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Abstract (~150 words) 
 
Despite the success of large-scale genome-wide association studies (GWASs) on complex 
traits, our understanding of their genetic architecture is far from complete. Jointly modeling 
multiple traits’ genetic profiles has provided insights into the shared genetic basis of many 
complex traits. However, large-scale inference sets a high bar for both statistical power and 
interpretability. Here we introduce a principled framework to estimate annotation-stratified 
genetic covariance between traits using GWAS summary statistics. Through theoretical and 
numerical analyses we demonstrate that our method provides accurate covariance estimates, 
thus enabling researchers to dissect both the shared and distinct genetic architecture across 
traits to better understand their etiologies. Among 50 complex traits with publicly accessible 
GWAS summary statistics (Ntotal ≈ 4.5 million), we identified more than 170 pairs with 
statistically significant genetic covariance. In particular, we found strong genetic covariance 
between late-onset Alzheimer’s disease (LOAD) and amyotrophic lateral sclerosis (ALS), two 
major neurodegenerative diseases, in SNPs with high minor allele frequencies and SNPs in the 
predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD’s 
correlation with cognitive traits and hints at an autoimmune component for ALS.  
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Introduction 
 
Genome-wide association study (GWAS) has been a success in the past 12 years. Despite a 
simple study design, GWAS has identified tens of thousands of robust associations for a variety 
of human complex diseases and traits. Based on the GWAS paradigm, linear mixed models, in 
conjunction with the restricted maximum likelihood (REML) algorithm, have provided great 
insights into the polygenic genetic architecture of complex traits [1-3]. The cross-trait extension 
of linear mixed model has further revealed the shared etiology of many different traits [4]. 
Compared to traditional, family-based approaches, these methods do not require all the traits to 
be measured on the same cohort, and therefore make it possible to study a spectrum of human 
complex traits using independent samples from existing GWASs [5, 6]. Recently, Bulik-Sullivan 
et al. developed cross-trait LD score regression (LDSC), a computationally efficient method that 
utilizes GWAS summary statistics to estimate genetic correlation between complex traits [7]. 
LDSC is a major advance. As summary statistics from consortium-based GWASs become 
increasingly accessible [8], it provides great opportunities for systematically documenting the 
shared genetic basis of a large number of diseases and traits [9, 10]. However, large-scale 
inference sets a high bar for both estimation accuracy and statistical power. Furthermore, 
existing methods do not allow explicit modeling of functional genome annotations. As shown in 
later sections, the estimated genetic correlations in many cases are neither statistically 
significant nor easy to interpret. 
 
To address these challenges, there is a pressing need for a statistical framework that provides 
more accurate covariance and correlation estimates and allows integration of biologically 
meaningful functional genome annotations. The method of moments has recently been shown 
to outperform LDSC in single-trait heritability estimation [11]. Integrative analysis of GWAS 
summary statistics and context-specific functional annotations has provided novel insights into 
complex disease etiology through a variety of applications [12-14]. In this paper, we introduce 
GNOVA (GeNetic cOVariance Analyzer), a principled framework to estimate annotation-
stratified genetic covariance using GWAS summary statistics. Through extensive numerical 
simulations, integrative analysis of 50 complex traits, and an in-depth case study on late-onset 
Alzheimer’s disease (LOAD) and amyotrophic lateral sclerosis (ALS), we demonstrate that 
GNOVA provides accurate covariance estimates and powerful statistical inference that are 
robust to linkage disequilibrium (LD) and sample overlap. Furthermore, we show that 
annotation-stratified analysis enhances the interpretability of genetic covariance and provides 
novel insights into the shared genetic basis of complex traits.  
 
 
 
 
Results 
 
Model overview 
We briefly outline the statistical framework in this section. Theoretical results and model details 
are discussed in the Methods section and Supplementary Notes. We define K possibly 
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overlapping functional annotations 𝑆!, 𝑆!, ..., 𝑆!  (e.g. predicted functional and non-functional 
genome), and assume two traits 𝑦! and 𝑦! follow the linear models below: 

𝑦! = 𝑋!𝛽! + 𝜖
!

!!!

 

𝑦! = 𝑍!𝛾! + 𝛿
!

!!!

 

where 𝑋! and 𝑍! denote the genotype matrices of SNPs in annotation 𝑆!; 𝛽! and 𝛾! denote the 
corresponding genetic effects on two traits, which follow an annotation-dependent covariance 
structure: 

𝔼 𝛽! = 𝔼 𝛾! = 0    𝑎𝑛𝑑    𝔼 𝛾!𝛽!! =
𝜌!
𝑚!

𝐼,        𝑖 = 1,… ,𝐾 

where 𝑚!  denotes the number of SNPs, 𝜌!  denotes the genetic covariance in annotation 
category 𝑆!, and 𝜖 and 𝛿 denote the non-genetic effects for the two traits respectively. To allow 
for sample overlap between two GWASs with 𝑁! and 𝑁! subjects, assume the first 𝑁! samples 
in each study are shared. We allow non-genetic effects 𝜖 and 𝛿 to be correlated: 

𝔼 𝜖!𝛿! = 𝜌! , 1 ≤ 𝑖 = 𝑗 ≤ 𝑁!
0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Next, we study the expectation of 𝑦!!𝐴𝑦! where 𝐴 is an arbitrary matrix. It can be shown that 

𝔼 𝑦!!𝐴𝑦! =
𝜌!
𝑚!

𝑡𝑟 𝐴𝑍!𝑋!!
!

!!!

+ 𝜌!( 𝐴!!

!!

!!!

) 

Here, 𝐴!! denotes the tth diagonal element of matrix 𝐴. We plug in the following K+1 matrices 
𝐴!,...,  𝐴!!! into the equation above: 

𝐴! =
𝑋!𝑍!!

𝑚!
,          𝑗 = 1,… ,𝐾 

𝐴!!! =
𝐼!!×!! 0
0 0 !!×!!

 

In addition, we apply method of moments and approximate 𝔼 𝑦!!𝐴!𝑦!  with 𝑦!!𝐴!𝑦!. When the 
shared sample size is moderate compared to the total sample size (Supplementary Notes), we 
could remove non-genetic covariance 𝜌! from the formula and obtain the following K equations. 

1
𝑚! 𝑁!𝑁!

(𝑧!)!!(𝑧!)!

⋮
1

𝑚! 𝑁!𝑁!
(𝑧!)!! (𝑧!)!

=

1
𝑚!𝑚!

𝑟! ! !! !
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟! ! !! !
!

!!

!!!!

!!

!!!
⋮ ⋱ ⋮

1
𝑚!𝑚!

𝑟! ! !! !
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟! ! !! !
!

!!

!!!!

!!

!!!

𝜌!
⋮
𝜌!

