We assessed the accuracy of the modeling protocol using a benchmark of 12 protein/DNA complexes
consisting of 2 to 6 subunits (Table 2) (45). The models were fit using a simulated EM density map
with a resolution of approximately 11 A (Materials and Methods). It is worth noting that no additional
data (eg, cross-linking experiments) were included, since our specific purpose here is to explore the
performance of the EM scoring function alone. Therefore, to some extent, we expect less accurate
results than in a real-life application, where multiple datasets would be integrated together to model a
complex. The detailed results of the benchmark are reported in Tables S1-S12.

Overall, the results of our benchmark suggested that:

1) The data are explained. In all cases, the best scoring models fit the data to an overlap higher than
0.7, showing that the sampling explored conformations that very well explain the EM density maps.
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2) Global benchmark accuracy. The average accuracy p(10) of the benchmark is 85%. p(10) is defined
as percentage of residues whose deviation from the native structure is lower than 10 A,

3) Classification of the results. We classified the outcomes of our benchmark into three categories. We
consider a full positive result when the total rmsd(80) and all the rmsd(80) of the individual subunits
are less than 10 A. A partial positive is achieved when the total rmsd(80) is less than 10 A but some of
the subunits are misplaced with an rmsd(80) larger than 10 A A negative is obtained when the total
rmsd(80) is more than 10 A. Out of the 12 complexes, we obtained 5 full positives (3r5d, 2uzx, 2wvy,
3nvq, 3pdu) (48, 51, 52, 54, 57), 3 partial positives (3v6d, 2y7h, 31u0) (49, 50, 58), and 4 negatives
(3sfd, 3puv, 1z5s, lsuv) (46, 53, 55, 59). In Fig. 5, we show one representative example for the cases
of full positive (3nvq), partial positive (31u0), and negative (lsuv). Together with the native
conformation (Fig SA), we show models from the best scoring cluster (Fig 5B), and a color-coded
representation of the accuracy of each residue of the best model (Fig 5C), along with the plots of the
scores of the models as a function of their RMSD with respect to the native state (Fig 5D).

The three partial positives had the majority of the residues placed accurately within a rmsd(80)<5.8 and
a p(10)>0.89. In each of the three cases we observed a small subunit placed incorrectly. In both 3v6d
(58) and 2y7h (49), a DNA double helix was placed in a wrong orientation with respect to the native
structure. For 31u0 (50), the center of mass of subunit E (2.7 % of the total mass) was placed 11.63 A
from the target and rotated by 105°.

The four negatives had a rmsd(80)>17.1 and a p(10)<0.8. In the following paragraphs, we analyze each
individual negative case, highlighting the reasons behind the lower accuracy of the reconstructed
models.

The 4-subunit 3sfd (55) (rmsd(80)=17.1, p(10)=0.78) failed to reconstruct the helical bundle made by
chains C and D (20% of the total mass). The remaining chains A and B (80% of the total mass) were
placed with an rmsd(80) of 1.1 and 2.7 A respectively. The 14 clusters generated from the 1000 best
models were very disperse (SE=2.47), and none of the clusters contained a structure close to the native
state. In contrast, the PSE (Percentage Score Error) was equal to 0%, meaning that the best-scoring
model scores as well as the native state, indicating a sampling problem.

The best-scoring model of the 5-subunit 3puv (53) had the total rmsd(80)=19.3 and p(10)=0.66. The
clustering displayed dispersion (SE=1.4) over a total of 5 clusters. In the best scoring cluster, chains A
and B (39% of the mass of the complex) were incorrectly placed (rmsd(80) 40A and 19A,
respectively). In the second best-scoring cluster, subunits A and B are well placed, but all other chains
are misplaced. However, the mass of the best scoring model well explains the EM data, having a data-
model correlation coefficient of 0.75. PSE is -4%, meaning that the native conformation scores better
than the best-scoring model.

The 4-subunit 1zSs (59) had rmsd(80) of 13.1 A and p(10) of 0.67, and was the smallest complex (m.w.
49kDa). The models were clustered into 19 clusters with a very high dispersion SE=2.92. The best
scoring cluster had subunits A and C correctly placed (rmsd(80)=5.3 and 3.8 respectivelly), and
subunits B and D were were correctly centered, but mis-rotated resulting in rmsd(80) of 17.2 and 27.0,
respectively. The PSE is +8%, meaning that the native conformation scores worse than the best-scoring
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model. The reason is that data resolution (11 A) is insufficient to correctly position the small B and D
subunits (78 and 65 residues respectively).

