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Abstract  

Background: Differential co-expression signifies change in degree of co-expression 

of a set of genes among different biological conditions. It has been used to identify 

differential co-expression networks or interactomes. Many algorithms have been 

developed for single-factor differential co-expression analysis and applied in a variety 

of studies. However, in many studies, the samples are characterized by multiple 

factors such as genetic markers, clinical variables and treatments. No algorithm or 

methodology is available for multi-factor analysis of differential co-expression. 

Results: We developed a novel formulation and a computationally efficient greedy 

search algorithm called MultiDCoX to perform multi-factor differential co-expression 

analysis of transcriptomic data. Simulated data analysis demonstrates that the 

algorithm can effectively elicit differentially co-expressed (DCX) gene sets and 

quantify the influence of each factor on co-expression. MultiDCoX analysis of a 

breast cancer dataset identified interesting biologically meaningful differentially co-

expressed (DCX) gene sets along with genetic and clinical factors that influenced the 

respective differential co-expression. 

Conclusions: MultiDCoX is a space and time efficient procedure to identify 

differentially co-expressed gene sets and successfully identify influence of individual 

factors on differential co-expression. 

Keywords: Differential co-expression, Gene expression, MultiDCoX, Multi-factor 

analysis. 

Software: R function will be available upon request. 
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Background  

Differential co-expression of a set of genes is the change in their degree of co-

expression among two or more relevant biological conditions [12]. As illustrated in 

Figure 1, differentially co-expressed genes demonstrate a strong co-expression pattern 

among normal samples and no co-expression among disease samples. These genes 

may not be differentially expressed. Differential co-expression signifies loss of 

control of factor(s) over the respective downstream genes in a set of samples 

compared to the samples in which the gene set is co-expressed or variable influence of 

a factor in one set of samples over the other. This could also be due to a latent factor 

which had a significant influence on gene expression in a particular condition [44].  

Since the proposal by Kostka & Spang [12], many algorithms have been proposed to 

identify differentially co-expressed (referred as DCX throughout the paper) gene sets 

and quantify differential co-expression. The algorithms can be classified based on two 

criteria: (1) method of identification of DCX gene sets (targeted, semi-targeted and 

untargeted); and (2) scoring method of differential co-expression (gene set scoring 

and gene-pair scoring).  

Based on the method of identification, similar to the one described by Tesson et al. 

[2], the algorithms can be classified into targeted, semi-targeted and untargeted 

algorithms. The Targeted algorithms [9] perform differential co-expression analysis 

on predefined sets of genes. The candidate gene sets may be obtained from public 

databases such as GO categories and KEGG pathways. They do not find novel sets of 

DCX gene sets. Another disadvantage of targeted methods is their reduced sensitivity 

if only a subset of the given gene set is differentially co-expressed as the DCX signal 

is diluted and the DCX geneset may not be identified. In addition, the DCX gene sets 
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that are composed of genes of multiple biological processes or functions [44] may not 

be identified at all. The semi-targeted algorithms [2, 17, 24] work on the observation 

that the genes are co-expressed in one group of samples. Hence they perform 

clustering of genes in one set of samples, identify gene sets tightly co-expressed and 

test for their differential co-expression using the remaining group of samples. 

Although semi-targeted algorithms can identify novel gene sets, their applicability is 

limited to the co-expressed sets identified by the clustering algorithm. On the other 

hand, the untargeted algorithms [10, 12, 29] assume no prior candidate sets of genes 

and instead find the gene sets in an exploratory manner and therefore have a high 

potential to identify novel gene sets. The major drawback of untargeted approach is 

potentially high false discovery rate and large computational requirements.  

The second aspect of DCX gene set identification algorithms is the methodology 

employed in scoring differential co-expression of a given gene set: (1) gene set 

scoring or set-wise method, and (2) gene pair scoring. In gene set scoring, all genes 

are considered in the scoring at once such as in the linear modelling used in Kostka & 

Spang [12] and Prieto et al. [10]. On the other hand, gene-pair scoring, as used in 

DiffFNs [29] and DCoX [2], computes differential correlation of each pair of genes in 

the gene set and summarizes them to obtain DCX score for the gene set. Gene pair 

scoring is intuitive and amenable to network like visualization and interpretation in 

single factor analysis settings. However, gene set scoring can be thought of as gene 

network of multiple cliques and cliques connected via common genes among all pairs 

of gene sets. The first few methods (e.g. Kostka & Spang [12] and Prieto et al. [10]) 

are untargeted set-wise methods, while DiffFNs [29] is an untargeted gene-pair 
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scoring method. However, many later methods, including an early method (DCA 

[17]) are predominantly targeted or semi-targeted algorithms using gene pair scoring.  

Differential co-expression has been used in various disease studies and identified 

many interesting changed interactomes of genes among different disease conditions. 

DiffFNs [29], Differential co-expression [20], TSPG [39], and Topology-based cancer 

classification [22] were applied for the classification of tumor samples using 

interactome features identified using differential co-expression and shown good 

results over using individual gene features. The application of Ray and Zhang’s co-

expression network using PCC and topological overlap on Alzheimer’s data helped 

identify gene sets whose co-expression changes in Alzheimer’s patients [27]. The 

multi-group time-course study on ageing [19] has identified gene sets whose co-

expression is modulated by ageing. Application on data of Shewanella oneidens 

identified a network of transcriptional regulatory relationships between chemotaxis 

and electron transfer pathways [32]. Many other studies have also shown the 

significant utility of application of differential co-expression analysis [11, 14, 33, 36]. 