 

Here, 𝑟!(!)!!(!)
!  denotes the LD between the 𝑙 th SNP from category 𝑆!  and the (𝑙′)th SNP from 

category 𝑆! , 𝑧! and 𝑧! denote the z-scores of SNP-level associations from two GWASs, and 
(𝑧!)! and (𝑧!)! represent z-scores in annotation 𝑆!. We define 

𝑣 = (
1

𝑚! 𝑁!𝑁!
𝑧! !

!(𝑧!)!,… ,
1

𝑚! 𝑁!𝑁!
𝑧! !

! (𝑧!)!)! 
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𝑀 =

1
𝑚!𝑚!

𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟!(!)!!(!)
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!!

!!!!
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!!!
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!!!!
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⋯
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Then, the genetic covariance estimate can be denoted as 
𝜌 = 𝑀!!𝑣 

Of note, 𝑀  only depends on LD and can be estimated using a reference panel; 𝑣  can be 
calculated using GWAS summary statistics. Individual-level genotype or phenotype information 
is not required in this framework. We apply the following correction if sample overlap is 
substantial 

𝜌 = 𝑀!!(𝑣 −
𝜌!!!"#
𝑁

𝟏) 

where 𝜌!!!"# denotes the phenotypic covariance between two traits and can also be estimated 
using GWAS summary statistics if not provided (Supplementary Notes). Standard error is 
estimated using block-wide jackknife. When performing non-stratified analysis, we can estimate 
genetic correlation in addition to genetic covariance using the following formula: 

𝑐𝑜𝑟 =
𝜌

ℎ!!ℎ!!
 

where heritability is estimated using the estimator proposed in [15] as follows 

ℎ!! =
1
𝑚 𝑧! !(𝑧!) − 1
𝑁
𝑚! 𝑟!!!

!!
!!!!

!
!!!

  ,      𝑡 = 1,2 

 
Simulations 
We simulated two traits using genotype data from the Wellcome Trust Case Control Consortium 
(WTCCC) while assuming a correlated genetic covariance structure. Detailed simulation 
settings are described in the Methods section. Since LDSC cannot estimate annotation-
stratified genetic covariance, we compared GNOVA and LDSC using data simulated from a 
non-stratified, infinitesimal genetic covariance structure (Figures 1A-D). Both methods provided 
unbiased covariance estimates, but GNOVA estimator had consistently lower variance across 
all simulation settings. The same pattern could be observed for genetic correlation estimates 
(Supplementary Figure 1). Neither method showed inflated type-I error when the true 
covariance is 0. When comparing the frequencies of rejecting the null hypothesis, GNOVA is 
nearly twice as powerful as LDSC when the true genetic covariance is below 0.1. To evaluate 
GNOVA’s robustness against sample overlap, we simulated two traits using genotype data of 
the same cohort. After applying sample overlap correction, GNOVA still outperformed LDSC, 
showing higher estimation accuracy and statistical power (Supplementary Figure 2). 
 
Next, we investigated GNOVA’s capability to estimate annotation-stratified genetic covariance. 
We randomly partitioned the genome into two non-overlapping annotation categories, and 
simulated two traits using annotation-dependent genetic covariance (Methods). GNOVA 
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provided unbiased estimates for the genetic covariance in each category across all settings 
(Figures 1E-F). Of note, type-I error was well controlled in the annotation category without 
genetic covariance even when the true covariance in the other annotation category was non-
zero, suggesting GNOVA’s robustness under the influence of LD. Furthermore, when functional 
annotations overlapped, our method still provided accurate covariance estimates and powerful 
inference (Figures 1G-H). 
 

 
Figure 1. Evaluation of covariance estimation and statistical power through simulations. Detailed simulation 
settings are described in the Methods section. (A-D) Compare GNOVA and LDSC using traits simulated from a non-
stratified covariance structure. We first fixed heritability for both traits but set genetic correlation to different values. 
The covariance estimates are shown in panel A. Panel B shows the statistical power. Next, we fixed genetic 
correlation but chose different values for heritability and covariance. Covariance estimates and statistical power are 
shown in panels C and D, respectively. (E-H) Estimate annotation-stratified genetic covariance. In panels E and F, we 
simulated data using two non-overlapping functional annotations. Results in panels G and H are based on two 
overlapping annotations. The true covariance values are labeled under each setting. Type-I error was not inflated 
when the true covariance was zero. 
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Table 1. Acronyms for 50 complex diseases and traits. They will be used throughout this paper. 
 

Trait Acronym 
Age at First Birth AFB 
Age at Menarche AM 
Age-related Macular Degeneration AMD 
Anorexia Nervosa AN 
Age at Natural Menopause ANM 
Anxiety Disorder ANX 
Autism Spectrum Disorder ASD 
Asthma AST 
Bipolar Disorder BIP 
Body Mass Index BMI 
Birth Weight BW 
Coronary Artery Disease CAD 
Crohn's Disease CD 
Celiac Disease CEL 
Chronotype CHT 
Chronic Kidney Disease CKD 
Cognitive Performance COG 
Diastolic Blood Pressure DBP 
Depressive Symptoms DEP 
Eczema ECZ 
Education Years EDU 
Epilepsy EPL 
Femoral Neck Bone Mineral Density FNBMD 
Fasting Glucose GLU 
Gout GOUT 
HDL Cholesterol HDL 
Height HGT 
Inflammatory Bowel Disease IBD 
Fasting Insulin INS 
LDL Cholesterol LDL 
Lumbar Spine Bone Mineral Density LSBMD 
Major Depressive Disorder MDD 
Multiple Sclerosis MS 
Number of Children Ever Born NCEB 
Neuroticism NEU 
Primary Angle Closure Glaucoma PACG 
Primary Billary Cirrhosis PBC 
Rheumatoid Arthritis RA 
Resting Heart Rate RHR 
Systolic Blood Pressure SBP 
Schizophrenia SCZ 
Systemic Lupus Erythematosus SLE 
Smoking Behavior SMK 
Serum Urate SU 
Subjective Well-being SWB 
Type-II Diabetes T2D 
Total Cholesterol TC 
Triglycerides TG 
Ulcerative Colitis UC 
Waist Hip Ratio WHR 

 
 
Estimation of pair-wise genetic correlation for 50 human complex traits 
We applied GNOVA to estimate genetic correlations for 50 complex traits using publicly 
available GWAS summary statistics (Ntotal ≈ 4.7 million). Trait acronyms are listed in Table 1 
and details of all GWASs are summarized in Supplementary Table 1. Out of 1,225 pairs of 
traits in total, we identified 175 pairs with statistically significant genetic correlation after 
Bonferroni correction (Supplementary Table 2 and Supplementary Figure 3). We also applied 
LDSC to the same datasets and only identified 127 significant pairs (Supplementary Table 3 
and Supplementary Figure 4). Overall, the genetic correlations estimated using GNOVA and 
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LDSC are concordant (Figure 2). Consistent with our simulation results, GNOVA is more 
powerful when genetic correlation is moderate.  
 