The 6-subunit 1suv (46) (Fig. 5, Right) has a rmsd(80) of 27.9 and p(10) of 0.5. This complex has
three different proteins A, C and E which have identical copies B, D, and F. The models were grouped
into 2 clusters, with little dispersion (SE=0.57). In all clusters subunits A and B (53% of the total mass)
are correctly placed with rmsd(80) of about 2 A. Subunits D and F (26% of the total mass) are correctly
centered but mis-rotated. Chain C and E are wrongly centered and rotated. Again, the data-model
correlation coefficient is 0.75, and the PSE is +50%. However, it should be noted that proteins C and E
(as well as the corresponding copies) are structurally very similar. Therefore, they could be considered
indistinguishable upon permutation when computing the rmsd. In fact, permuting the positions of these
four subunits results in similar scores. When computing the accuracy of the sample considering C, D,
E, and F as interchangeable, we found that all the subunits were correctly centered. The best scoring
model has an rmsd(80) of 15.1A and a p(10) of 0.65. The source of the inaccuracy of the models is
attributed to mis-rotations of subunits C, D, E and F. Given that the model-GMMs of these subunits are
roughly spherical, it is likely that mis-rotations of these subunits are not penalized by the Bayesian EM
scoring function.

Discussion and Conclusions

A major difficulty of integrative modeling, in which data of different nature are combined to model the
structure of a biological complex, is to determine the unknown relative weight of each piece of
information. Inaccurate weighing results in models that are biased towards a particular type of data. To
optimally weigh each piece of information, one should consider two factors: the accuracy or level of
noise in the data and the correlation between data points. These two factors determine the overall
information content of each source of data. Very noisy experimental data obviously provide lower
structural information than highly accurate and precise data. Also, two measurements of the same
structural feature by repeating the same experiment cannot be considered as independent observations
and therefore they do not provide a substantial amount of additional information on the system and
should not be simply counted twice.

In the Bayesian framework, the problem of structural determination from multiple sources of
information is formulated in terms of a probability distribution, or posterior, that objectively ranks
models by quantifying the corresponding information content. Here we introduced a Bayesian
approach to cryo-EM data that can be generally used in integrative approaches across multiple levels of
resolution of the input map. This approach addresses the problem of quantifying both the level of noise
and the data correlation. Experimental density maps are decomposed into a minimal Gaussian Mixture
Model (GMM) that reproduces all the structural features of the data as well as the density resolution.
Each Gaussian represents a subset of the voxels in the original experimental map and approximates the
unknown correlation, or covariance, between neighboring voxels. Therefore, determining the Data-
GMM from the experimental map is equivalent to data-clustering, where correlated data points (voxels)
are grouped into a minimal set of independent descriptors (Gaussians).
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On the other hand, a molecular model, consisting of particles, either atomic or pseudo-atomic, is
naturally described by a Model-GMM, where a Gaussian is centered on the coordinates of each
particle, and the width and masses are derived from the particle mass and volume. The likelihood
function in Eq. 11 then quantifies the discrepancy between data and model GMM in the following way.

First, the model and the data are compared using the metric log? (Z:D—D'k). The rationale behind this
MD,k

metric is that a Model-GMM reproduces the k-Data-Gaussian when the overlap (Eq. 10) between the
model and k-Data-Gaussian is similar to the overlap of the Data-GMM and the k-Data-Gaussian.
Second, the metric described above is modulated by an unknown parameter oy, that quantifies the level
of noise in the region of the experimental map described by the k-Data-Gaussian. Finally, since the
components of the GMM can now be considered as independent data points, the global likelihood is
written as a product of Ny (number of Gaussians in the Data-GMM) terms, each one assessing the
proximity of the model to the experiment using the metric above. When investigating the scoring
function, Np is number of score terms which are driving the model close to the target for each Data-
Gaussian, therefore the weight. As desired, decreasing/increasing the resolution of the data (Fig. 4),
fewer/more Gaussians are needed to reproduce the density map, and as a consequence the restraint
have a lower/higher weight.