However, none of the existing algorithms allow direct multi-factor analysis of 

differential co-expression, i.e. deconvolving and quantifying the influence of different 

biological, environmental and clinical factors of relevance on the change in co-

expression of gene sets. This is important as some phenotypes or biological outcomes 

are governed by multiple factors. In such a case, many single-factor differential co-

expression analyses suffer from the same disadvantages of similar approach in 

differential expression analysis: it leads to multitude of tests, the interpretation of the 

identified gene sets may be cumbersome and misleading.  
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Multivariate differential co-expression analysis is important in many practical settings 

since each sample is characterized by many factors (a.k.a. co-factors) such as 

environmental variables, genetic markers, genotypes, phenotypes and treatments. For 

example, a lung cancer sample may be characterized by EGFR expression, smoking 

status of the patient, KRAS mutation and age [37]. Similarly, ageing of skin may 

depend on age, exposure to sun, race and sex [13]. Different environmental, genetic 

and clinical factors may modulate co-expression of a set of genes. Deconvolving and 

quantifying the effects of these factors on gene set’s co-expression and eliciting 

relevant regulatory pathways is an important task towards understanding the change 

in the cellular state and the underlying biology of interest.  

Hence, we propose a very first methodology for such purpose called Multi-Factorial 

Analysis of Differential Co-eXpression or MultiDCoX, a gene set scoring based 

untargeted method. MultiDCoX performs greedy search for gene sets that maximize 

absolute coefficients of cofactors (as suggested in our earlier work [3]) while 

minimizing residuals for each geneset. Though the model used in MultiDCoX is 

restricted to ordinal and categorical valued factors, it is not a major limitation while 

dealing with real valued cofactors which can be discretized into reasonably small 

number of levels and be treated as ordinal variables. The analysis of several simulated 

datasets demonstrate that the algorithm can be used to reliably identify DCX gene sets 

and deconvolve and quantify the influence of multiple cofactors on the co-expression 

of a DCX geneset in the background of large set of non-DCX gene sets. The 

algorithm performs well even for genesets with weak signal-to-noise ratio. The 

analysis of a breast cancer gene expression dataset revealed interesting biologically 

meaningful DCX gene sets and their relationship with the relevant cofactors. 
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Furthermore, we have shown that the co-expression of CXCL13 is not only due to the 

Grade of the tumor as identified in [18], but also could be influenced by ER status. 

Similarly, MMP1 appears to play role in two different contexts defined by more than 

one co-factor. These together demonstrate the importance of multi-factor analysis. 

 

Methods 

MultiDCoX Formulation and Algorithm 

MultiDCoX procedure consists of two major steps: (1) identifying DCX gene sets and 

obtaining respective DCX profiles; and (2) identifying covariates that influence 

differential co-expression of each DCX gene set. The formulation essential to carry 

out these two steps is as follows.  

Let Eim denote expression of gene gi in sample Sm. The cofactor vector characterizing 

Sm is denoted by Bm = (Bm1, Bm2, Bm3,…, Bmk) where Bmk is the value of k
th

 factor for 

Sm which is either a binary or an ordinal variable. A categorical variable can be 

converted into as many binary variables as one less the number of categories of the 

factor.  

We define a new variable Amn(I) to summarize co-expression of gene set I among 

sample pair Sm and Sn  for which Bm = Bn, as 

   

2

1

1
I

mn im in

i

A I E E
I 

 
 
 
 

  (Eq1) 

Bmn = Bm = Bn                          

 

 Amn(I) measures square of mean change of expression of all genes in I from Sm to Sn. 

Most of Amn(I)’s are expected to be non-zero among a group of samples in which I is 
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co-expressed. On the other hand, if genes in I are not co-expressed in a group of 

samples then Amn(I)’s tend to be zero. This is illustrated in Figure 2.  

Once all Amn(I)s and Bmns are computed, we quantify the influence of the cofactors by 

fitting a linear model between Amn(I)s and Bmns. In other words, Amn(I)s are the 

instances of the response variable, Bmns form design matrix (B) and factors in the Bmns 

are explanatory variables or cofactors (F) i.e. 

A(I) = BF      (Eq2) 

Where A(I) is the vector of Amn(I)s, B is matrix of Bmns and F is the vector of factors 

(attributes or covariates or cofactors) represented in Bmns. The coefficient vector 

obtained from the above modelling is called differential co-expression profile of the 

gene set I, denoted by F(I). 

The linear modelling problem can be solved by standard functions (such as lm()) 

available in R-package. But, identifying DCX gene sets is major computational task. 

The MultiDCoX algorithm identifies DCX gene sets by iteratively optimizing 

coefficient of a cofactor using the following procedure, see the flowchart in Figure 3 

for the algorithm: (1) identifying significance threshold for cofactor coefficients; (2) 

choosing seed pairs of genes that demonstrate significant coefficient for the cofactor 

under consideration, i.e. the gene pairs may be differentially co-expressed for the 

cofactor; (3) expanding each chosen seed gene pair into a conservative multi-gene set 

by optimizing the respective coefficient; (4) augmenting the gene set to increase 

sensitivity or reduce false negatives while keeping the respective factor coefficient 

significant; and, (5) filtering out weak contributing genes from each gene set to 

increase specificity or reduce false positives. Each of these steps is explained in detail 

below. 
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1. Identifying threshold of significance for cofactor coefficients: We generate the 

distribution of coefficients of the cofactors in F by random sampling of gene pairs: 

randomly sample large number of gene pairs, fit the linear model in Eq2 for each pair 

and obtain the coefficients in the linear models. Pool absolute values of coefficients of 

all factors of all gene pairs, and set half of the m
th

 (m=10 in our experiments) highest 

value as absolute threshold for all cofactors. In other words, 

CT = m
th

 Max ⋃l ⋃k {|Fk (Il) | / 2}  

     where Fk (Il) is coefficient on gene set (a pair of genes in this case) Il for k
th

 factor. 

Toi is the threshold for cofactor ‘i’, derived from CT as follows 

Toi= CT if Fi (I) > 0  

    = -CT if Fi (I) < 0 

The division by 2 is necessary to avoid damagingly strict threshold and lay wider net 

at the beginning of the algorithm. m > 1 is required as some of the sampled gene pairs 

could belong to DCX gene sets which may overestimate the threshold and reduce 

sensitivity of the algorithm. 

