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Abstract 15 
 16 

There is an urgent need to understand factors influencing the potential of reef-building 17 
corals to adapt to future thermal regimes. Here we infer demographic parameters in five 18 
populations of the common coral Acropora millepora and use them to model future adaptation of 19 
the species on the Great Barrier Reef (GBR). Genetic analysis of samples collected 2002-2009 20 
revealed that the loss of about half the coral cover in the preceding three decades did not yet 21 
result in detectable loss of genetic diversity or changes in gene flow. Both genetic and biophysical 22 
models indicated the prevalence of southward migration along the GBR, which would facilitate 23 
the spread of heat-tolerant alleles to higher latitudes as climate warms. Using a newly developed 24 
metapopulation adaptation model we find that standing genetic variation could be sufficient to 25 
fuel rapid adaptation of A. millepora to warming for the next 100-200 years. However, thermal 26 
anomalies such as ENSO cycles will drive increasingly severe coral mortality episodes. New 27 
mutations are unlikely to sustain genetic variation in the face of such strong selection, and so after 28 
the initial rapid adaptive response coral populations will go extinct, beginning with warmer 29 
locations. 30 
 31 
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Hot water coral bleaching, caused by global warming, is devastating coral reefs around 33 
the world (1) but there is room for hope if corals can adapt to increasing temperatures (2). The 34 
fact that current coral generation is suffering high mortality does not necessarily imply that the 35 
next coral generation would not be better adapted. Many coral species have wide distributions 36 
that span environments that differ dramatically in their thermal regimes, demonstrating that 37 
efficient thermal adaptation has occurred in the past (3). But can coral adaptation keep up with 38 
the unprecedentedly rapid current rate of global warming (4)? One way for corals to achieve rapid 39 
thermal adaptation is through genetic rescue, involving the spread of existing heat tolerance 40 
alleles from low-latitude, warm-adapted populations to higher-latitude, warming regions, via 41 
larval migration (5, 6). We have previously demonstrated the presence of genetic variants 42 
conferring high thermal tolerance in a low-latitude A. millepora population (5). It can be 43 
hypothesized that global warming will cause preferential survival of migrants from warmer to 44 
cooler locations because they will be following their thermal optimum, whereas individuals 45 
migrating in the opposite direction would find themselves in increasingly mismatched 46 
environments (Fig. 1 A, B). Another likely population-level effect of recent declines in coral 47 
cover (7) is a reduction in overall genetic diversity, potentially limiting both the scope and the 48 
rate of adaptation. Here, we tested these predictions in Acropora millepora, a common reef-49 
building coral from the most ecologically prominent and diverse coral genus in the Indo-Pacific 50 
(staghorn corals, Acropora), and used the obtained demographic estimates to model the future 51 
adaptive potential of A. millepora on the Great Barrier Reef (GBR). 52 
 53 
Results 54 

 55 
Locations and genotyping 56 
 57 

We used samples collected in 2002-2009 from five populations of A. millepora along the 58 
latitudinal range of the GBR (Fig. 1 A). Environmental parameters (obtained from 59 
http://eatlas.org.au/) varied widely among these locations (Fig. 1 C). Importantly, maximum 60 
summer temperature (the major cause of bleaching-related mortality) followed the latitudinal 61 
gradient with one notable exception: one of the near-shore populations from the central GBR 62 
(Magnetic Island) experienced summers as hot as the lowest-latitude population (Wilkie Island 63 
(Fig. 1 C).  64 
 65 

We genotyped 18-28 individuals per population using 2bRAD (8) at >98% accuracy and 66 
with a  >95% genotyping rate. Analysis of population structure based on ~11,500 biallelic SNPs 67 
separated by at least by 2,500 bases agreed with previous microsatellites results (9, 10), and 68 
revealed very low levels of genetic divergence, with only the Keppel Islands population being 69 
potentially different from the others (Fig. 1 D and Fig. S1). Pairwise FST were small and did not 70 
exceed 0.014 even between the southernmost and northernmost populations (Keppel and Wilkie).  71 
 72 
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 73 
Figure 1. The population setting and background for our study. (A) Locations of sampled populations 74 

where mean midsummer month sea surface temperature differed by up to  ~3oC. Inset: Acropora millepora. 75 
(B) Hypothesis migration change under global warming: Warm-adapted genotypes that migrate to locations 76 
that used to be cooler would be following their physiological optimum and hence expected to survive better 77 
than migrants in the opposite direction. (C) Principal component analysis of water quality and temperature 78 

parameters at the sampled locations. Winter.T  - 10% quantile of winter temperature, Summer.T – 90% 79 
quantile of summer temperature, Daily.T – 90% quantile of daily temperature range, Phos – total dissolved 80 
phosphorus, Chl – chlorophyll, NO3 – nitrate, Secchi – Secchi depth (water clarity).  Locations are colored 81 

according to summer temperature. (D) ADMIXTURE plot of ancestry proportions with K = 2. 82 
 83 

Demographic subdivision and migration patterns 84 
 85 

To more rigorously test for population subdivision and infer unidirectional migration 86 
rates among populations and population sizes, we used Diffusion Approximation for 87 
Demographic Inference (dadi, (11)). dadi is a method that optimizes parameters of a pre-specified 88 
demographic model to maximize the likelihood of generating the observed allele frequency 89 
spectrum (AFS). For two populations AFS is essentially a two-dimensional histogram of allele 90 
frequencies (Fig. S2). Being a likelihood-based method, dadi can be used to compare alternative 91 
models using likelihood ratio tests and Akaike Information Criterion (AIC). Most importantly, 92 
unlike previously used approaches (10, 12, 13) dadi does not rely on assumptions of genetic 93 
equilibrium (stability of population sizes and migration rates for thousands of generations) or 94 
equality of population sizes and therefore is potentially more realistic and sensitive for natural 95 
populations. 96 
 97 