The extensive benchmark of our modeling protocol based on the Bayesian EM scoring function
demonstrated that our approach is, in most cases, capable of correctly positioning and orienting the
components of a macromolecular complex. The few cases in which our approach was inaccurate were
characterized by the fact that multiple different placements of the subunits could result in a similar
overall density. For example, helical bundles are difficult to model at low resolution because they only
define a “cylinder” in which two or more helices can be positioned in multiple ways. Similarly, pseudo
spherical subunits (such as subunits C-F of 1suv) can be rotated around their center of mass with only
minimal penalty. Moreover, the placement of DNA helices is degenerate, because their expected
density is symmetric by rotation. However, these issues are not specific to the modeling protocol
presented here, but to various extents shared among all techniques aimed at modeling architectures
from low-resolution EM data. These results highlight the importance of integrative approaches when
dealing with medium- to low-resolution data. In our case, our Bayesian framework allows the correct
integration of EM data with other sources of information, such as cross-linking/mass spectrometry data
and labelling experiments, which will resolve the inaccuracies in the orientation of the subunits.
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Molecular Number of Gaussians

EMDB # Weight (kDa) Resolution [A] ot cez0.95 Reference
3366 420 42 9600 (41)
3369 420 5.8 4300 (41)
3372 350 6.3 4160 (41)
3370 350 6.7 3300 (41)
3371 350 11 256 (41)
3367 350 115 150 (41)
3368 350 13 360 (41)
1708 400 14 16 (42)
1438 400 19 41 (43)
1439 300 23 16 (43)

Table 1: Dataset used to benchmark the divide-and-conquer approach to the GMM creation
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pdb
id

2uzx
2wvy
3nvq
3pdu
3r5d
2y7h
3lu0
3ved
1suv
3puv
3sfd
1z5s

Reference

(37)
(48)
D
(52)
(59
(49)
(50)
(38)
(46)
(33)
(35)
(39)

Number
of
subunits

O - Y NV S S UV R U O UC R O}

N

Percentage
score error

0.01
0.01
0.62
0.05
-0.03
0.49
0.02
0.04
0.50
-0.04
0.00

0.08

data-
model
correlation
coefficient

0.79
0.96
0.96
0.84
0.77
0.81
0.84
0.87
0.75
0.75
0.78

0.58

Table 2: Results of the modeling protocol benchmark.

Number
of
Clusters

Clusters
dispersion
(SA)
0.00
0.00
0.00
2.04
1.37
0.25
0.00
0.55
0.57
1.40
2.47

2.92

rmsd(80) [A]

2.10
1.24
1.06
2.53
5.81
6.97
4.59
7.43
15.09
27.92
12.81

13.07

p(10)

0.95
0.99
1.00
1.00
0.99
0.98
0.90
0.95
0.65
0.64
0.78

0.64

Average
position
error [A]
1.49
0.89
0.75

1.91

2.51
2.18
1.77
1.42
2.74
8.35
5.29

4.64

Average
angular
error [° |

3.59
2.61
2.76
7.58
7.80
6.77
9.56
7.49
60.72
36.92
38.65

60.96

Number of
misplaced
subunits

N O O O o O

NN W N

Result

Full Positive
Full Positive
Full Positive
Full Positive
Full Positive
Partial Positive
Partial Positive
Partial Positive
Negative
Negative
Negative

Negative

16


https://doi.org/10.1101/113951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/113951; this version posted March 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

References

1.

W

91

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

W. Kuhlbrandt, The resolution revolution. Science 343, 1443-1444 (2014).

E. Nogales, The development of cryo-EM into a mainstream structural biology technique. Nat
Methods 13,24-27 (2016).

E. Callaway, The Revolution Will Not Be Crystallized. Nature 525, 172-174 (2015).

X. C.Bai, G. McMullan, S. H. Scheres, How cryo-EM is revolutionizing structural biology.
Trends in Biochemical Sciences 40, 49-57 (2015).

R. M. Glaeser, How good can cryo-EM become? Nature Methods 13, 28-32 (2016).

X. M. Li et al., Electron counting and beam-induced motion correction enable near-atomic-
resolution single-particle cryo-EM. Nature Methods 10, 584-+ (2013).