2. Identifying DCX seed gene pairs: For each gene, search is performed throughout 

the dataset to find its partner gene whose pair can result in a linear model (Eq2) with 

at least one significant cofactor. A cofactor is considered to be significant if its linear 

model F-test p-value is < 0.01 and its coefficient is outside the range [-CT, CT]. If no 

partner gene could be found, then the gene will be filtered out from the dataset to 

improve the computational speed at later stages of the algorithm. We have 

implemented this step using the procedure: (a) batch application of qr.coef() in R-

package which computes only linear model coefficients using one QR decomposition, 

(b) filter out gene pairs whose linear model coefficients are in the range [-CT, CT], (c) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2017. ; https://doi.org/10.1101/114397doi: bioRxiv preprint 

https://doi.org/10.1101/114397
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

apply lm() on the gene pairs remaining after step ‘b’ to compute F-test p-values, and 

(d) further filter out gene pairs which do not meet requirements for the coefficient p-

value. The batch application of qr.coef() is many folds faster than lm(). We use 

similar strategy in the steps 3.A-3.C below to reduce computational requirements 

compared to the direct application of lm(). 

3. Identifying DCX gene sets: We optimize coefficients of each significant cofactor 

for each gene pair in the direction, in positive or negative direction, depending on the 

sign of the coefficient i.e. if the coefficient is negative (positive) its minimized 

(maximized). To do so, for each factor, the steps 3.A-3.C are iterated until all seed 

pairs for which the factor is significant are exhausted from the seed pairs obtained in 

the step 2. 

3. A. Expanding top gene pair to a multi-gene set: We choose the gene pair whose 

constituent genes are not part of any of the multi-gene sets identified and whose linear 

model fit resulted in the highest coefficient for the factor of interest. It will be 

expanded to multi-gene set by adding genes that improve the coefficient of that factor 

in the direction of its coefficient for the gene pair. A sequential search is performed 

from first gene in the data to the last gene in the data (the order of the genes will be 

randomized before this sequential search). A gene is added to the set if it improved 

the coefficient of the factor under consideration i.e. the threshold to add a gene 

thereby the stringency increases as the search proceeds. The final set obtained at the 

end of this step is denoted by J. This step results in a most conservative DCX gene 

set. Factor profile FP(J) of J is defined as set of (fi,hi) pairs as follows:  

FP(J, Toi) = {(fi,1) | Fi(J) > Toi AND P-vali(J) < 0.01} ⋃ {(fi,0) | |Fi(J)| ≤ |Toi| OR P-

vali(J) ≥ 0.01} ⋃ {(fi,-1) | Fi(J) < -Toi AND P-vali(J) < 0.01} 
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Where fi is factor ‘i’ and hi denotes whether it is positively (hi=1) or  

                   negatively (hi=-  1) significant or insignificant (hi=0): 

 Fi(J) is coefficient of factor fi for gene set J 

 P-vali(J) is p-value of Fi(J) 

3. B. Augmenting gene set J: As we tried to improve the coefficient of the factor for 

each addition of a gene in the expansion step (3.A), we may have missed many true 

positives which are not as strong constituents of J, but could be significant 

contributors. Therefore, we perform augmentation step to elicit some of the potential 

not-so strong constituents of J while preserving the factor profile of J. As the gene set 

identified in step (3.A) is most conservative, we set a new threshold Tni(J) or simply 

Tni for the coefficient Fi(J) of each fi as  

Tni(J) = Sign(Fi(J) )(α|Toi| + (1-α)|Fi(J)|),  0 ≤ α ≤ 1  if |hi| = 1; 

         = |Toi|, otherwise. 

Tni(J) will be as stringent as Toi and at most equal to Fi(J) which is the coefficient 

obtained at the end of step (3.A). Moreover, we define centroid EC (J) = {ECm(J)} of J 

as  





Ji

imCm
E

J
JE

||

1
)(  

EC(J) is treated as a representative gene expression profile of J and find a gene sub set 

K such that each gene in K, gk, the pair Kk = (gk, EC(J)) satisfies the condition  

FP(Kk, Tni) = FP(J, Toi) i.e. K = {gk | FP(Kk, Tni) = FP(J, Toi)} 

Then the augmented set L = J ⋃ K as new DCX gene set 

3. C. Filtering gene set L: The set L obtained after the step (3.B) may contain false 

positives which can be filtered out as follows: As in the augmentation step, we 

compute ECm(L) and evaluate each gene pair Qk ∈ {(gk, ECmn(L)) | gk ∈  L}  for F(Qk). 
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gk is removed from the set if |Fi(Qk)| < Fi(L) for all |hi|=1. Then the final gene set R = 

{gk | gk ∈ L and F(Qk) is better than F(L)}. R is the final set output for the run.  

4. Identifying cofactors significantly influencing DCX of each gene set: It is 

important to identify the factors influencing the DCX of a gene set to interpret the 

geneset and elicit underlying biology, i.e. FP(R). The F-test p-value obtained for each 

cofactor by the linear model fit (in Eq2) in the above procedure need to be further 

examined owing to the dependencies among the gene sets explored. Therefore, we 

mark a cofactor to be influential (|hi| =1) on co-expression of R if it satisfies the 

following two criteria:  

(a) Effect size criterion: We pool coefficients of all factors on all gene sets 

identified (denoted as CR) and examine their distribution. The valleys close to zero on 

either side of the central peak are chosen as the significance threshold Tf+ and Tf-, see 

Figure 4. Fi(R) is considered to be significant if it is > Tf+ or < Tf-.  The underlying 

assumption is that not all factors influence all gene sets and the coefficients of the 

factors with no or little influence on certain gene sets will be suggestive of the 

distribution of the coefficients under null hypothesis.  

(b) Permutation p-value criterion: We permute the factor values of a DCX 

gene set, i.e. permute columns of Bmk matrix and fit the linear model in Eq2 for each 

gene set R. We repeat this procedure for a predefined number of iterations. A factor is 

said to be non-influential on the co-expression of the gene set under consideration if a 

minimum predefined fraction of permutations (0.01 in this paper) resulted in a fit in 

which the coefficient is better than Fi(R) and its F-test p-value is better than the F-test 

p-value of the coefficient without permutation or 0.01 whichever is lower.  
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    Finally, the gene sets with at least one significant cofactor and of predefined size 

(i.e. at least 6 genes in the set) will be output as DCX gene sets along with their factor 

profiles.  