 
 
Figure 2. Comparison of genetic correlations estimated using GNOVA and LDSC. Each point represents a pair 
of traits. Overall, genetic correlation estimates are concordant between GNOVA and LDSC, but GNOVA is more 
powerful when genetic correlation is moderate. Color and shape of each data point represent the significance status 
given by GNOVA and LDSC. Trait pairs that involve GOUT were removed from this figure because LDSC estimated 
its heritability to be negative and could not properly output p-values. 
 
 
To evaluate model validity, we examined correlations between several traits that are closely 
related either physiologically or epidemiologically (Supplementary Table 4). As expected, 
systolic and diastolic blood pressure (SBP and DBP), femoral and lumbar bone mineral density 
(FNBMD and LSBMD), and depressive symptoms (DEP) and major depressive disorder (MDD) 
showed strong positive genetic correlations. We also observed negative correlations between 
subjective well-being (SWB) and neuropsychiatric disorders such as schizophrenia, anxiety, two 
depression traits (DEP and MDD) and neuroticism.  
 
We further examined pairwise correlations between 50 traits (Figure 3; Supplementary Figure 
3). Following hierarchical clustering, broad patterns suggesting disease relatedness emerged. 
These results are well documented in the literature; neuropsychiatric, metabolic diseases, and 
gastrointestinal inflammatory disorders clustered together with positive correlations within each 
individual cluster. We replicated several previous genetic correlation findings [7], including 
significant correlations of adult height (HGT) with coronary artery disease (CAD) and age at 
menarche (AM), and of years of education (EDU) with CAD, bipolar disorder (BIP), body-mass 
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index (BMI), triglycerides, and smoking status (SMK). Furthermore, two previous results that 
only passed multiple correction testing at 1% FDR passed Bonferroni correction in our analysis; 
namely, we observed a statistically significant negative correlation between AM and CAD, and a 
positive correlation between autism (ASD) and EDU. 
 

 
Figure 3. Estimated genetic correlations of 465 pairs of traits from 31 GWASs. To visualize a large number of 
pair-wise correlations more efficiently, we excluded closely related traits and studies with smaller sample sizes (N < 
30,000) in this figure. Asterisks highlight significant genetic correlations after Bonferroni correction for all 1,225 pairs 
(p < 4.1×10-5). The complete heat map matrix is presented in Supplementary Figure 3. The order of traits was 
determined by hierarchical clustering.  
 
 
We also identified a number of genetic correlations that are consistent with the genetic 
relationships reported in the previous literature. For example, previous genetic correlation 
analyses identified a negative correlation between anorexia nervosa (AN) and obesity, a result 
we also observed [7]. In addition, we found negative correlations of AN with glucose and 
triglyceride levels, as well as a positive correlation with high-density lipoprotein (HDL). These 
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results provide further support for existing hypotheses proposing an underlying neural, rather 
than metabolic, etiology for metabolic syndrome [12, 16, 17]. We see an unsurprising positive 
correlation between glucose and insulin levels, which is consistent with our understanding of 
diabetes [18]. Positive correlations between multiple sclerosis (MS) and Crohn’s disease (CD) 
and more generally, inflammatory bowel disease (IBD), agree with existing reports of shared 
susceptibility for these diseases [19-21]. We demonstrate a positive correlation between asthma 
and eczema, which share numerous loci identified in previous GWAS [22]. We found chronic 
kidney disease (CKD) to be positively correlated with systolic and diastolic blood pressure, 
consistent with existing evidence for shared genetics via genes such as UMOD, which 
independently predisposes to CKD and hypertension [23]. We also reproduced recent findings 
linking bone mineral density with metabolic dysfunction with positive correlations between 
FNBMD and both glucose and type II diabetes (T2D) [24]. Interestingly, however, we did not see 
significant correlations of bone mineral density with cardiovascular diseases. Among 
neuropsychiatric disorders, we identified positive correlations between BIP and both depression 
and neuroticism. Associations between neuroticism and depression are well documented. 
Neuroticism is highly comorbid with MDD [25, 26], and our findings are consistent with 
previously observed genetic pleiotropy among neuroticism, MDD, BIP, and schizophrenia [27, 
28].  
 
Especially notable are findings that suggest a genetic basis for associations between traits 
regarding which the literature is either equivocal or absent, and which provide useful information 
to guide further study. For example, we observed correlations of serum urate (SU) with AM (-
0.12), T2D (0.275), and triglycerides (0.38), and we consistently observed associations of SU 
and markers of metabolic syndrome. In the literature, the genetic architecture of this association 
has not been extensively studied [29]. Alleles in IRF8, a regulatory factor of type-I interferons, 
are associated with MS and systemic lupus erythematosus (SLE), but with opposite effect; high 
type-I IFN titers are thought to be causal in SLE, but are lower in MS relative to healthy controls 
[30]. In this analysis, however, we found a positive correlation between MS and SLE. We also 
draw attention to the significant negative correlation between MS and ASD. This replicates a 
previous genetic association between MS and ASD, with more recent evidence suggesting 
shared biomedical markers, such as increase in concentrations of tumor necrosis factor-alpha 
(TNF-alpha), in serum in ASD and in cerebrospinal fluid in MS [31, 32]. However, previous 
treatment of MS with anti-TNF-alpha led to an increase in the number of demyelinating lesions 
and a significantly higher relapse rate [33]. Furthermore, we observed a positive genetic 
correlation between ulcerative colitis (UC) and primary billary cirrhosis (PBC). CD, also an IBD 
and thus closely related, has been reported to share susceptibility genes with PBC including 
TNFSF15, ICOSLG, and CXCR5 [34]. Here we show that ulcerative colitis may also be 
genetically related to PBC. 
 
 
Stratification of genetic covariance by functional annotation 
In this section, we apply functional annotations to further dissect the shared genetic architecture 
of 50 complex traits. We have previously developed GenoCanyon, a statistical framework to 
predict functional DNA elements in the human genome through integration of annotation data 
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[35]. We partitioned the genome into two non-overlapping categories (i.e. functional and non-
functional) based on GenoCanyon scores (Methods), and estimated genetic covariance within 
the functional and the non-functional genome for each pair of traits (Supplementary Table 5). 
The total genetic covariance estimated using the stratified model is highly concordant with 
covariance estimated using the non-stratified model (Figure 4A). However, genetic covariance 
is enriched in the predicted functional genome for most traits (Figure 4B). Based on this 
approach, we identified one more pair of correlated traits, i.e. low-density lipoprotein (LDL) and 
total cholesterol (TC), whose genetic covariance largely concentrated in the predicted functional 
genome and achieved significance (𝜌!"#$ = 0.060; p = 1.0×10-6) while the overall covariance did 
not (𝜌!"#$%&& = 0.062; p = 7.7×10-5).  
 