X.Yu,L.Jin,Z. H. Zhou, 3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron
microscopy. Nature 453, 415-419 (2008).

X.C.Bai,I. S. Fernandez, G. McMullan, S. H. Scheres, Ribosome structures to near-atomic
resolution from thirty thousand cryo-EM particles. Elife 2,e00461 (2013).

M. G. Campbell, D. Veesler, A. Cheng, C. S. Potter, B. Carragher, 2.8 A resolution
reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron
microscopy. eLife 4, (2015).

X. C. Bai et al., An atomic structure of human gamma-secretase. Nature 525,212-217 (2015).
A. Bartesaghi et al.,2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a
cell-permeant inhibitor. Science 348, 1147-1151 (2015).

D. Schneidman-Duhovny, R. Pellarin, A. Sali, Uncertainty in integrative structural modeling.
Curr Opin Struct Biol 28,96-104 (2014).

M. Bonomi, G. T. Heller, C. Camilloni, M. Vendruscolo, Principles of protein structural
ensemble determination. Curr Opin Struct Biol 42, 106-116 (2017).

M. Bonomi, C. Camilloni, A. Cavalli, M. Vendruscolo, Metainference: A Bayesian inference
method for heterogeneous systems. Sci Adv 2,e1501177 (2016).

A.B. Ward, A. Sali, I. A. Wilson, Biochemistry. Integrative structural biology. Science 339,
913-915 (2013).

G. F. Schroder, Hybrid methods for macromolecular structure determination: experiment with
expectations. Curr Opin Struct Biol 31,20-27 (2015).

J.R. Lopez-Blanco, P. Chacon, Structural modeling from electron microscopy data. Wires
Comput Mol Sci §, 62-81 (2015).

E. F. Pettersen et al., UCSF Chimera--a visualization system for exploratory research and
analysis. Journal of Computational Chemistry 25, 1605-1612 (2004).

M. G. Rossmann, R. Bernal, S. V. Pletnev, Combining electron microscopic with X-ray
crystallographic structures. Journal of Structural Biology 136, 190-200 (2001).

A. Sali, T. L. Blundell, Comparative Protein Modeling by Satisfaction of Spatial Restraints.
Journal of Molecular Biology 234,779-815 (1993).

W. Wriggers, Conventions and workflows for using Situs. Acta Crystallogr D 68, 344-351
(2012).

K. Lasker, M. Topf, A. Sali, H. J. Wolfson, Inferential Optimization for Simultaneous Fitting of
Multiple Components into a CryoEM Map of Their Assembly. Journal of Molecular Biology
388, 180-194 (2009).

W.S. Zheng, Accurate Flexible Fitting of High-Resolution Protein Structures into Cryo-
Electron Microscopy Maps Using Coarse-Grained Pseudo-Energy Minimization. Biophys J
100, 478-488 (2011).

17


https://doi.org/10.1101/113951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/113951; this version posted March 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

aCC-BY-NC-ND 4.0 International license.

L. G. Trabuco, E. Villa, K. Mitra, J. Frank, K. Schulten, Flexible fitting of atomic structures
into electron microscopy maps using molecular dynamics. Structure 16, 673-683 (2008).

A. H.Ratje et al., Head swivel on the ribosome facilitates translocation by means of intra-
subunit tRNA hybrid sites. Nature 468, 713-716 (2010).

M. Saha, M. C. Morais, FOLD-EM: automated fold recognition in medium- and low-resolution
(4-15 A) electron density maps. Bioinformatics 28, 3265-3273 (2012).

F. DiMaio, M. D. Tyka, M. L. Baker, W. Chiu, D. Baker, Refinement of Protein Structures into
Low-Resolution Density Maps Using Rosetta. Journal of Molecular Biology 392, 181-190
(2009).

S. Lindert et al., EM-Fold: De Novo Atomic-Detail Protein Structure Determination from
Medium-Resolution Density Maps. Structure 20, 464-478 (2012).

D. Russel et al., Putting the pieces together: integrative modeling platform software for
structure determination of macromolecular assemblies. PLoS Biol 10, 1001244 (2012).

S. H. Scheres, RELION: implementation of a Bayesian approach to cryo-EM structure
determination. Journal of Structural Biology 180, 519-530 (2012).