Reducing computational and space requirements: Computational and space 

requirements can be further reduced using the following strategies: (1) Filter out 

genes with no detectable signals among almost all samples and genes that demonstrate 

very little variance across the samples. This can result in modest reduction in space 

requirement and substantial reductions in computational requirement as the search 

procedure is at least of quadratic complexity if 50% of the genes are filtered out from 

the analysis; (2) Further reduction in computational time can be achieved in the step 

to identify seed gene pairs. Randomly split the genes into two halves and search for 

possible pairs where one belongs to one half and the other belongs to the other half, 

instead of all possible gene pairs. As many DCX gene sets are expected to be 

sufficiently large, >10 genes, the sampled set is expected to contain >2 genes from 

that set. This reduces computational time to find seed gene pairs by 2 fold. (3) 

Another possibility is to consider only a subset of sample pairs by randomly sampling 

a small fraction of (m,n)s for the linear model, it could be as small as 10% of all 

(m,n)s. We demonstrate the performance of the MultiDCoX even with such a minimal 

sampling. These three strategies put together with the optimization described in the 

step 2 of MultiDCoX can massively reduce the space and computational requirement 

by several folds and make the algorithm practically feasible. 
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Results  

Simulation Results 

To evaluate efficacy of MultiDCoX, we analysed simulated datasets of varying 

degrees of signal-to-noise ratio and sample size. Each simulated dataset consists of 

50,000 probes as in a typical microarray and three factors of 12 stratums, sample sizes 

were chosen to be either 60 or 120 or 240 i.e. 5, 10 and 20 samples per stratum 

respectively. Two factors B1 and B2 were binary valued taking values from {-1, 1} 

and the other (B3) is an ordinal variable taking values from {-1, 0, 1}. Sample labels 

were randomly chosen for each factor and gene expression (Eim) was simulated as 

described below:  

Eim = B1im + B2im + B3im + Oim + eim 

B1im = B1m ~ N(0,1) if Sm is in co-expressed group of B1 and gi is in DCX gene set for 

the factor B1, 0 otherwise. Similar interpretation holds for the remaining factors, B2 

and B3, too. Oim = Om ~ N(0,1) indicates co-expression over all samples if gi belongs 

to set of genes co-expressed across all samples irrespective of the factor values.  eim ~ 

N(0,σ
2
) is noise term and σ

2
 is the extant of noise in the data. 

We simulated 20 genes which show co-expression for B1m=1 and B2m=1, 20 genes 

co-expressed for B1m = -1 only, and another 20 genes with Oi = 1 only. With this we 

have two sets of negative controls: large number of genes with no co-expression and a 

set of genes co-expressed across all samples. Ideally, a DCX gene set identification 

algorithm should be able to discriminate the first two sets of genes from the two 
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control (negative) sets. Furthermore, we have tested our MultiDCoX for three 

different values of σ ∈ {0.2, 0.5, 0.8} i.e. from low noise to the noise comparable to 

the signal. We carried out 10 simulations for each choice of σ.  

The simulation results are summarized in the panel of plots in Figure 5: plots of 

average numbers of false positives (FPs) and false negatives (FNs) over 10 

independent runs for each choice of σ and sample size for both DCX gene sets along 

with the globally co-expressed gene set. MultiDCoX performed well in terms of both 

false positives and false negatives for low to medium values of σ. Moreover, the 

algorithm exhibited reasonable performance even at the noise (σ) comparable to the 

signal (i.e. σ = 0.8). The simulation results also demonstrate that MultiDCoX is 

sensitive even at small sample size for low to medium noise level. The failure rate of 

identifying gene sets and their profiles are dependent not only on the sample size and 

noise level, but also on the type of set identified. A single factor influenced set has 

better chance of identifying the right profile but poor chance of being identified at low 

sample size and higher noise level. On the other hand, the set influenced by 2 factors 

has higher chance of being identified, but poorer chance of being identified with 

correct profile at low sample size and higher noise level. The effect of noise on FNR 

also depended on the number of factors influencing the DCX gene set. However, FDR 

is less dependent on both noise level and the number of factors influencing co-

expression. The number of simulations that identified false gene sets increased with 

increased noise and reduced sample size. It is the lowest for 5 samples/stratum and 

high noise (σ = 0.8). The computational time for MultiDCoX analysis, to optimize 

each cofactor in both directions (maximization and minimization), was ~12-15 hours 

for one simulated data of 240 samples using 1 node of a typical HPC cluster. 
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MultiDCoX Analysis of Breast Cancer Data  

We analyzed a breast cancer gene expression data published by Miller et al. [25]. It 

contains expression profiles of 258 breast cancer patients on U133A and U133B 

Affymetrix arrays i.e. ~44,000 probes. The tumors were annotated for their oestrogen 

receptor (ER) status (1 for recognizable level of ER or ER+, -1 otherwise or ER-), p53 

mutational status (1 for mutation or p53+, and -1 for wild type or p53-) and grade of 

tumor (-1 for grade 1, 0 for grade 2 and 1 for grade 3). ER and p53 status are the 

important markers used to guide treatment and prognosis of breast cancer patients. 

Hence it is important to study the gene sets regulated and thereby co-expressed by 

these factors while accounting for the effect of the tumor status as indicated by its 

grade and strong association between these three factors. For example, p53-mutant 

tumors are typically of higher grade (grades 2 or 3) tumors with correlation ~ 63% 

[40] and ER-positive tumors are typically low grade (grade 1) tumors [41]. In the 

presence of these correlations among the covariates, it is important to identify and 

quantify their effects on co-expression of gene sets. We have applied MultiDCoX on 

this dataset using ER status, p53 mutational status and tumor grade as cofactors. We 

discuss a few DCX sets here and the remaining DCX gene sets are given in the 

Additional File 1 (UppsalaBCResults.xlsx).  