We used bootstrap-AIC approach to confirm that our populations are separate 98 
demographic units. For each pair of populations we generated 120 bootstrapped datasets by 99 
resampling genomic contigs and performed delta-AIC comparison of two demographic models, a 100 
split-with-migration model and a no-split model (Fig. S3 C). The split-with-migration model 101 
assumed two populations that split some time T in the past with potentially different sizes N1 and 102 
N2, and exchange migrants at different rates (m12 and m21) depending on direction. The no-split 103 
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model allowed for ancestral population size to change but not for a population split, so the 104 
experimental data were modeled as two random samples from the same population of size N. The 105 
majority of bootstrap replicates (53-100%) showed AIC advantage of the split-with-migration 106 
model for all pairs of populations (Fig. S3). This indicates that A. millepora populations on the 107 
GBR are in fact demographically distinct, despite typically non-significant FST reported by 108 
previous studies based on allozymes (12, 13) and microsatellite markers (10). 109 
 110 

 111 
Figure 2. Demography of A. millepora populations on the GBR. (A) Arc-plot of migration rates among 112 

populations reconstructed from population genetic data. Inset: dadi model used: ancestral population splits 113 
into two populations of unequal sizes (N1 and N2) some time T in the past, these populations exchange 114 

migrants at different rates depending on direction. (B) Migration rates according to the biophysical model. 115 
On panels A and B, the arcs should be read clockwise to tell the direction of migration; line thickness is 116 

proportional to the migration rate. (C) Correlation between log-transformed biophysical and genetic 117 
migration rates (Mantel r = 0.58, P = 0.05). Grey symbols are migration rates to Magnetic Island, the high-118 

temperature location in the central GBR. (D) Box plot of effective population sizes inferred by the split-119 
with-migration model (panel A) across all population pairs and bootstrap replicates. (E) Historical changes 120 

in effective population sizes inferred using a single-population model with two periods of exponential 121 
growth (T0 and T1, reaching sizes N0 and N1, inset), averaged across bootstrap replicates. 122 

 123 
AFS-based analysis allows rigorous estimation of unidirectional migration rates between 124 

populations. The classical FST –based approach only allows estimating bi-directional migration 125 
rate (13) and even that calculation has been highly criticized because its underlying assumptions 126 
are rarely realistic (14). We determined unidirectional migration rates from the split-with-127 
migration model and estimated their confidence limits from bootstrap replicates. In theory, 128 
migration rate can be confounded with population divergence time, since in the AFS higher 129 
migration often looks similar to more recent divergence (15). To ascertain that the model with 130 
ancient population divergence and migration is preferable to the model with very recent 131 
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divergence and no migration, we performed the delta-AIC bootstrap comparison between these 132 
models and obtained overwhelming support for the model with ancient divergence and migration 133 
(Fig. S4). Notably, for all pairwise analyses migration in southward direction exceeded northward 134 
migration, and this difference was significant in seven out of nine cases (Fig. 2 A and Fig. S3A, 135 
C). Linear mixed model analysis of direction dependent median migration rates with a random 136 
effect of destination (to account for variation in total immigration rate) confirmed the overall 137 
significance of this southward trend (PMCMC <1e-4). Full listing of parameter estimates and their 138 
bootstrap-derived 95% confidence limits is given in Table S1. 139 
 140 

To investigate whether the southward migration bias was due to higher survival of warm-141 
adapted migrants, as predicted under global warming (Fig. 1 B), we developed a biophysical 142 
model of coral larval dispersal on the Great Barrier Reef. This model quantified the per-143 
generation migration potential among coral reef habitat patches in the GBR based on ocean 144 
currents and parameters of larval biology (16, 17). The biophysical model predicted very similar 145 
migration rates as our genetic model (Mantel r =0.58, p = 0.05), recapitulating the southward bias 146 
(Fig. 2 A-C). Importantly, the same southward bias was predicted for population pairs in which 147 
southward migration corresponded to movement to the same-temperature or even to warmer 148 
location, such as migrations to the Magnetic Island (Fig. 2 C, grey points). This indicates that 149 
southward migration bias is predominantly driven by ocean currents and not by preferential 150 
survival of warm-adapted coral genotypes migrating to cooler locations. 151 
 152 

Migration estimates from our main genetic model (Fig. 2 A, inset) represented historical 153 
averages since the populations split and did not resolve any potential recent migration changes. 154 
To determine if there were any recent changes in southward migration, we evaluated an extended 155 
split-with-migration model that allowed for a change in migration over the past 75-100 years. The 156 
extended model suggested some recent migration changes, including southward migration 157 
increases (Fig. S5) but once again, these changes did not correspond with an increase in migration 158 
from warmer to cooler locations. We conclude that with the current data and analysis techniques 159 
we cannot (yet) detect an effect of recent warming on preferential direction of coral migration on 160 
the GBR. 161 
 162 
Genetic diversity trends 163 
 164 