 
Figure 4. Annotation-stratified covariance analysis. (A) Stratify genetic covariance by genome functionality 
predicted by GenoCanyon. Total genetic covariance estimates were highly concordant between stratified and non-
stratified models. (B) For significantly correlated pairs of traits based on the non-stratified model, we compared 
genetic covariance in the functional and the non-functional genome. Solid line marks the expected value based on 
annotation’s size. Trait pair LDL-TC is also plotted. (C) Stratify genetic covariance by MAF quartile. We compared the 
genetic covariance estimated by MAF-stratified and non-stratified models. (D) Six pairs of traits that are uniquely 
correlated in the lowest MAF quartile. Intervals show the standard error of covariance estimates. Asterisks indicate p-
values below 4.1×10-5. (E) Stratify genetic covariance by tissue type. Each bar denotes the log-transformed p-value. 
Dashed line highlights the Bonferroni-corrected significance level 0.05/(7×1225) = 5.8×10-6. 
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Next, we partitioned genetic covariance based on quartiles of SNPs’ minor allele frequencies 
(MAFs) in subjects with European ancestry from the 1000 Genomes Project (Methods; 
Supplementary Table 6). Similar to the previous analysis, we identified high concordance 
between the total covariance estimated using MAF-stratified model and the covariance 
estimates based on non-stratified model (Figure 4C). Overall, the estimated genetic covariance 
in four MAF quartiles was comparable (Supplementary Figure 5). However, we identified six 
pairs of traits that are uniquely correlated in the lowest MAF quartile (Figure 4D), namely 
asthma with CKD (p = 1.8×10-5), gout with CKD (p = 4.2×10-8), DBP (p = 3.0×10-14), and SBP (p 
= 4.3×10-18), and eczema with DBP (p = 1.9×10-6) and SBP (p = 6.3×10-8). For several trait pairs, 
covariance in the lowest MAF quartile showed reversed direction compared to other quartiles. 
Covariance between CKD and gout even showed reversed direction compared to the estimated 
total covariance, highlighting the distinction in how common and less common variants are 
involved in the shared genetic architecture between these traits. Our findings also hint at the 
possible selection pressure on DNA variations contributing to metabolic traits including CKD, 
systolic and diastolic BP, as well as immune diseases including asthma and eczema.  
 
Finally, we studied tissue-specificity of genetic covariance through integration of GenoSkyline-
Plus annotations (Methods). GenoSkyline-Plus integrates multiple epigenomic and 
transcriptomic annotations from the Roadmap Epigenomics Project to identify tissue and cell 
type-specific functional regions in the human genome [13]. We utilized seven broadly defined 
tissue and cell types (i.e. brain, cardiovascular, epithelium, gastrointestinal, immune, muscle, 
and other) to stratify genetic covariance for 1,225 pairs of traits (Supplementary Table 7). Six 
tests from 4 pairs of traits passed Bonferroni correction, i.e. p < 0.05/(1225×7) = 5.8×10-6 
(Figure 4E and Supplementary Figure 6). As expected, UC, as an IBD, was significantly and 
positively correlated with IBD in immune-related functional genome (p = 2.0×10-6); two 
psychiatric diseases, BIP and schizophrenia, were specifically correlated in the genome 
predicted to be functional in brain (p = 8.7×10-8). In addition, we identified cognitive function 
(COG) and EDU, and birth weight (BW) and HGT to be significantly correlated in both brain and 
immune-related functional genome. Of note, since the sizes of functional annotations are linked 
to statistical power, p-values here should not be interpreted as reflecting the importance of each 
tissue. Some tissues may be critically involved in the etiology of analyzed traits even if they may 
have p-values that are not statistically significant. For example, IBD and UC were substantially 
correlated in the gastrointestinal tract (p = 3.7×10-4). Many of these tests may become 
significant in the near future as GWASs with larger sample sizes are published. 
 
 
Dissection of shared and distinct genetic architecture between LOAD and ALS 
LOAD and ALS are neurodegenerative diseases. Despite success of large-scale GWASs [36, 
37], our understanding of their genetic architecture is still far from complete. We applied 
GNOVA to dissect the genetic covariance between LOAD and ALS using publicly available 
GWAS summary statistics (NLOAD = 54,162; NALS = 36,052; Supplementary Table 8). 
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We identified positive and significant genetic correlation between LOAD and ALS (correlation = 
0.175, p = 2.0×10-4). LDSC provided similar estimates but failed to achieve significance (Table 
2). 82.6% of the total genetic covariance between LOAD and ALS is concentrated in 33% of the 
genome predicted to be functional by GenoCanyon (p = 8.2×10-5). Furthermore, MAF-stratified 
analysis showed that 54.6% of the covariance could be explained by the SNPs in the highest 
MAF quartile (p = 0.005). In fact, genetic covariance is lower with lower MAF, and covariance in 
the lowest MAF quartile is nearly negligible. We also performed tissue-stratified analysis using 
GenoSkyline-Plus annotations (Supplementary Table 9). No tissue passed the significance 
threshold after multiple testing correction, but covariance is more concentrated in immune, brain, 
and cardiovascular functional genome, and showed nominal significance in the immune 
annotation track (p = 0.014). Whether this will lead to a potential neuroinflammation pathway 
shared between LOAD and ALS remains to be studied in the future using larger datasets. 
 
 
Table 2. Dissection of genetic covariance between LOAD and ALS. Numbers in parentheses indicate 
standard errors. Significant p-values after adjusting for multiple testing within each section are highlighted 
in boldface. 

Annotation Category Covariance P-value 

Non-stratified GNOVA 0.016 (0.004) 2.0×10-4 
LDSC 0.012 (0.007) 0.075a 

GenoCanyon functional 0.016 (0.004) 8.2×10-5 
non-functional 0.003 (0.004) 0.377 

MAF 

Q1 -0.001 (0.003) 0.842 
Q2 0.003 (0.004) 0.361 
Q3 0.004 (0.004) 0.327 
Q4 0.008 (0.003) 0.005 

a p-value in LDSC was calculated from genetic correlation instead of genetic covariance. 
 
 
Next, we stratified genetic covariance between LOAD and ALS by chromosome. Somewhat 
surprisingly, we did not observe a linear relationship between per-chromosome genetic 
covariance and chromosome size (Figure 5A) given that the overall genetic covariance is 
positive and significant. Since we have observed the concentration of genetic covariance in the 
functional genome, we further partitioned each chromosome by genome functionality. We 
identified a clear and positive linear relationship between genetic covariance in the functional 
genome and the size of predicted functional DNA on each chromosome (Figure 5B). The 
correlation between per-chromosome genetic covariance in the non-functional genome and the 
size of non-functional chromosome is negative and significantly smaller than the corresponding 
quantity in the functional genome (Supplementary Figure 7; p = 0.044; tested using Fisher 
transformation). Our findings suggest a polygenic covariance architecture between LOAD and 
ALS, and highlight the importance of stratifying genetic covariance by functional annotation. 
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Figure 5. Stratification of genetic covariance between LOAD and ALS by chromosome. (A) Comparisons of the 
estimated per-chromosome genetic covariance with chromosome size. (B) Comparisons of the estimated genetic 
covariance in the predicted functional genome on each chromosome with size of the functional genome. 
 