 

Co-expression of ER pathway and the genes associated with relevant processes is 

modulated in p53 mutated tumors: A DCX gene set and the linear model fit is shown 

in Table 1A. The set is co-expressed only in p53 mutant tumors. The co-expression 

plot of p53 mutant tumors is shown in Figure 6. 
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The set includes ESR1 (which encodes ERα) and its co-factor GATA3 and pioneering 

factor FOXA1 [23] along with ER downstream targets CA12, SPDEF and AGR2. We 

retrieved a total of 1349 p53 binding sites’ associated genes data from Botcheva K et 

al. [1], and Wei CL et al. [5]. p53 binding sites are reported to be close to the 

promoters of ESR1 [30] as well as GATA3. Furthermore, GATA3 appears to bind to 

FOXA1 which is a pioneering factor of ER [35]. Our finding reinforces the 

observations made by Rasti et al. [30] that different p53 mutations may have varying 

effect on the expression of ESR1 gene, it’s co-factor GATA3, pioneering factor 

FOXA1 and SAM-dependent Mythyltransferase & p53 interacting GAMT which could 

have resulted in the differential co-expression of the ER pathway. In addition, co-

modulation of chromatin structure alternating & ER promoter stimulating TOX3 and 

Protein transfer associated REEP6 appears to be required to modulate ER pathway by 

p53.  

Genes co-expressed with BRCA2 in ER-negative tumors are associated with Her2-

neu status: Another gene set of interest is co-expressed in ER-negative tumors only 

and its details are given in Tables 2A and 2B. The co-expression plot of the gene set 

in ER-negative tumors is shown in Figure 7. The gene set includes tumor suppressor 

gene BRCA2. We have investigated ER binding sites published by Carroll et al. [4] 

and Lin et al. [5] for ER binding sites close (within ±35Kb from TSS) to these genes. 

The ~4800 binding sites mapped to ~1500 genes. Significantly, 10 of the 21 genes in 

this DCX gene set have ER binding sites mapped to them which is statistically 

significant at F-test p-value < 0.01. Interestingly, most of these genes have not been 

identified to be ER regulated in the earlier studies using differential expression 

methodologies, possibly owing to the complexity of regulatory mechanisms. 

However, many of these genes are down regulated in ER-negative tumors. Testing for 
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association of expression of this set with Her2-neu status revealed that higher 

expression in ER-negative tumors is associated with Her2-neu positivity which must 

have led to co-expression in ER- tumors. Odds ratio of such an association is 18 

which is much higher than that of ER positive tumors (OR = 4). 

 

DCX of CXCL13 is modulated by Grade and ER status too: Analysis of Grade1 and 

Grade3 tumors using GGMs [18] helped identify CXCL13 in breast cancer as hub 

gene. It emerged as one of the hub genes in our analysis too, contributing to multiple 

DCX gene sets (see Additional File 1, sheet:maxGrade). Although they are 

significant for Grade, they are significant for ER status too. It shows that CXCL13’s 

differential co-expression appears to be influenced by ER status, in addition to Grade. 

This couldn’t be identified in the previous study as it was restricted to univariate 

(Grade) analysis.  

 

DCX of MMP1 is modulated by factor subspace associated with poor survival: 

MMP1 is another gene we have examined whose family of genes are associated with 

poor survival [43]. MMP1 is co-expressed among tumors which are P53+ (mutant) 

and ER-negative or hi-grade tumors which are ER-postive (see Additional File 1, 

sheets: maxP53, maxGrade and minER). Both these categories are known to be 

associated with poor survival of patients. This couldn’t have been revealed in a single 

factor analyses. 

 

Functional analysis of DCX profiles: To elucidate the biological function of different 

DCX profiles (ER+, ER- & p53+, etc.), we pooled all genes from gene sets of same 

DCX profile and used DAVID functional annotation tool [16] to identify GO terms, 
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protein domains, tissues of expression and pathways enriched, the results are 

tabulated in Table 3. It shows a clear distinction of GO functional categories, 

pathways enriched and tissues of expression between different DCX profiles. For 

example there is distinctive protein domains between ER-positive and ER-negative 

DCX profiles, whereby ER-positive’s protein domain involves more in 

Immunoglobulin/major histocompatibility complex while ER-negative involves in 

epidermal growth factor (EGF) extracellular domain of membrane-bound proteins. 

Also, both ER-negative and ER-positive covariates are associated with different 

pathway categories: ER-positive’s pathway involves more in synaptic transmission, 

neuroactive ligand-receptor interaction while ER-negative is associated with hormone 

(steroid, androgen and estrogen) metabolism, drug, starch and sucrose metabolism. 

The same phenomena can be observed for p53-mutant versus p53-negative associated 

genes.  

 

Discussion 

MultiDCoX is a space and time efficient algorithm which successfully elicits 

quantitative influence of cofactors on co-expression of gene sets. It required only 12 

hours of computation on a typical HPC node to identify DCX gene sets for each factor 

for a dataset of 240 samples and ~44000 probes. The simulation results demonstrated 

that MultiDCoX has tolerable false discovery rates even at 5 samples/stratum and 

noise (σ) of 0.8. However, false negative rate (FNR) was affected by both sample size 

and noise level. As expected, FNR is very low for large sample size (20 samples per 

stratum) and low noise level (σ = 0.2). Interestingly, both FDR and FNR did not 

greatly depended on the type of the gene set to be discovered, or whether it is 

influenced by single factor or multi-factors. The discovery of a gene set whose DCX 
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is driven by two cofactors is less affected by noise and sample size than the gene sets 

influenced by a single cofactor. On the other hand, the set influenced by 2-cofactors 

has higher likelihood of arriving at the wrong profile compared to that of a 1-cofactor 

driven DCX. Occurrence of false DCX sets increased with increasing noise level, it is 

pronounced more for small sample size case. This is a major issue to be addressed in 

the future improvements over the current version of MultiDCoX. Moreover, the 

performance of the algorithm needs to be studied for varying parameters’ settings and 

further reductions in computational time. It is possible to reduce the computational 

time by 2 fold by filtering out 50% of probes of low variance in expression. Though 

we have not used this strategy as we needed to study its impact on the discovery and 

profiling of DCX gene sets, the current implementation could complete the analysis 

within half a day of computing for each factor. The massive parallel processing allows 

us to complete all analyses within a day. 