The GBR has warmed considerably since the end of last century (18), which may have 165 
already reduced genetic diversity in A. millepora populations. We used dadi to infer effective 166 
population sizes, which is a measure of genetic diversity and one of the key parameters 167 
determining the population’s adaptive potential (19).  The results of the split-with-migration 168 
model (Fig. 2 A) were consistent for all population pairs and indicated that Keppel population 169 
was about one-fifth the size of others (Fig. 2 D, E). This result was not surprising since the 170 
Keppel population frequently suffers high mortality due to environmental disturbances and was 171 
therefore is expected to show diminished long-term effective population size (9). We also used a 172 
single-population dadi model that allowed for two consecutive growth/decline periods (Fig. 2 E, 173 
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inset) to reconstruct effective sizes of individual populations through time (Fig. 2 E and Fig S6). 174 
All populations showed evidence of growth prior to the last glaciation, between 500 and 20 175 
thousand years ago (Fig 2 E), which aligned well with the fossil record of rising dominance of 176 
Acropora corals on Indo-Pacific reefs during this period (20). It was hypothesized that the fast 177 
growth and early sexual maturation of Acropora corals gave them an advantage relative to most 178 
other reef-building corals during dynamic changes in the reef-forming zone due to the sea level 179 
changes accompanying glacial cycles (20). Our results suggest that A. millepora populations have 180 
been in decline since sea level stabilized after the last deglaciation, roughly 10 thousand years ago 181 
(Fig. S6). This decline was the most pronounced for the Keppel population (Fig. 2 E), but delta-182 
AIC bootstrap supported inclusion of additional growth/decline period for all populations except 183 
Magnetic Island (Fig. S7). None of the populations showed evidence of accelerated decline in 184 
effective population size over the past hundred years, despite recent GBR-wide decline in overall 185 
coral cover (7). It must be noted that recent decline in population size is hard to detect using the 186 
AFS method unless the sample size is very large, since it would predominantly affect the 187 
frequencies of rare alleles (15, 21). Despite this shortcoming, we can conclude that genetic 188 
diversity in A. millepora has not yet been strongly affected by warming over the past century, 189 
although the populations appear to have been in long-term decline GBR-wide for the past several 190 
thousand years. 191 
 192 
Metapopulation adaptation model 193 
 194 

To evaluate whether standing genetic variation contributed by local thermal adaptation 195 
could facilitate rapid adaptation of the A. millepora metapopulation in response to warming, we 196 
developed an individual-based multigene model of metapopulation adaptation in the SLiM 197 
software environment (22). The model’s code is highly flexible and can simulate any number of 198 
populations with any configuration of population sizes, migration rates, and environmental trends. 199 
The model also allows varying the number and effect sizes of QTLs, heritability, and phenotypic 200 
plasticity. Here, we used population sizes and migration rates inferred from the genetic analysis 201 
(Fig. 2 A, D) and incorporated differences in midsummer monthly mean temperature among 202 
populations (Fig. 1 A). The populations were allowed to adapt to local thermal conditions for 203 
2,000 generations. Assuming a generation time of 5 years in A. millepora (23) this corresponded 204 
to the period of stable temperature since the last deglaciation. After this pre-adaptation, the 205 
temperature began to increase at a rate of 0.05oC per generation in all populations, corresponding 206 
to the projected 0.1oC warming per decade (24). During warming period, a population declining 207 
in fitness would shrink in size and stop contributing migrants to other populations. Throughout 208 
the simulation the temperature was allowed to fluctuate randomly between generations to 209 
approximate El Nino Southern Oscillation (ENSO). 210 
 211 

We found that, with only ten thermal QTLs, under a broad range of settings for 212 
heritability and plasticity the pre-adapted metapopulation was able to persist through the warming 213 
for at least 20 - 50 generations (100 - 250 years) and, under some parameter combinations, much 214 
longer (Fig. 3 and S8). Migration substantially contributed to this persistence (Fig. 3 E, F), 215 
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underscoring the importance of divergent local adaptation and genetic rescue (5). However, when 216 
existing standing genetic variation was finally depleted, all populations inevitably went extinct 217 
beginning with warmer locations. Allowing for new mutations could not avert this extinction 218 
even when the mutation rate was extremely high - 1e-5 per QTL per gamete or higher while 219 
assuming that half of all mutations were beneficial (Fig. 4).  220 
 221 

 222 
Figure 3. Modeling coral metapopulation persistence under global warming based on standing genetic 223 

variation (no new mutations). (A-D) Fitness of modeled populations depending on the magnitude of non-224 
heritable phenotypic component (Esd, standard deviation of normally distributed random value added to the 225 

sum of QTL effects, in degrees C), phenotypic plasticity (σ, standard deviation of the Gaussian slope of 226 
fitness decline away from the phenotypic optimum, in degrees C), and presence-absence of migration (E, 227 

F). On panels A-F, y-axis is observed fitness relative to maximum attainable with perfect heritability at the 228 
genetically determined optimum, averaged over all individuals in a population. Warm-adapted populations 229 

(W and M) are shown as red-tint traces, populations from mild thermal regime (S and O) are green-tint 230 
traces, and the cool-adapted population (K) is the blue trace. Note nearly complete overlap between traces 231 
for pairs of populations pre-adapted to the same temperature (W, M and S, O). (G) Thermal tolerances of 232 

evolving populations. Thin noisy lines are modeled temperatures at different locations. (H) Modeled 233 
random temperature anomalies (grey line) and fluctuations in populations’ fitness (colored lines: residuals 234 

from loess regression over fitness traces on panel D; Wilkie: orange line, Keppel: blue line). Note the 235 
inverse sign of temperature anomalies: this more clearly shows the correspondence between rise in 236 

temperature and drop in fitness. As warming progresses, populations (especially originally warm-adapted 237 
ones) become increasingly sensitive to random temperature fluctuations.  238 

 239 
A notable tendency observed with all parameter settings was that during warming the 240 

fitness (and hence the size) of adapting populations began to fluctuate following random thermal 241 
anomalies, and the amplitude of these fitness fluctuations increased as the warming progressed 242 
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even though the amplitude of thermal anomalies did not change (Fig. 3 H). These fluctuations 243 
correspond to severe mortality events induced by thermal extremes that can occur as a result of 244 
ENSO and affected warm-adapted populations most, which very much resembles the situation 245 
currently observed throughout the world (1). 246 
 247 

 248 
Figure 4. New mutations cannot prevent extinction. Top row of graphs (A, C, E and G) show population 249 
fitness; bottom row (B, D, F, H) – mean thermal tolerance. All cases share the settings of Esd = 1 and σ = 250 
1. Mutation rate (mu) per QTL per gamete is listed above the graphs; effect sizes of new mutations were 251 

drawn from a normal distribution with mean 0 and standard deviation 0.2. Note a few “evolutionary 252 
rescue” events at high mutation rates, when a new adaptive mutation spreads through metapopulation 253 

leading to temporary acceleration of phenotypic evolution (F, H).  254 
 255 
What helps corals adapt? 256 
 257 