 
Finally, we jointly analyzed LOAD, ALS, and 50 other complex traits (Table 1 and 
Supplementary Table 10). Interestingly, LOAD and ALS showed distinct patterns of genetic 
correlations with other complex traits (Figure 6). We identified negative and significant 
correlations between LOAD and cognitive traits including COG and EDU. HGT and age at first 
birth (AFB), two traits related to hormonal regulation as well as socio-economic status, were 
also significantly and negatively correlated with LOAD. Consistent with previous reports, we did 
not identify substantial correlation between LOAD and other neurological and/or psychiatric 
diseases [7, 9]. We identified negative correlations between LOAD and gastrointestinal 
inflammatory diseases including a significant correlation with PBC. Asthma and eczema were 
both positively correlated with LOAD, suggesting a complex genetic relationship between LOAD 
and different immune-related diseases. Although some of these traits had the same correlation 
direction with ALS, none of them was significant. Instead, ALS was significantly and positively 
correlated with MS, a neurological disease with a well-established immune component [38]. ALS 
was also positively correlated with several other immune-related diseases including celiac 
disease (CEL), asthma, PBC, and IBD (including CD and UC), though none of these was 
statistically significant. The nominal correlations between ALS and neurological and psychiatric 
diseases including epilepsy, schizophrenia, BIP, AN, and MDD also remain to be validated in 
the future using studies with larger sample sizes. 
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Figure 6. Genetic correlations between LOAD, ALS, and 50 complex traits. Significant pairs with p < 0.05/(50×2) 
= 5.0×10-4 are highlighted in red. 
 
 
 
 
Discussion 
 
Although our understanding of complex disease etiology is still far from complete, we have 
gained valuable knowledge on the genetic architecture of numerous complex traits from large-
scale association studies, partly due to advances in statistical genetics. First, a large proportion 
of trait heritability can be explained by SNPs that do not pass the Bonferroni-corrected 
significance threshold [1]. Therefore, it is often helpful to utilize genome-wide data instead of 
only focusing on significant SNPs in post-GWAS analyses. Second, sample size is critical for 
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many statistical genetics applications. However, individual-level genotype and phenotype data 
from consortium-based GWASs are not always easily accessible due to policy and privacy 
concerns. Thanks to the great efforts from large international collaborations such as the 
Psychiatric Genomics Consortium in promoting open science and data sharing, it has become a 
tradition for GWAS consortia to share summary statistics to the broader scientific community. 
Therefore, it is of practical interest to use GWAS summary statistics as the input of downstream 
analytical methods [8]. Finally, integration of high-throughput transcriptomic and epigenomic 
annotation data has been shown to improve statistical power as well as interpretability in many 
recent complex trait studies [12-14]. As large consortia such as ENCODE [39] and Roadmap 
Epigenomics Project [40] continue to expand, integrative approaches based on functional 
genome annotations will become an even greater success. In this paper, we developed a novel 
method to estimate and partition genetic covariance between complex traits. Our method enjoys 
all the aforementioned advantages. It only requires genome-wide summary statistics and a 
reference panel as input, and allows stratification of genetic covariance by functional genome 
annotation.  
 
Numerous studies have hinted at a shared genetic basis among neurodegenerative diseases 
[41, 42]. Due to the convenience and efficiency of LDSC and the wide accessibility of GWAS 
summary statistics, several attempts have been made to estimate genetic correlation between 
neurodegenerative diseases [9, 43]. To date, these efforts have not been as successful as 
similar studies on psychiatric diseases and immune-related traits. One reason is that existing 
methods may not be statistically powerful enough to identify moderate genetic correlation using 
GWASs with limited sample sizes. In addition, the shared genetics among neurodegenerative 
diseases may not fit the global, infinitesimal covariance structure that most existing tools are 
based on. In this study, we applied GNOVA to dissect the genetic covariance between LOAD 
and ALS, two major neurodegenerative diseases, using summary statistics from the largest 
available GWASs. Our findings suggest that covariance between LOAD and ALS is 
concentrated in the predicted functional genome and in very common SNPs. Moreover, after 
applying functional annotations to stratify the genome, estimated per-chromosome genetic 
covariance is proportional to chromosome size, suggesting a shared polygenetic architecture 
between LOAD and ALS and also demonstrating the importance of incorporating predicted 
genetic activity with GenoCanyon. In addition, joint analysis with 50 complex traits also revealed 
distinctive genetic covariance profiles for LOAD and ALS. LOAD is negatively correlated with 
multiple traits related to cognitive function and hormonal regulation, while ALS is positively 
correlated with MS and a few other immune-related traits. Our findings provided novel insights 
into the shared and distinct genetic architecture between LOAD and ALS, and also further 
demonstrated the benefits of incorporating functional genome annotations into genetic 
covariance analysis.  
 
Also of note are findings involving serum urate. SU was positively correlated with gout but also 
with a few metabolic traits. Gout is an arthritic inflammatory process caused by deposition of 
uric acid crystals in joints, and the role of hyperuricemia in gout is well established. More 
recently, a role for hyperuricemia in the pathophysiology of metabolic syndrome and CKD has 
been suggested [44]. While associations between hyperuricemia and cardiovascular disease 
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are well described [45], multiple hypotheses exist regarding details of its involvement [46]. For 
example, hyperuricemia may lead to inflammation in the kidney through vascular smooth 
muscle proliferation, inducing hypertension via pre-glomerular vascular changes [47]. It has also 
been shown to induce oxidative stress in various settings; in adipocytes and islet cells, this may 
be involved in development of diabetes, and it may also result in impaired endothelin function 
and activation of the renin-angiotensin-aldosterone system, leading to hypertension [48-51]. 
Despite this evidence, genetic investigations have not identified a strong relationship between 
hyperuricemia and metabolic syndrome. Polymorphism in gene SLC22A12 was associated with 
hyperuricemia but not with metabolic syndrome [52]. Mendelian randomization studies showed 
an association between uric acid and gout, but did not find an association with T2D, or 
cardiovascular risk factors such as hypertension, glucose, or CAD [53, 54]. Our results suggest 
that GNOVA successfully isolated a signal of biological and clinical significance that provides 
important impetus for further inquiry in the etiology of metabolic syndrome. 
 
Dissecting relationships among complex traits is a major goal in human genetics research. 
Genetic covariance is a useful metric to quantify such relationships, but it has its limitations. 
First, genetic covariance analysis does not highlight specific DNA segments with pleiotropic 
effects. Several SNP-based methods have been developed to identify pleiotropic associations 
using GWAS summary statistics [55, 56]. However, due to the large number of SNPs in the 
genome, statistical power is a critical issue and large-scale inference remains challenging. 
Second, we have demonstrated that integrating functional annotations into genetic covariance 
analysis could reveal subtle structures in shared genetics between complex traits, but 
interpretation of genetic covariance remains a challenge. Pickrell et al. recently proposed an 
approach to distinguishing causal relationship among traits from pleiotropic effects via 
independent biological pathways [57]. Han et al. developed a method to distinguish pleiotropy 
from phenotypic heterogeneity [58]. Although many questions remain unanswered, these recent 
studies have broadened our view on interpreting complex genetic relationships between human 
traits. Finally, statistical power in genetic covariance analysis will be reduced if the shared 
genetic components have discordant effect directions on different traits. This problem can be 
partly addressed by the aforementioned SNP-based methods. Recently, Shi et al. developed a 
method to estimate local heritability and genetic correlation [59, 60]. This approach provides an 
alternative methodological option for analyzing genetic effects at specific loci. Our method, in 
conjunction with these tools, provides the most complete picture to date about shared genetics 
between complex phenotypes.  
 