By MultiDCoX formulation, we identify DCX gene sets exhibiting B-type co-

expression only [3]. The other two types of differential co-expression may be 

identified using multivariate differential expression analysis followed by clustering.  

MultiDCoX algorithm can be applied to different clinical data to quantify the 

influence of multiple cofactors on the co-expression and its associated phenotypes.  

Multiple aspects of the formulation and the algorithm need to be studied in our future 

improvements: Robustness of Amn(I) to outliers is an important aspects of the 

performance of the algorithm and impact of the thresholds used in the algorithm also 

to be studied. However, without tuning, the choice of parameters appears to be 

effective enough for both simulated and real data sets. 

The application of MultiDCoX on a breast cancer data has revealed interesting sets of 

DCX genes: the set of ESR1, its cofactors along with downstream genes of ESR1 and 
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genes associated with relevant ESR1 dependent transcriptional regulation; the set of 

genes containing ER binding site in their cis region. Furthermore, we have shown that 

the co-expression of gene sets that contain CXCL13 and the gene sets that contain 

MMP1 is affected by ER status too in addition to tumor grade which couldn’t have 

been elicited in a typical univariate DCX analysis. 
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Additional files 

Additional File 1: UppsalaBCResults.xlsx 

 Format: XLSX 

 Title of Data: Results of Analysis of Breast Cancer Data 

 Description: Contains all differentially co-expressed genesets with respective 

differential co-expression model fit (F-test p-value, coefficient value), gene 

counts, and permutation results over three factors (ER, p53 and Grade) in 

breast cancer data. Remarks: Grade+ indicates higher grade tumor i.e. 2 and 3, 

while Grade– indicates lower grade tumour i.e. 1. 
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Legend - Figures 

 

Figure 1 - Differential Co-Expression.  

Geneset is co-expressed in normal samples but not in disease samples. 

 

Figure 2 - Illustration of Amn(I) for co-expression and non co-expression. 

 

Figure 3 - Flowchart of MultiDCoX algorithm 

 

Figure 4 - Density plots of all coefficients of the simulation data analysis by 

MultiDCoX for varying number of sample/stratum. 

 

Figure 5 - Simulation results 

The simulations were carried out for 5 samples/stratum, 10 samples/stratum and 20 

samples/stratum. Set 1 represents gene set simulated to be co-expressed only in 

samples B1m = -1, while Set 2 represents gene set simulated to be co-expressed for 

B1m=1 and B2m=1. 

 

Figure 6 - The co-expression plot of set 1 (Table 1A) in p53+ tumors in breast 

cancer data 

a) Co-expression of geneset 1 (18 genes) across p53 mutant tumor (p53+) samples; 

gray color line indicates mean expression value of geneset 1.   

 

b) The geneset 1 showed no co-expression in p53 wild-type samples (p53-); gray 

color line indicates mean expression value of geneset 1.   

 

Figure 7 - The co-expression plot of set 2 (Table 2A) tumors in breast cancer 

data 

a) Co-expression of geneset 2 (21 genes) in ER-negative tumor samples; gray color 

line indicates sample-wise mean expression value of it.   

 

b) The geneset 2 showed no co-expression in ER-positive tumor samples; gray line 

indicates mean expression value.   
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Legend - Tables 

 

Table 1 

A) The table shows the MultiDCoX model fit over three factors (ER, p53 and Grade). 

A gene set identified is differentially co-expressed in p53+ with F-test p-value = 

2.75 x 10
-231 

and coefficients value = 1.137. Only p53 covariate is significant and 

its coefficient is positive which means the co-expression of the set occurs only in 

p53 mutant tumors only. 

 

B) ER dependent differential expression, ER binding sites and p53 binding sites for 

the geneset in Table 1A. 

 

Table 2 

A) The table shows the MultiDCoX model fit over three factors (ER, p53 and Grade).  

A gene set identified is differentially co-expressed in ER-negative covariate with 

F-test p-value = 1.34 x 10
-252

 and coefficients value = -1.117. Only ER covariate is 

significant and its coefficient is negative which means the co-expression of the set 

occurs in ER-negative tumors only. 

 

B) ER dependent differential expression, ER binding sites and p53 binding sites for 

the gene set in Table 2A. 

 

Table 3 - Functional analysis of co-expression in different covariates 

GO (Gene ontology) summary shows gene sets, GO terms enriched and the influence 

of different cofactors.  For each covariate, the sets with positive coefficient are pooled 

and analyzed for GO and pathway enrichment, it is repeated for the sets with negative 

coefficient as well. 
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Tables 
 

Table 1A. The table shows the MultiDCoX model fit over three factors (ER, p53 and 

Grade). A gene set identified is differentially co-expressed in p53+ with F-test p-value 

= 2.75 x 10
-231 

and coefficients value = 1.137. Only p53 covariate is significant and its 

coefficient is positive which means the co-expression of the set occurs only in p53 

mutant tumors only. 

 
 
 

Table 1B. ER dependent differential expression, ER binding sites and p53 binding 

sites for the geneset in Table 1A. 