Predictably, higher phenotypic plasticity promoted metapopulation persistence and 258 
stability against random thermal anomalies, but we were rather surprised to observe a similar 259 
positive effect of lower heritability (i.e., higher non-heritable component, Fig 3, S8 and S9). Low 260 
heritability of thermal tolerance is expected for reef-building corals: much of natural variation in 261 
this trait in corals is due to the type of algal symbionts (Symbiodinium spp.  (25)). Photo-262 
symbionts are not transmitted from parent to offspring in the majority of coral species (26), and 263 
although host genetics can have some effect on the choice of Symbiodinium in the next generation 264 
(27) environment has stronger effect on this association (25, 28).  265 
 266 

Longer metapopulation persistence under low heritability and high plasticity was most 267 
likely due to their enhancing effect on standing genetic variation (Fig. 5). Higher plasticity 268 
promoted both higher number of variants retained in populations and larger effect sizes of these 269 
variants, whereas higher heritability also led to higher number of retained variants but notably 270 
smaller effect sizes (Fig. 5 A-K). It can be said that under high heritability local adaptation was 271 
based on many mutations of small effect, whereas low heritability promoted adaptation involving 272 
fewer mutations of larger effect. Importantly, the cumulative absolute effect of QTL variants in a 273 
population was consistently higher under the setting of low heritability, despite lower number of 274 
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variants (Fig. 5 K, L). During warming, this variation lasted longer as the source of adaptive 275 
genetic variants, enabling up to 4oC increase in mean thermal tolerance (Fig. 3 G and S9). 276 
Another important effect of higher plasticity was that it partially rescued the drop in average 277 
population fitness due to low heritability (Fig. 3 B, D and S9). This drop happened because low 278 
heritability prevented individuals from attaining maximum fitness even if their genetics was 279 
perfectly matched to the environment. 280 
 281 

 282 
Figure 5. Effects of non-heritable phenotypic component (Esd) and phenotypic plasticity (σ) on standing 283 

genetic variation at thermal QTL loci. (A - I) Dependence of the number of individuals in each population 284 
bearing a mutation on the mutation’s effect size (change in thermal tolerance, in ºC). Each mutation is 285 
represented by up to five points colored according to the population in which it is found (see legend). 286 

Lower heritability (higher Esd) and higher plasticity promote retention of mutations with larger effect sizes. 287 
(A, D, G): Esd=0. (B, E, H): Esd=1. (C, F, I): Esd=2.  (A-C): σ = 0.5. (D-F): σ = 1. (G-I): σ = 2.  (K, L) 288 

Genetic variation retained after 2000 generations of adaptation to benign local thermal conditions 289 
(aggregating 12 simulation replicates for two populations, S and O). (K) Number of mutations at QTL loci. 290 

(L) Cumulative effect size (sum of products of mutation’s absolute effect size and the number of 291 
individuals bearing the mutation). Lower heritability (higher Esd) results in retaining fewer mutations, but 292 
these mutations amount to up to four-fold larger cumulative effect size, while higher plasticity promotes 293 

both higher number of mutations and larger effect sizes. 294 
 295 
Potential pitfalls 296 
 297 

There are several uncertainties in our model associated with coral biology. Below we 298 
argue that, while more research is certainly needed to resolve these uncertainties, our modeling 299 
was conservative overall.  300 
 301 
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We assumed only ten QTLs, which is likely much fewer that the actual number of 302 
thermal QTLs in acroporid corals (20). Higher number of QTLs and/or their larger effect sizes 303 
would promote higher genetic variation and lead to longer population persistence. We also kept 304 
the distribution of QTL effect sizes narrow: with the current settings and ten QTLs, at the start of 305 
simulation only about 2% of corals deviated from the mean thermal tolerance by more than 1.5oC 306 
in either direction. Such narrow variation makes adaptation to the thermal gradient of ~3oC along 307 
the GBR non-trivial, but still, at present there is no experimental data to evaluate whether even 308 
such narrow variation is realistic.  309 
 310 

We used effective population sizes suggested by genetic analysis as census sizes. In 311 
highly fecund marine organisms census sizes tend to substantially exceed effective population 312 
sizes, sometimes by orders of magnitude (29), which would strongly promote higher genetic 313 
diversity and population persistence. Moreover, we modeled only our five populations rather than 314 
the whole GBR, which would have resulted in much higher standing genetic variation in the 315 
metapopulation, promoting longer persistence.  316 
 317 

As for phenotypic plasticity, in simulations shown on Figs. 3 σ = 0.5 and σ = 1 318 
corresponded to 86% and 40% decline in fitness if the individual’s phenotype mismatched the 319 
environment by 1oC. The existing data on the issue of coral thermal plasticity are somewhat 320 
conflicting. One study shows that acroporid corals can successfully acclimatize to environments 321 
differing in maximum temperatures by as much as 2oC (30); however, another study found that 322 
coral grew 52-80% more slowly when transplanted among locations differing by 1.5ºC average 323 
temperature, (31). Although it is not possible to directly interpret these results in terms of width 324 
of the fitness function (as plasticity is encoded in our model) the former study likely supports the 325 
higher plasticity setting  (σ = 1) while the latter study supports σ = 0.5. It must also be noted that 326 
both these studies involved in situ transplantations and hence the effect of temperature remains 327 
confounded with other local fitness-affecting environmental parameters. Also, in adult corals 328 
plasticity is likely lower that in larvae and recruits, which are expected to exhibit non-reversible 329 
developmental plasticity associated with metamorphosis and establishment within a novel 330 
environment (32). One particularly important event during this developmental transition is 331 
establishment of association with local algal symbionts. Since symbionts also adapt to local 332 
thermal conditions (28) this would elevate the fitness of the coral host despite possible mismatch 333 
between its own genetically determined thermal optimum and local temperature, which in our 334 
model implies broadening of the fitness function (i.e., higher plasticity). Future experiments that 335 
expose multiple genetically distinct coral individuals to a range of temperatures under controlled 336 
laboratory settings are required to rigorously quantify variation in thermal optima and plasticity in 337 
natural populations. 338 
 339 