P.D. Adams et al., The Phenix software for automated determination of macromolecular
structures. Methods 55, 94-106 (2011).

W. Rieping, M. Habeck, M. Nilges, Inferential structure determination. Science 309, 303-306
(2005).

T. Kawabata, Multiple Subunit Fitting into a Low-Resolution Density Map of a
Macromolecular Complex Using a Gaussian Mixture Model. Biophys J 95, 4643-4658 (2008).
P. J. Robinson et al., Molecular architecture of the yeast Mediator complex. Elife 4, (2015).

S. Jonic et al., Denoising of high-resolution single-particle electron-microscopy density maps
by their approximation using three-dimensional Gaussian functions. J Struct Biol 194, 423-433
(2016).

J. P. Erzberger et al., Molecular architecture of the 40SelF1elF3 translation initiation complex.
Cell 158, 1123-1135 (2014).

J. Fernandez-Martinez et al., Structure and Function of the Nuclear Pore Complex Cytoplasmic
mRNA Export Platform. Cell 167, 1215-+ (2016).

R. H. Swendsen, J. S. Wang, Replica Monte-Carlo Simulation of Spin-Glasses. Physical
Review Letters 57,2607-2609 (1986).

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated Annealing. Science 220,
671-680 (1983).

E. Prince, International Tables for Crystallography Vol. C. (Wiley, Hoboken, ed. 3rd, 2004),
pp- 1032 p.

J.J.Liu et al., CryoEM structure of yeast cytoplasmic exosome complex. Cell Res 26, 822-837
(2016).

H. Malet et al., RNA channelling by the eukaryotic exosome. Embo Rep 11, 936-942 (2010).
H. W. Wang et al., Architecture of the yeast Rrp44-exosome complex suggests routes of RNA
recruitment for 3 ' end processing. P Natl Acad Sci USA 104, 16844-16849 (2007).

D. Frenkel, B. Smit, Understanding molecular simulation : from algorithms to applications.
Computational science (Academic, San Diego, Calif. ; London, ed. 2nd, 2002), pp. xxii, 638 p.
J. Velazquez-Muriel et al., Assembly of macromolecular complexes by satisfaction of spatial
restraints from electron microscopy images. P Natl Acad Sci USA 109, 18821-18826 (2012).
Y. Cheng, O. Zak, P. Alsen, S. C. Harrison, T. Walz, Structure of the human transferrin
receptor-transferrin complex. Cell 116, 565-576 (2004).

18


https://doi.org/10.1101/113951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/113951; this version posted March 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

47.  F.Pedregosa et al., Scikit-learn: Machine Learning in Python. J Mach Learn Res 12,2825-2830
(2011).

48.  Y.P.Zhu et al., Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a
human gut symbiont. Nat Chem Biol 6, 125-132 (2010).

49.  C.K.Kennaway et al., The structure of M.EcoKI Type I DNA methyltransferase with a DNA
mimic antirestriction protein. Nucleic Acids Res 37,762-770 (2009).

50.  N.Opalka et al., Complete Structural Model of Escherichia coli RNA Polymerase from a
Hybrid Approach. Plos Biology 8, (2010).

51. H.L.Liu et al., Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from
Sema7A and A39R Complexes with PlexinC1. Cell 142, 749-761 (2010).

52.  Y.F.Zhang et al., Structural characterization of a beta-hydroxyacid dehydrogenase from
Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase
activity. Biochimie 104, 61-69 (2014).

53. M. L. Oldham, J. Chen, Snapshots of the maltose transporter during ATP hydrolysis. P Natl
Acad Sci USA 108, 15152-15156 (2011).

54.  R.Schnell et al., Tetrahydrodipicolinate N-Succinyltransferase and Dihydrodipicolinate
Synthase from Pseudomonas aeruginosa: Structure Analysis and Gene Deletion. Plos One 7,
(2012).

55.  Q.J.Zhou et al., Thiabendazole inhibits ubiquinone reduction activity of mitochondrial
respiratory complex II via a water molecule mediated binding feature. Protein Cell 2,531-542
(2011).

56. M. L. Baker, T. Ju, W. Chiu, Identification of secondary structure elements in intermediate-
resolution density maps. Structure 15, 7-19 (2007).