 

No. Gene ER (DE) ER Binding Site p53 

Binding 

Site 

Gene Description 

1. GFRA1 Yes (up) Yes(dist=58.5kb) No TGF-beta related 

neurotrophic factor 

receptor 

2. FOXA1 No Yes(dist=4.798kb) No Forkhead box protein 

A1 

3. GATA3 No Yes(dist=30.338kb) Yes GATA binding protein 

3 

4. SPDEF No Yes(dist=1.159kb) No  SAM pointed domain 

containing ets 

transcription factor 

5. ESR1 Yes (up) Yes(dist=32.241kb) Yes  Estrogen receptor 1 

6. GAMT No dist > 100kb Yes guanidinoacetate N-

methyltransferase 

Co-

expression 
Genes 

Total_ 

Genes 

ER 

coefficient 

ER 

pvalue 

p53 

coefficient 

p53 

pvalue 

Grade 

coefficient 

Grade 

pvalue 

p53+ 

(p53 

mutant) 

MKX, GFRA1, 

GATA3, 

SPDEF, GAMT, 

TOX3, FOXA1, 

AGR3, ESR1, 

SDR16C5, PIP, 

CYP2B7P1, 

SYTL5, REEP6, 

AGR2,  

ANKRD30A, 

CA12, 

SCGB2A1 

18 0.087 0.114 1.137 
2.75E-

231 
-0.063 0.028 
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7. TOX3 No dist > 100kb No TOX high mobility 

group box family 

member 3 

8. AGR3 Yes (up) Yes(dist=54.069kb) No anterior gradient 3 

homolog (Xenopus 

laevis) 

9. SDR16C5 No dist > 100kb No Short-chain 

dehydrogenase/reductas

e family 16C member 5 

10. PIP No dist > 100kb No prolactin-induced 

protein 

11. CYP2B7P1 No dist > 100kb No cytochrome P450, family 

2, subfamily B, 

polypeptide 7 

pseudogene 1 

12. SYTL5 Yes (up) Yes(dist=94.215kb) No synaptotagmin-like 

protein 5 

13. MKX No Yes(dist=35.211kb) No mohawk homeobox 

14. REEP6 No dist > 100kb No receptor accessory 

protein 6 

15. AGR2 Yes (up) Yes(dist=2.154kb) No  anterior gradient 2 

homolog (Xenopus 

laevis) 

16. ANKRD30A No dist > 100kb No ankyrin repeat domain 

30A 

17. CA12 Yes (up) Yes(dist=56.695kb) Yes Carbonate dehydratase 

XII 

18. SCGB2A1 No dist > 100kb No  secretoglobin, family 

2A, member 1 

 

 

Table 2A. The table shows the MultiDCoX model fit over three factors (ER, p53 and 

Grade). A gene set identified is differentially co-expressed in ER-negative covariate 

with F-test p-value = 1.34 x 10
-252

 and coefficients value = -1.117. Only ER covariate 

is significant and its coefficient is negative which means the co-expression of the set 

occurs in ER-negative tumors only. 

 

Co-

expression 
Genes 

Total_ 

Genes 

ER 

coeffici

ent 

ER 

pvalue 

p53 

coefficient 

p53 

pvalue 

Grade 

coefficient 

Grade 

pvalue 

ER- 

BRCA2, ABCC3, 

ITGB6,  ABCC11, 

SNED1, NQO1, 

LOC254057, 

SPDEF, FABP4, 

CEACAM6, 

DUSP4, SERHL2, 

21 -1.117 
1.34E-

252 
0.294 

1.05E-

51 
0.095 

9.33E-

09 
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RBP4, PTK6, 

TMC5, EEF1A2, 

CLIC3, LBP, 

MMP1, FAM5C, 

AGR2 
 

 

 

Table 2B. ER dependent differential expression, ER binding sites and p53 binding 

sites for the gene set in Table 2A. 

 

No. Gene ER (DE) ER Binding Site  Gene Description 

1. BRCA2 Yes (up) dist > 100kb breast cancer 2, early onset 

2. ABCC3 Yes (down) Yes(dist=20.96kb) ATP-binding cassette, sub-family C 

(CFTR/MRP), member 3 

3. ITGB6 Yes (down) dist > 100kb integrin, beta 6 

4. ABCC11 No Yes(dist=68.96kb) ATP-binding cassette, sub-family C 

(CFTR/MRP), member 11 

5. SNED1 No Yes(dist=94.62kb) Insulin-responsive sequence DNA-

binding protein 1 

6. NQO1 Yes (down) Yes(dist=32.63kb) NAD(P)H dehydrogenase, quinone 

1 

7. LOC254057 No NA uncharacterized LOC254057 

8. SPDEF No Yes(dist=1.159kb) SAM pointed domain containing ets 

transcription factor 

9. FABP4 No Yes(dist=1.159kb) fatty acid binding protein 4, 

adipocyte 

10. CEACAM6 Yes (down) Yes(dist=19.05kb) carcinoembryonic antigen-related 

cell adhesion molecule 6 

11. DUSP4 No Yes(dist=19.138kb) dual specificity phosphatase 4 

12. SERHL2 No Yes(dist=32.63kb) serine hydrolase-like 2 

13. RBP4 No Yes(dist=20.489kb) retinol binding protein 4, plasma 

14. PTK6 Yes (down) dist > 100kb PTK6 protein tyrosine kinase 6 

15. TMC5 No dist > 100kb transmembrane channel-like 5 

16. EEF1A2 No dist > 100kb eukaryotic translation elongation 

factor 1 alpha 2 

17. CLIC3 Yes (down) Yes(dist=0.317kb) chloride intracellular channel 3 

18. LBP No dist > 100kb lipopolysaccharide binding protein 

19. MMP1 No dist > 100kb matrix metallopeptidase 1 

(interstitial collagenase)  

20. FAM5C No dist > 100kb family with sequence similarity 5, 

member C 

21. AGR2 Yes (up) Yes(dist=2.154kb)  anterior gradient 2 homolog 

(Xenopus laevis) 
 

 

Table 3  - Functional analysis of co-expression in different covariates 

GO (Gene ontology) summary shows gene sets, GO terms enriched and the influence 

of different cofactors.  For each covariate, the sets with positive coefficient are pooled 
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and analyzed for GO and pathway enrichment, it is repeated for the sets with negative 

coefficient as well. 