In summary, we developed a novel statistical framework to perform powerful, annotation-
stratified genetic covariance analysis using GWAS summary statistics. We were able to expand 
the discovery of genetic covariance among a spectrum of common diseases and complex traits. 
Our findings shed light onto the shared and distinct genetic architecture of complex traits. As the 
sample sizes in genetic association studies continue to grow, our method has the potential to 
continue identifying shared genetic components and providing novel insights into the etiology of 
complex diseases. 
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Methods 
 
Model details 
Here we outline the genetic covariance estimation framework. The complete derivation, detailed 
justification for all approximations, and theoretical proofs are presented in the Supplementary 
Notes. We define K functional annotations 𝑆!, 𝑆!, ..., 𝑆!, whose union covers the entire genome; 
assume two studies share the same list of 𝑚 SNPs; and assume two traits 𝑦! and 𝑦! follow the 
linear models below: 

𝑦! = 𝑋!𝛽! + 𝜖
!

!!!

 

𝑦! = 𝑍!𝛾! + 𝛿
!

!!!

 

where 𝑋! and 𝑍! denote the genotype matrices defined through annotation 𝑆!, 𝛽! and 𝛾! denote 
the corresponding genetic effects for each annotation category. SNPs’ genetic effects on two 
traits follow an annotation-dependent covariance structure: 

𝔼 𝛽! = 𝔼 𝛾! = 0    𝑎𝑛𝑑    𝔼 𝛾!𝛽!! =
𝜌!
𝑚!

𝐼,        𝑖 = 1,… ,𝐾 

where 𝑚! and 𝜌! denote the total number of SNPs and the total genetic covariance in annotation 
category 𝑆! , respectively. Variables 𝜖  and 𝛿  denote the non-genetic effects. Of note, this 
notation implicitly assumes the genetic covariance to follow an additive structure in regions 
where functional annotations overlap. 
 
In practice, two different GWASs often share a subset of samples. Without loss of generality, we 
assume 𝑁! and 𝑁! to be the sample sizes of two studies and the first 𝑁! samples in each study 
are shared. To account for the non-genetic correlation introduced by sample overlapping, we 
allow random error terms 𝜖 and 𝛿 to be correlated: 

𝔼 𝜖!𝛿! = 𝜌! , 1 ≤ 𝑖 = 𝑗 ≤ 𝑁!
0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

We note that our model does not require any additional assumption on the heritability structure 
of either trait. 
 
 
Estimation of covariance parameters 
For an arbitrary 𝑁!×𝑁! matrix 𝐴, we study the expectation of 𝑦!!𝐴𝑦!. It can be shown that 

𝔼 𝑦!!𝐴𝑦! =
𝜌!
𝑚!

𝑡𝑟 𝐴𝑍!𝑋!!
!

!!!

+ 𝜌! 𝐴!!

!!

!!!

  

Here, quantity 𝐴!! denotes the tth diagonal element of matrix 𝐴. To estimate the covariance 
parameters, we plug in K+1 different matrices 𝐴!,...,  𝐴!!! into the equation above. Then, we 
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apply the method of moments to approximate 𝔼 𝑦!!𝐴!𝑦!  using the observed value 𝑦!!𝐴!𝑦!, and 
get the following equations.   

𝑦!!𝐴!𝑦! =
𝜌!
𝑚!

𝑡𝑟 𝐴!𝑍!𝑋!!
!

!!!

+ 𝜌! 𝐴! !!

!!

!!!

,        𝑗 = 1,… ,𝐾 + 1 

Solving this linear system of K+1 equations would get us the covariance estimates.  
 
 
Choices of matrix A 
The estimation procedure described above works for arbitrary 𝐴 matrices, and it is critical to 
choose A in practice. Since individual-level genotype and phenotype data from consortium-
based GWASs are in many cases not easily accessible, it is of practical interest to estimate 
genetic covariance based on summary statistics only. To achieve this goal, we define the first K 
matrices as: 

𝐴! =
𝑋!𝑍!!

𝑚!
,          𝑗 = 1,… ,𝐾 

Plugging in these matrices, the first K equations become: 

1
𝑚!

𝑋!!𝑦!
!𝑍!!𝑦! =

𝜌!
𝑚!𝑚!

𝑡𝑟 𝑍!!𝑍!𝑋!!𝑋!

!

!!!

+
𝜌!
𝑚!

𝑋!𝑋!! !!

!!

!!!

,      𝑗 = 1,… ,𝐾 

The equality is based on the property of trace and the fact that first 𝑁! samples are shared 
between two studies. These equations can be approximated by (Supplementary Notes): 

1
𝑚! 𝑁!𝑁!

(𝑧!)!!(𝑧!)! =
𝜌!

𝑚!𝑚!
𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

!

!!!

+
𝑁!𝜌!
𝑁!𝑁!

,      𝑗 = 1,… ,𝐾 

Here, 𝑟!(!)!!(!)
!  denotes the LD between the 𝑙 th SNP from category 𝑆!  and the (𝑙′)th SNP from 

category 𝑆!; 𝑧! and 𝑧! denote the z-scores of SNP-level associations from two GWASs; (𝑧!)! 
and (𝑧!)! represent z-scores corresponding to the SNPs in annotation category 𝑆!. 
 
Next, we study the (K+1)th equation. We define: 

𝐴!!! =
𝐼!!×!! 0
0 0 !!×!!

 

Divide 𝑁!𝑁! on both sides of the (K+1)th equation, and we get: 

1
𝑁!𝑁!

(𝑦!)!(𝑦!)!

!!

!!!

=
𝑁!
𝑁!𝑁!

𝜌!

!

!!!

+
𝑁!
𝑁!𝑁!

𝜌! 

Since 𝜌!,… , 𝜌! are the parameters of interest, we subtract the (K+1)th equation from the first K 
equations, and remove 𝜌!!! from the linear system. We denote the remaining K equations in 
matrix form: 
 

1
𝑚! 𝑁!𝑁!

(𝑧!)!!(𝑧!)! −
1

𝑁!𝑁!
𝑦! ! 𝑦! !

!!

!!!
⋮

1
𝑚! 𝑁!𝑁!

(𝑧!)!! (𝑧!)! −
1

𝑁!𝑁!
𝑦! ! 𝑦! !

!!

!!!