57.  H.H.Niemann et al., Structure of the human receptor tyrosine kinase met in complex with the
Listeria invasion protein InIB. Cell 130, 235-246 (2007).

58. K. Das, S. E. Martinez, J. D. Bauman, E. Arnold, HIV-1 reverse transcriptase complex with
DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nature Structural &
Molecular Biology 19, 253-259 (2012).

59.  D.Reverter, C. D. Lima, Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-
Nup358 complex. Nature 435, 687-692 (2005).

19


https://doi.org/10.1101/113951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/113951; this version posted March 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1. Gathering the data

|

.. .PTPIKFSDDA. ..

tructures of
Target EM density map individual subunits Protein sequences

2. Data and system representation

GMM of the target
EM density map (D)

1 residue/bead 10 residues/bead

3. Bayesian scoring function

Y
A

Np
N ov
S(X) = kgT - { —log[p(X)] +7Dlog Z:log2 (ﬂ)

ov
k=1 DD,k

5. Model analysis

4. Sampling

.
>

Figure 1: Workflow for low-resolution modeling of EM data. (1) The input information for
the modeling protocol is an experimental cryo-EM density map, the (partial) structures of the
subunits, and the subunit sequences, which are needed to build missing regions. (2) The density
map is fitted with a GMM using our divide-and-conquer approach. In the benchmark, the GMM
is obtained directly from the atomic coordinates of the reference assembly structure. The subunits
of the complex are represented at coarse-grained level, their model-GMMs are computed and
their initial positions randomized. (3) The Bayesian scoring function encodes prior information
about the system and measures the agreement between the map predicted from the model and the
experimental map. (4) Structural models are sampled by Monte Carlo coupled with Replica
Exchange and Simulated Annealing. (5) The generated models are clustered and the precision and
accuracy of the ensemble of solutions is assessed.
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Figure 2: Divide-and-conquer approach for fitting EM density maps with a
Gaussian Mixture Model (GMM). The input map (A) is initially fitted using a GMM
with a small number of Gaussians (B). Each component of the GMM is used to partition
the map into overlapping submaps (C) and each sub-map is then fit using a GMM with a
small number of components (D). The sum of the Gaussian of all the GMM for all the
submaps result in a GMM that fit the orginal map (E). The fit procedure is reiterated until
a global GMM with desired accuracy is obtained (F).
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Figure 3: Benchmark of the divide-and-conquer approach to fit EM density maps
with a GMM. The accuracy of our divide-and-conquer approach is measured by the
correlation coefficient between the input map and the GMM representation. The accuracy
increases with the number of components (Gaussians) of the mixture, at a speed that
depends on the resolution of the experimental map. The input densities belong to the
eukaryotic exosome complex at different resolutions.


https://doi.org/10.1101/113951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/113951; this version posted March 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

24 AL | T T T T
® 1439
22 | .
20 | .
©1438 2410.4-"54N°%®

18 | .
16 1708 (outlier) / i

Resolution [A]
IN
1

@3368
12 - 3367 @ i
10 F 3371 -
8 3370
6 3360 3372 -
4 T | Lol T | .336.6...
0.01 0.1 1 10 100

N [#Gaussian/kDa]

Figure 4: Relationship between map resolution and number of Gaussians in the
GMM. For all EMDB maps of Fig. 2, the corresponding resolution is reported as a
function of the number of Gaussians needed to achieve a correlation coefficient of 0.95
(purple dots). The number of Gaussians is normalized by the molecular weight of the
complex. The points are fit using a stretched exponential regression (blue line). The gray
data-point (EMDB 1708) is excluded from the fit as the reported resolution was not
determined using the Fourier Shell Correlation 0.143 gold standard.
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Figure 5: Representative examples of three possible outcomes of the benchmark. (A) Native
structures and simulated EM density maps. (B) Best scoring models represented in the simulated
EM density maps. Chains of panel B are colored as in panel A. (C) Residue-wise accuracy of the
best scoring models: residues with deviation from the native structure less than 10 A, between 10
and 20 A, and above 20 A are colored in blue, green and red, respectively. (D) Total score of all
the sampled models as a function of the rmsd(80) from the native structure.
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