Our demographic analysis and, by implication, our modeling results are contingent on the 340 
accuracy of the mutation rate estimate. The mutation rate used here, 4e-9 per base per year, or 10 341 
mutations per genome per generation (see Methods), is but a rough estimate based on 342 
phylogenetic distances (33). Higher mutation rate would lead to smaller population sizes, higher 343 
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migration rates, and more recent time stamps for population splits or population size changes (see 344 
Methods, Unit Conversion section). As a consequence, it would lead to lower standing genetic 345 
variation in the metapopulation and therefore to diminished potential to persist under global 346 
warming. Although the rate used here is within the ballpark of mutation rates measured in 347 
multicellular animals (34) in the future a more precise estimate of mutation rate should be 348 
obtained to sharpen the demographic estimates and parameterize the adaptation model more 349 
realistically.  350 
 351 

It may be argued that our samples are genetically out of date, not capturing the effects of 352 
disturbances that happened on the GBR since the time of their collection (2002-2009). However, 353 
as we mentioned above, very recent demographic events (in our case, 2-3 generations ago) are 354 
undetectable at the level of neutral genetic variation unless the number of disturbance-surviving 355 
individuals is similar to the study’s sample size (i.e., when either the disturbance was truly 356 
catastrophic or the sample size is very large). Thus, our samples can still be considered well 357 
representative of major patterns of genetic diversity of our study species. 358 
 359 

Finally, our model assumed that recovery from high mortality events would happen 360 
without impediment, through reseeding by survivors and migrant influx from other coral 361 
populations. However, ecological feedbacks such as shifts to an alternative ecological stable state 362 
(35) might substantially decrease the rate of reseeding and recovery of affected reefs. In that case, 363 
the increase in severity of bleaching-related mortality might lead to much faster coral extinction 364 
than predicted by our model. 365 
 366 
Conclusions 367 
 368 

Our study provides a novel integrated empirical and modeling framework to evaluate the 369 
risk of extinction in natural populations. We found that genetic diversity and migration patterns of 370 
Acropora millepora were not yet strongly affected by climate change and were well positioned to 371 
facilitate persistence of the GBR metapopulation for a century or more. Our results underscore 372 
the pivotal role of standing genetic variation and genetic exchange in the future metapopulation 373 
persistence. This implies that any intervention that would reduce this variation (for example, 374 
captive breeding based on selection of only a few “winner” genotypes or clonally propagating a 375 
small number of genotypes for reef restoration) is likely to have negative impact on corals’ 376 
adaptive potential. In contrast, efforts facilitating the spread of genetic variation, such as assisted 377 
gene flow (36), could be much more helpful in the long term. With the estimated natural 378 
migration rates on the order of 5-100 migrants per generation, human-assisted genotype exchange 379 
could appreciably contribute to the genetic rescue without risking disruption of the natural local 380 
adaptation patterns (37). However, despite good prospects for short-term adaptation, corals are 381 
predicted to become increasingly more sensitive to random thermal anomalies, especially in the 382 
originally warm-adapted populations. The 10-85% mortality in the Northern GBR as a result of 383 
2016 bleaching event (38) could be a particularly sobering recent manifestation of this trend. 384 
Finally, it is important to point out that adaptation based on genetic rescue will not save corals 385 
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from eventual extinction: it will only buy us some time to take action against global warming, 386 
which hopefully can be stopped before corals run out of genetic variation.  387 
 388 
Methods  389 
 390 
Genotyping 391 
 392 

This study relied predominantly on samples described by van Oppen et al (10), with 393 
addition of several samples from Orpheus and Keppel islands that were used in the reciprocal 394 
transplantation experiment described by Dixon et al (39). The samples were genotyped using 395 
2bRAD (8) modified for Illumina sequencing platform; the latest laboratory and bioinformatics 396 
protocols are available at https://github.com/z0on/2bRAD_GATK. BcgI restriction enzyme was 397 
used and the samples retained for this analysis had 2.3-20.2 (median: 7.45) million reads after 398 
trimming and quality filtering (no duplicate removal was yet implemented in this 2bRAD 399 
version). The reads were mapped to the genome of the outgroup species, Acropora digitifera (40, 400 
41), to polarize the allelic states into ancestral (as in A. digitifera) and derived, e.g., (42, 43).  401 
Genotypes were called using GATK pipeline (44). 402 
 403 

Preliminary analysis of sample relatedness using vcftools (45) revealed that our samples 404 
included several clones: four repeats of the same genotype from the Keppel Island (van Oppen et 405 
al (10) samples K210, K212, K213 and K216), another duplicated genotype from Keppel 406 
(samples K211 and K219), and one duplicated genotype from Magnetic Island (samples M16 and 407 
M17). All other samples were unrelated. We took advantage of these clonal replicates to extract 408 
SNPs that were genotyped with 100% reproducibility across replicates and, in addition, appeared 409 
as heterozygotes in at least two replicate pairs (script replicatesMatch.pl with hetPairs=2 option).  410 
These 7,904 SNPs were used as “true” SNP dataset to train the error model to recalibrate variant 411 
quality scores at the last stage of the GATK pipeline. During recalibration, we used the transition-412 
transversion (Ts/Tv) ratio of 1.438 determined from the “true” SNPs to assess the number of false 413 
positives at each filtering threshold (as it is expected that an increase of false positive calls would 414 
decrease the Ts/Tv ratio towards unity). We chose the 95% tranche, with novel Ts/Tv = 1.451. 415 
After quality filtering that restricted the calls to only bi-allelic polymorphic sites, retained only 416 
loci genotyped in 95% or more of all individuals, and removed loci with the fraction of 417 
heterozygotes exceeding 0.6 (possible lumped paralogs), we ended up with 25,090 SNPs. In total, 418 
2bRAD tags interrogated 0.18% of the genome. The genotyping accuracy was assessed based on 419 
the match between genotyped replicates using script repMatchStats.pl. Overall agreement 420 
between replicates was 98.7% or better with the heterozygote discovery rate (fraction of matching 421 
heterozygote calls among replicates) exceeding 96%.  422 
 423 
Genome-wide genetic divergence  424 
 425 