=

1
𝑚!𝑚!

𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

−
𝑁!
𝑁!𝑁!

⋯
1

𝑚!𝑚!
𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

−
𝑁!
𝑁!𝑁!

⋮ ⋱ ⋮
1

𝑚!𝑚!
𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

−
𝑁!
𝑁!𝑁!

⋯
1

𝑚!𝑚!
𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

−
𝑁!
𝑁!𝑁!

𝜌!
⋮
𝜌!
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When the sample sizes of both GWASs are large and the sample overlap between two studies 
is moderate, the K equations can be approximated by: 

1
𝑚! 𝑁!𝑁!

(𝑧!)!!(𝑧!)!

⋮
1

𝑚! 𝑁!𝑁!
(𝑧!)!! (𝑧!)!

=

1
𝑚!𝑚!

𝑟! ! !! !
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟! ! !! !
!

!!

!!!!

!!

!!!
⋮ ⋱ ⋮

1
𝑚!𝑚!

𝑟! ! !! !
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟! ! !! !
!

!!

!!!!

!!

!!!

𝜌!
⋮
𝜌!

 

We define 

𝑣 = (
1

𝑚! 𝑁!𝑁!
𝑧! !

!(𝑧!)!,… ,
1

𝑚! 𝑁!𝑁!
𝑧! !

! (𝑧!)!)! 

 

𝑀 =

1
𝑚!𝑚!

𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!
⋮ ⋱ ⋮

1
𝑚!𝑚!

𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

 

Then, the point estimate of covariance parameters can be denoted as 
𝜌 = 𝑀!!𝑣 

Importantly, 𝑀 can be estimated using a reference panel (e.g. 1000 Genomes Project [61]) and 
𝑣 is only based on GWAS summary statistics. Of note, the same estimation framework can be 
directly applied to ascertained case-control studies as well (Supplementary Notes). 
 
 
Special cases 
1) Two independent GWASs 
If samples from two GWASs do not overlap, then the non-genetic effects 𝜖  and 𝛿  are 
independent and only K equations are needed for estimating covariance estimators. We still 
define 𝐴! = (𝑋!𝑍!!)/𝑚! for j=1,…,K. That gives us the same covariance estimator: 

𝜌 = 𝑀!!𝑣 
 
2) No annotation stratification 
If no functional annotation is present, it can be shown that 

𝜌 =
𝑧!𝑧!

𝑟! 𝑁!𝑁!
 

Here, 𝑧!𝑧! is the average product of z-scores from two GWASs; 𝑟! is the average LD across all 
SNP pairs in the study. Under the non-stratified scenario, this estimator can be seen as a two-
trait extension of the heritability estimator proposed in [15]. 
 
3) Two GWASs with substantial sample overlap 
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If the two GWASs have substantial sample overlap, some approximations we have applied in 
previous sections would fail (Supplementary Notes). The problem gets down to solving the 
following equations. 

1
𝑚!𝑁

(𝑧!)!!(𝑧!)! −
1
𝑁! 𝑦! ! 𝑦! !

!

!!!
⋮

1
𝑚!𝑁

(𝑧!)!! (𝑧!)! −
1
𝑁! 𝑦! ! 𝑦! !

!

!!!

=

1
𝑚!𝑚!

𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!
⋮ ⋱ ⋮

1
𝑚!𝑚!

𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

⋯
1

𝑚!𝑚!
𝑟!(!)!!(!)
!

!!

!!!!

!!

!!!

𝜌!
⋮
𝜌!

 

Therefore, 

𝜌 = 𝑀!!

1
𝑚!𝑁

(𝑧!)!!(𝑧!)! −
1
𝑁
𝜌!!!"#

⋮
1

𝑚!𝑁
(𝑧!)!! (𝑧!)! −

1
𝑁
𝜌!!!"#

= 𝑀!!(𝑣 −
𝜌!!!"#
𝑁

𝟏) 

where the phenotypic correlation 𝜌!!!"# can be either acquired from the literature or estimated 
using LDSC (Supplementary Notes). 
 
 
Remarks on overlapping functional annotations 
When functional annotations overlap, the covariance parameter 𝜌 is not the real quantity of 
interest. Instead, the total covariance in each annotation category is more biologically 
meaningful and can be estimated using the weighted estimator  

𝜌! = 𝑊𝜌 
where 𝑊 is a 𝐾×𝐾 matrix with element 

𝑊!" =
𝑚!∩!
𝑚!

  ,      1 ≤ 𝑖, 𝑗 ≤ 𝐾 

Here, 𝑚!∩! denotes the number of SNPs in region 𝑆! ∩ 𝑆!. 
 
 
Theoretical properties  
Matrices 𝐴!   defined in previous sections have two key properties.  
1) Vector 𝑣 = (𝑦!!𝐴!𝑦!,… , 𝑦!!𝐴!𝑦!)!/𝑁!𝑁! can be calculated using GWAS summary statistics. 
2) Terms 𝑡𝑟 𝐴!𝑍!𝑋!!  only depend on LD and can be estimated using a reference panel.  
 
In this section, we show that under reasonable conditions, estimators based on arbitrary  𝐴 are 
unbiased but 𝜌 = 𝑀!!𝑣 based on matrices 𝐴!  “almost” has the minimum variance. Here we 
state all the propositions. See Supplementary Notes for detailed proofs. To prove the 
theoretical properties, we need an additional assumption on the distribution of 𝑦! and 𝑦!. We 
assume 𝑦! and 𝑦! follow a multivariate normal distribution: 

𝑦!
𝑦! ~𝑀𝑉𝑁(0,

𝐻! Θ
Θ! 𝐻!

) 

We begin with calculating the variance of the quadratic form-like quantity 𝑦!!𝐴𝑦!.  
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Proposition 1. Let 𝐴 be an 𝑁!×𝑁! matrix.  Then 𝑉𝑎𝑟(𝑦!!𝐴𝑦!) = 𝑡𝑟(𝐴!𝐻!𝐴𝐻!) + 𝑡𝑟(𝐴!Θ𝐴!Θ). 
 
It can be shown that the second part, i.e. 𝑡𝑟 𝐴!Θ𝐴!Θ , is very small compared to the first term 
𝑡𝑟 𝐴!𝐻!𝐴𝐻!  in real GWAS data (Supplementary Notes).  

𝑡𝑟 𝐴!𝐻!𝐴𝐻! ≫ 𝑡𝑟 𝐴!Θ𝐴!Θ  
With this in mind, the following claim is approximately true. 

𝑉𝑎𝑟 𝑦!!𝐴𝑦! ≈ 𝑡𝑟 𝐴!𝐻!𝐴𝐻!  
Next, we define a matrix 𝐴∗, and show that 𝐴∗ minimizes 𝑡𝑟 𝐴!𝐻!𝐴𝐻!  under some conditions. 
Based on the argument above, 𝐴∗ “almost” minimizes 𝑉𝑎𝑟 𝑦!!𝐴𝑦!  too. 
 