Signficant 

Covariates 

Biological Process Protein Domain Tissue Expression Pathways 

(KEGG/BIOCARTA/PA

NTHER) 

ER+ cell adhesion, 

biological adhesion, 

cell-cell adhesion 

(Enrichment Score: 

4.15) 

Immunoglobulin C1-

set,IGc1,Immunoglobulin/

major histocompatibility 

complex, conserved site 

,Immunoglobulin-

like,Immunoglobulin V-

set, subgroup, 

IGv,Immunoglobulin-like 

fold,Immunoglobulin V-

set,immunoglobulin V 

region (Enrichment Score: 

3.27) 

Smooth 

Muscle_3rd, 

WHOLE 

BLOOD_3rd,TON

GUE_3rd,BM-

CD105+Endothelia

l_3rd (Enrichment 

Score: 4.22) 

Synaptic 

Transmission,Ionotropic 

glutamate receptor 

pathway,Metabotropic 

glutamate receptor group 

III pathway,Neuroactive 

ligand-receptor 

interaction,Amyotrophic 

lateral sclerosis (ALS) 

(Enrichment Score: 1.89) 

ER- extracellular region, 

extracellular region 

part , extracellular 

space (Enrichment 

Score: 15.33) 

EGF-like region, 

conserved site, EGF-

extracellular, EGF-

like,EGF (Enrichment 

Score: 1.98) 

Uterus_3rd,Cingul

ate Cortex_3rd, 

WHOLE 

BLOOD_3rd, BM-

CD105+Endothelia

l_3rd, bone 

marrow_3rd, 

Smooth 

Muscle_3rd,TON

GUE_3rd 

(Enrichment 

Score: 22.75) 

Drug 

metabolism,Androgen and 

estrogen 

metabolism,Metabolism 

of xenobiotics by 

cytochrome P450,Steroid 

hormone 

biosynthesis,Retinol 

metabolism,Starch and 

sucrose 

metabolism,Ascorbate and 

aldarate 

metabolism,Pentose and 

glucuronate 

interconversions 

(Enrichment Score: 2.47) 

P53+ extracellular region, 

extracellular region 

part, extracellular 

space (Enrichment 

Score: 6.32) 

Immunoglobulin C1-

set,IGc1,Immunoglobulin/

major histocompatibility 

complex, conserved 

site,Immunoglobulin-like, 

Immunoglobulin-like 

fold,IGv, Immunoglobulin 

V-set (Enrichment Score: 

2.51) 

Smooth 

Muscle_3rd,Uterus

_3rd,WHOLE 

BLOOD_3rd,TON

GUE_3rd RT,BM-

CD105+Endothelia

l_3rd (Enrichment: 

8.23) 

Drug metabolism 

RT,Metabolism of 

xenobiotics by 

cytochrome P450 

RT,Retinol metabolism 

(Enrichment Score: 1.11) 

P53- membrane-bounded 

vesicle,vesicle, 

cytoplasmic 

membrane-bounded 

vesicle,cytoplasmic 

vesicle, secretory 

granule, synapse 

(Enrichment Score: 

1.36) 

Cytochrome 

P450,Cytochrome P450 E-

class-group I,Cytochrome 

P450, conserved site 

(Enrichment Score: 1.79) 

spinalcord_3rd, 

WHOLE 

BLOOD_3rd,Smo

oth 

Muscle_3rd,TON

GUE_3rd,BM-

CD105+Endothelia

l_3rd (Enrichment 

Score: 2.87) 

None 

Gr+ extracellular region, 

extracellular region 

part, extracellular 

space (Enrichment 

Score: 13.29) 

Small chemokine, 

interleukin-8-like, C-X-C, 

conserved site,CXC 

chemokine, C-X-

C/Interleukin 8,small 

inducible chemokine 

(Enrichment Score: 4.07) 

uncharacterized 

tissue_uncharacteri

zed histology_3rd 

(Enrichment 

Score: 1.96) 

Chemokine_families,Che

mokine signaling 

pathway,Cytokine-

cytokine receptor 

interaction (Enrichment 

Score: 3.17) 

Gr- extracellular region, 

extracellular region 

part, extracellular 

space (Enrichment 

Score: 1.85) 

Protein-tyrosine 

phosphatase,Dual-

specific/protein-tyrosine 

phosphatase,Protein-

tyrosine phosphatase, 

active site (Enrichment 

Score: 1.01) 

TemporalLobe_3rd

,WHOLE 

BLOOD_3rd,TON

GUE_3rd,Smooth 

Muscle_3rd,BM-

CD105+Endothelia

l_3rd,bone 

marrow_3rd,Uteru

None 
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s_3rd,Cingulate 

Cortex_3rd 

(Enrichment 

Score: 3.5) 

ER- & 

P53+ 

extracellular region, 

extracellular region 

part, extracellular 

space (Enrichment 

Score: 3.08) 

cytoskeletal 

keratin,Filament,Intermedi

ate filament protein-

conserved site,Keratin-

type I (Enrichment Score: 

3.48) 

Uterus_3rd,Cingul

ate 

Cortex_3rd,bone 

marrow_3rd 

(Enrichment 

Score: 2.08) 

None 

ER+ & Gr+ cell-cell signaling, 

transmission of nerve 

impulse, synaptic 

transmission 

(Enrichment Score: 

2.49) 

Immunoglobulin C1-

set,IGc1,Immunoglobulin/

major histocompatibility 

complex, conserved site 

,Immunoglobulin-

like,Immunoglobulin V-

set, 

subgroup,IGv,Immunoglo

bulin-like 

fold,Immunoglobulin V-

set,immunoglobulin V 

region (Enrichment Score: 

5.38) 

Trigeminal 

Ganglion_3rd,skin

_3rd,Trachea_3rd 

(Enrichment 

Score: 7.93) 

Intestinal immune 

network for IgA 

production,Type I 

diabetes mellitus,Cell 

adhesion molecules 

(CAMs),Asthma,Allograft 

rejection,Graft-versus-

host disease,Autoimmune 

thyroid disease,Viral 

myocarditis,Antigen 

processing and 

presentation,Systemic 

lupus erythematosus 

(Enrichment Score: 1.32) 
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