To begin to characterize genome-wide divergence between populations we used pairwise 426 
genome-wide Weir and Cockerham’s FST calculated by vcftools (45), principal component 427 
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analysis (PCA) using R package adegenet (46), and ADMIXTURE (47). For PCA and 428 
ADMIXTURE, the data were thinned to keep SNPs separated by 5kb on average and by at least 429 
2.5 kb, choosing SNPs with highest minor allele frequency (script thinner.pl with options 430 
‘interval=5000 criterion=maxAF’). The optimal K in ADMIXTURE analysis was determined 431 
based on the cross-validation procedure incorporated within ADMIXTURE software; the lowest 432 
standard error in cross-validation was observed at K=1. 433 
 434 
Demographic analysis and bootstrapping 435 
 436 

Prior to demographic analysis, Bayescan (48) was used to identify sites potentially under 437 
selection among populations, and 73 sites with q-value <0.5 were removed. This aggressive 438 
removal of potential non-neutral sites resulted in better agreement between bootstrap replicates 439 
compared to an earlier of analysis where only 13 sites with q-value < 0.05 were removed. 440 
Demographic models were fitted to 120 bootstrapped datasets, which were generated in two 441 
stages. First, three alternatively thinned datasets were generated for which SNPs were randomly 442 
drawn to be on average 5 kb apart and not closer than 2.5 kb. This time the SNPs were drawn at 443 
random to avoid distorting the allele frequency spectrum (unlike thinning for PCA and 444 
ADMIXTURE where the highest minor allele frequency SNPs were selected). Then, 40 445 
bootstrapped replicates were generated for each thinned dataset by resampling contigs of the 446 
reference genome with replacement (script dadiBoot.pl). The fitted model parameters were 447 
summarized after excluding bootstrap replicates that fell into the lowest 15% likelihood quantile 448 
and the ones where model fitting failed to converge, leading to some parameters being 449 
undetermined or at infinity (less than 10% of total number of runs). Delta-AIC values were 450 
calculated for each bootstrap replicate that passed these criteria for both compared models, and 451 
summarized to obtain bootstrap support value, the percentage of replicates favoring the 452 
alternative model. While fitting dadi models, the data for each population were projected to 453 
sample sizes maximizing the number of segregating sites in the analysis, resulting in 7000-8172 454 
segregating sites per population. Initially, our models included a parameter designed to account 455 
for ancestral state misidentification rate when constructing the polarized AFS (e.g., (49)), but 456 
since this parameter was consistently estimated to be on the order of 0.001 and had negligible 457 
effect on the models’ likelihood, we removed it from the final set of models. 458 
 459 
Unit conversion 460 
 461 
To convert dadi-reported coalescent parameter values (θ, T and M) into time in years (t), 462 

effective population sizes in number of individuals (Ne) and migration rates as fraction of new 463 
immigrants per generation (m), we estimated the mutation rate (µ) from the time-resolved 464 
phylogeny of Acorpora genus based on paxC intron (33), at 4e-9 per base per year. Although A. 465 
millepora can reproduce after 3 years (23) we assumed a generation time of 5 years reasoning that 466 
it would better reflect the attainment of full reproductive potential as the colony grows. Assuming 467 
a genome size of 5e+8 bases (40) the number of new mutations per genome per generation is 10. 468 
Since the fraction 2bRAD-sequenced genome in our experiment was 1.8e-3, the mutation rate per 469 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/114173doi: bioRxiv preprint 

https://doi.org/10.1101/114173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

14 

2bRAD-sequenced genome fraction per generation is µ = 0.018. This value was used to obtain: 470 
- Ancestral effective population size: Ne = θ / 4µ  471 
- Migration rate: m = M / 2Ne  472 
- Time in years: t = 2TNe • 5 473 

 474 
Biophysical model 475 
 476 

A spatially-explicit biophysical modeling framework (16, 50) was used to quantify 477 
migration between coral reef habitats of the broader region surrounding the Great Barrier Reef, 478 
thereby revealing the location, strength, and structure of a species' potential population 479 
connectivity. The model’s spatial resolution of ca. 8 km coincides with hydrodynamic data for the 480 
broader region (1/12.5 degree; HYCOM+NCODA Reanalysis and Analysis product; hycom.org). 481 
Our biophysical dispersal model relies on geographic data describing the seascape environment 482 
and biological parameters capturing coral-specific life-histories. Coral reef habitat data are 483 
available from the UNEP World Conservation Monitoring Centre (UNEP-WCMC; 484 
http://data.unep-wcmc.org/datasets/1) representing a globally-consistent and up-to-date 485 
representation of coral reef habitat. To capture specific inter-annual variability, two decades of 486 
hydrodynamic data were used from 1992 to 2013 (51). 487 
 488 

Coral-specific biological parameters for A. millipora included relative adult density 489 
(dependent on the habitat), reproductive output, larval spawning time and periodicity (e.g., 490 
Magnetic Island populations spawn a month earlier than the other GBR sites (52)), maximum 491 
dispersal duration, pre-competency and competency periods, and larval mortality (53, 54). The 492 
spatially explicit dispersal simulations model the dispersal kernel (2-D surface) as a ‘cloud’ of 493 
larvae, allowing it to be concentrated and/or dispersed as defined by the biophysical parameters. 494 
An advection transport algorithm is used for moving larvae within the flow fields (55).  495 
 496 

Simulations were carried out by releasing a cloud of larvae into the model seascape at all 497 
individual coral reef habitat patches and allowing the larvae to be transported by the currents. 498 
Ocean current velocities, turbulent diffusion, and larval behavior move the larvae through the 499 
seascape at each time-step. Larval competency, behavior, density, and mortality determine when 500 
and what proportion of larvae settle in habitat cells at each time step. When larvae encounter 501 
habitat, the concentration of larvae settling with the habitat is recorded at that time-step. From the 502 
dispersal data, we derived the coral migration matrix representing the proportion of settlers to 503 
each destination patch that came from a source patch, which is analogous to the source 504 
distribution matrix (56) and is equivalent to migration matrices derived from population genetic 505 
analysis. It is important to note that migration matrices extracted for the field sites represent the 506 
potential migration through all possible stepping-stones. 507 
  508 
Metapopulation adaptation model 509 
 510 

The model was implemented in SLiM (22), the forward evolutionary simulator, by 511 
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modifying the provided recipe “Quantitative genetics and phenotypically-based fitness”. The 512 
model simulates Fisher-Wright populations with discreet generations. At the start of the 513 
simulation, populations are established at specified population sizes and pairwise migration rates 514 
(genetic replacement rates), and all QTLs in all individuals are given a mutation with the effect 515 
size drawn from a normal distribution with mean zero and specified standard deviation, to create 516 
standing genetic variation. The phenotype of each individual is calculated as the sum of QTL 517 
effects plus random noise of specified magnitude to simulate non-heritable phenotypic 518 
component. Then, fitness of each individual is calculated based on the difference between the 519 
individual’s phenotype (thermal optimum), temperature of the environment, and the setting for 520 
phenotypic plasticity, modeled as the width of the fitness curve: the standard deviation of the 521 
Gaussian slope of fitness decline away from the phenotypic optimum. Then, parents are chosen 522 
to produce the next generation according to their fitness; parents for immigrant individuals are 523 
chosen from among individuals in the source population. New mutations at QTLs happen at the 524 
specified rate when transitioning to the next generation and the effect of a new mutation adds to 525 
the previous QTL effect. To better model population dynamics, we implemented linear scaling of 526 
the population size and immigration rates with the population’s mean fitness. In the model 527 
described here this scaling was applied during warming period, so that a population declining in 528 
fitness relative to its state at the end of pre-adaptation period shrinks in size and stops 529 
contributing migrants to other populations.  530 

 531 
Adjustable model parameters and their settings in this study: 532 
 533 
- Number of QTLs and the distribution of their effect sizes. To keep the model conservative, 534 

we modeled only ten QTLs with normal distribution of effect sizes with a standard deviation 535 
of 0.2oC. With ten QTLs, this setting implied that at the start of simulation only about 2% of 536 
corals deviated from mean thermal tolerance by more than 1.5oC in either direction. Since 537 
thermal differences between our populations exceeded 3oC, this narrow variation made local 538 
adaptation rather non-trivial. 539 

- Dominance of QTLs (set to 0.5 in our simulation). 540 
- Phenotypic plasticity: standard deviation of the Gaussian curve describing decline in fitness 541 

away from phenotypic optimum. We modeled three plasticity settings, 0.5, 1 and 2, which 542 
corresponded to 86%, 40% and 13% fitness drop when the environment mismatched 543 
phenotypic optimum by 1oC. 544 

- Non-heritable phenotypic component: standard deviation of a normal distribution with mean 545 
zero from which a random value is drawn to be added to the sum of QTL effects when 546 
computing phenotype. Setting this parameter to zero corresponds to trait heritability of one. 547 
Higher values of this parameter imply heritability less than one; however, the exact value of 548 
heritability (the proportion of phenotypic variation explained by genetics) could still vary 549 
depending on the extent of genetic variation. 550 

- Mutation rate. It was either set to zero to explore the role of standing genetic variation or 551 
varied between 1e-6 and 1e-4 per QTL per gamete. This range covers and exceeds the range 552 
of trait-level deleterious mutation rates observed in humans (57). Therefore, values at higher 553 
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end of the range most likely strongly over-estimate the rate of adaptive mutations, which was 554 
done deliberately to show that no realistic mutation rate could help sustain genetic variation 555 
in the face of strong selection by warming.  556 

 557 
The model’s code, available at https://github.com/z0on/Adaptive-pathways-of-coral-558 

populations-on-the-Great-Barrier-Reef, is designed for general modeling of multilocus adaptation 559 
in metapopulations. It can read user-supplied files of environmental conditions, population sizes 560 
and migration matrices for arbitrary number of populations.  561 
 562 

Here, we modeled our five populations with effective population sizes and pairwise 563 
migration rates inferred by dadi.  We modeled identical thermal trends across populations with 564 
population-specific offsets. During pre-adaptation period lasting 2000 generations, the 565 
temperature was constant on average but experienced random fluctuations across generations 566 
drawn from a normal distribution with a standard deviation of 0.25oC (to approximate ENSO 567 
events). The temperature was offset by +1.6oC in Wilkie and Magnetic populations and by -1.8oC 568 
in the Keppel population, to model differences in midsummer monthly mean temperature among 569 
populations (Fig. 1). After 2000 generations a linear increase at 0.05oC per generation was added 570 
to simulate warming.  571 
 572 

All combinations of parameter settings were run ten times to ensure consistency. We 573 
found that with population sizes in thousands, such as in our case, the results were very 574 
consistent among independent runs. We therefore did not aggregate results over many replicated 575 
runs but show one randomly chosen run for each tested parameter combination. 576 
 577 
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Supplemental Figures 716 
 717 
 718 
 719 

 720 
Figure S1. Principal component analysis of genetic diversity in sampled populations. (A) Map of sampled 721 
locations with one-letter population identifiers. (B) Principal component analysis of genome-wide genetic 722 

variation. On panel D, centroid labels are initial letters of population names as in panel A. 723 
 724 
 725 
 726 
 727 

 728 
Figure S2. Example of two-population dadi model fit. (A) The model: ancestral population splits into two 729 
populations of unequal sizes (N1 and N2) some time T in the past, which exchange migrants with different 730 
rates depending on direction. (B) Observed allele frequency spectrum comparing Wilkie (W) and Keppel 731 

(K) populations. (C) Allele frequency spectrum generated by the fitted model. (D, E) Map and histogram of 732 
residuals (absolute scale). 733 

  734 
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 735 
 736 

 737 
Figure S3. Bootstrap analysis of migration rates, divergence times, and population subdivision. (A) 738 
Migration among population pairs, with bootstrap-derived 95% confidence intervals. The pairs are 739 

identified on the x-axis and sorted by increasing geographical distance. Black bars – southward migration, 740 
grey bars – northward migration. (B) Boxplot of divergence times (in years, y-axis) between pairs of 741 

populations (x-axis) across bootstrap replicates. (C) Models being compared: the split model (left) implies 742 
populations’ split into two different sizes (N1 and N2) at time T in the past, since when they exchanged 743 

migrants at unequal rates depending on direction. No-split model (right) allows for population size change 744 
at time T in the past but does not include population split: the two genotyped groups (p1 and p2) are 745 

regarded as two samples from the same population. (D-M) Histograms of delta-AIC values comparing split 746 
and no-split models (panel A) for bootstrap replicates (bootstrap was performed over genomic contigs of 747 

the draft genome of A. digitifera). Positive numbers indicate support for the split model. The letters on top 748 
of each panel identify compared populations, the number is the proportion of positive bootstrap replicates 749 

(i.e., bootstrap support for the full model).  750 
 751 
  752 
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 753 
Figure S4. Delta-AIC bootstrap comparison of models with and without migration (A), to confirm that the 754 
model with migration and ancient divergence is preferable to the model with no migration but very recent 755 
divergence. (B-K) Histograms of delta-AIC values for bootstrap replicates comparing models with and 756 
without migration. Positive numbers indicate support for the model with migration. The letters on top of 757 
each panel identify compared populations, the number is the proportion of bootstrap replicates supporting 758 
the model with migration and ancient split. For all pairs of populations the model of ancient split with 759 
migration is strongly supported. (L, M) Example of residuals from the two models. Model without 760 
migration under-estimates the number of shared low-frequency polymorphisms and over-estimates the 761 
number of shared high-frequency polymorphisms.  762 
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 763 
 764 
 765 
 766 

 767 
Figure S5. Migration rates inferred by the dadi model allowing for the change in migration rates over the 768 

last 0.01 T units (15-20 generations or 75-100 years, in our case). Box plots show historical (N, S) and 769 
recent (Nr, Sr) migration rates inferred among pairs of population across bootstrap replicates. Numbers in 770 

the top left corner are delta-AIC bootstrap support for the model with the recent change in migration 771 
compared to the split-with-migration model with no recent change (Fig. 2A, inset). Only in three cases 772 

(OW, MW, and KW) the model with recent migration change is favored, and in two of these cases (OW, 773 
MW) southward migration shows pronounced recent increase. Southward migration increase is also 774 

suggested for three more population pairs in the central GBR (OS, MS and MO): although in these cases 775 
bootstrap support for the recent increase model is below 50%, the model is not strongly disfavored. 776 

 777 
 778 
 779 
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 781 
Figure S6. Population history. (A-E) Historical population sizes with bootstrap-derived 95% confidence 782 

intervals, according to the two-growth model (Fig. S7 F). (F) Sea level with shaded area corresponding to 783 
standard error (41). 784 

 785 
 786 
 787 

 788 
Figure S7. Delta-AIC bootstrap analysis of single-population models. (A-E) Histograms of delta-AIC 789 
values for 100 bootstrap replicates comparing two-growths and one-growth models (panel F). Positive 790 

numbers indicate support for the two-growth model. The letter on top of each panel identify the population, 791 
the number is the proportion of positive bootstrap replicates (i.e., bootstrap support for the two-growth 792 

model). The two-growth model is well supported for populations W, O, and K (panels A, C and E), weakly 793 
supported for population S (panel B), and not supported for population M (panel D). (F) Models compared. 794 
The full model (left) includes two exponential growth periods (any of which could be growth or decline), 795 

the reduced model (right) has only one growth period. 796 
 797 
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 799 
Figure S8. Higher plasticity and lower heritability facilitate metapopulation persistence during warming. 800 
The graphs show fitness of populations (relative to maximal fitness at the genetically determined optimum) 801 
after pre-adaptation period and under warming, depending on the magnitude of non-heritable component 802 
(Esd, standard deviation of normally distributed random value added to the sum of QTL effects when 803 
calculating individual’s phenotype; higher Esd implies lower heritability) and phenotypic plasticity (σ, 804 
standard deviation of the Gaussian slope of fitness decline away from the phenotypic optimum, in degrees 805 
C). Higher plasticity confers stability against random thermal fluctuations (compare panels A, D and G) 806 
and partially rescues the drop in fitness due to high Esd (i.e., lower heritability - compare pre-warming 807 
generations, from -100 to 0, on panels B, E and H or C, F, and I). 808 
  809 
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 810 

 811 
Figure S9. Higher plasticity and lower heritability promote longer and more extensive evolution in response 812 
to warming. The graphs show mean thermal tolerance of populations after pre-adaptation period and under 813 
warming, depending on the magnitude of non-heritable component (Esd, standard deviation of normally 814 
distributed random value added to the sum of QTL effects when calculating individual’s phenotype; higher 815 
Esd implies lower heritability) and phenotypic plasticity (σ, standard deviation of the Gaussian slope of 816 
fitness decline away from the phenotypic optimum, in degrees C).  817 
  818 
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