Proposition 2. Assume two GWASs do not share samples. We define the following quantities. 
i) Let 𝑝 = (𝑝!,…   𝑝!)! be an arbitrarily given K-dimensional vector;  
ii) Let 𝑆  be a 𝐾×𝐾  symmetric matrix with element 𝑆!!! = 𝑡𝑟(𝐻!!!𝑋!!𝑍!!

!𝐻!!!𝑍!𝑋!!)/𝑚!𝑚!!  for 
1 ≤ 𝑙, 𝑙! ≤ 𝐾;  
iii) Let 𝜆 = (𝜆!,…   𝜆!)! be a vector such that 𝑆𝜆 = 𝑝; 

iv) Define 𝐴∗ =
!!
!!
𝐻!!!𝑋!𝑍!!𝐻!!!!

!!! . 

Then, we have: 
1) 𝔼 𝑦!!𝐴∗𝑦! = 𝑝!𝜌!!

!!! ; 
2) Let 𝐴 be a matrix such that 𝔼 𝑦!!𝐴𝑦! = 𝑝!𝜌!!

!!! . Then, 𝑡𝑟 𝐴!𝐻!𝐴𝐻! ≥ 𝑡𝑟 𝐴∗!𝐻!𝐴∗𝐻! . 
 
Proposition 2 tells us that given arbitrary 𝑝 = (𝑝!,…   𝑝!)!, if ∃  𝜆 = (𝜆!,…   𝜆!)! such that 𝑆𝜆 = 𝑝, 
then 𝑦!!𝐴∗𝑦! is an unbiased estimator for 𝑝!𝜌!!

!!! . Furthermore, among all unbiased estimators 
with the form 𝑦!!𝐴𝑦! , 𝑦!!𝐴∗𝑦!  has the minimum value of 𝑡𝑟(𝐴∗!𝐻!𝐴∗𝐻!) , hence “almost” the 
minimum variance 𝑉𝑎𝑟(𝑦!!𝐴∗𝑦!). Interestingly, by carefully choosing 𝑝  and 𝜆 , we can let 𝐴∗ 
equal the 𝐴 matrix we have been using throughout the paper. Therefore, we have the following 
corollary. 
 
Corollary 1. We assume:  
i) Two GWASs do not overlap;  
ii) The samples in each study are completely independent; 
iii) True LD in both studies (i.e. 𝑍!𝑍 and 𝑋!𝑋) is known.  
Consider all matrices 𝐴 that suffice  

𝑡𝑟 𝐴𝑍𝑋! =
𝑡𝑟 𝑍!𝑍𝑋!𝑋

𝑚
 

We define  
𝜌! = 𝑚(𝑦!!𝐴𝑦!)/𝑡𝑟 𝐴𝑍𝑋!  

Then, 𝜌! with 𝐴 = (𝑋𝑍!)/𝑚 has the lowest variance. 
 
Similarly, we could extend these results to annotation-stratified scenarios (Supplementary 
Notes). These results show that although we initially defined 𝐴! for the purpose of simplifying 
calculation, the derived covariance estimator actually enjoys some good theoretical properties. 
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Variance estimation using block-wise jackknife 
Estimating 𝐻! and 𝐻! would require additional assumptions on each trait’s heritability structure. 
Even if we could accurately estimate 𝐻!  and 𝐻! , 𝑡𝑟(𝐴!!𝐻!𝐴!𝐻!)  cannot be calculated using 
GWAS summary statistics. Therefore, following [7], we apply a block-wise jackknife approach to 
estimate the variance. We divide the genome into 𝑏 (e.g. 𝑏 = 200) blocks 𝐵!,… ,𝐵!. Let 

𝑣!
(!) =

𝑧! !
!(𝑧!)! − 𝑧! !!∩!!

! (𝑧!)!!∩!!
(𝑚! −𝑚!!∩!!) 𝑁!𝑁!

  ,          1 ≤ 𝑖 ≤ 𝐾    𝑎𝑛𝑑    1 ≤ 𝑡 ≤ 𝑏 

Here, subscript 𝑆! ∩ 𝐵! indicates the subset of SNPs in both functional annotation 𝑆! and block 
𝐵!. Then, 𝐶𝑜𝑣(𝑣) is estimated as: 

(𝐶𝑜𝑣 𝑣 )!" =
𝑏 − 1
𝑏

(𝑣!
! −

1
𝑏

𝑣!
!

!

!!!

)(𝑣!
! −

1
𝑏

𝑣!
!

!

!!!

)
!

!!!

 

Therefore, we get 
𝐶𝑜𝑣 𝜌 = 𝑀!!𝐶𝑜𝑣 𝑣 𝑀!! 

If annotations overlap, 
𝐶𝑜𝑣 𝜌! = 𝑊𝑀!!𝐶𝑜𝑣 𝑣 𝑀!!𝑊! 

Finally, the test statistic for each covariance parameter is 

𝑧 − 𝑠𝑐𝑜𝑟𝑒! =
𝜌!

(𝐶𝑜𝑣 𝜌 )!!
,      1 ≤ 𝑖 ≤ 𝐾 

When annotations overlap, 

𝑧 − 𝑠𝑐𝑜𝑟𝑒!! =
𝜌!!

(𝐶𝑜𝑣 𝜌! )!!
,      1 ≤ 𝑖 ≤ 𝐾 

 
 
Genetic correlation 
We provide genetic correlation estimates for non-stratified analysis. 

𝑐𝑜𝑟 =
𝜌

ℎ!!ℎ!!
 

We use the estimator proposed in [15] to estimate heritability for each trait. 

ℎ!! =
1
𝑚 𝑧! !(𝑧!) − 1
𝑁
𝑚! 𝑟!!!

!!
!!!!

!
!!!

  ,      𝑡 = 1,2 

When functional annotations are present, the true heritability in each annotation category may 
be small. Although methods for estimating annotation-stratified heritability have been proposed 
[11, 12], they may provide unstable, sometimes even negative heritability estimates, especially 
when a number of annotation categories are related to the repressed genome. Therefore, we 
only focus on genetic covariance when performing annotation-stratified analysis. 
 
 
Simulation settings 
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We simulated quantitative traits using real genotype data from the WTCCC1 cohort. We 
removed individuals with genetic relatedness coefficient greater than 0.05 and filtered SNPs 
with missing rate above 1% and/or MAF lower than 5% in samples with European ancestry from 
the 1000 Genomes Project [61]. In addition, we removed all the strand-ambiguous SNPs. After 
quality control, 15,918 samples and 254,221 SNPs remained in the dataset. Each simulation 
setting was repeated 100 times. 
 
Setting 1. We equally divided 15,918 samples into two sub-cohorts. We simulated two traits 
using genetic effects sampled from an infinitesimal model. 

𝛽
𝛾 ~𝑀𝑉𝑁(0,

1
7959

ℎ!!𝐼 𝜌𝐼
𝜌𝐼 ℎ!!𝐼

) 

Heritability for both traits was set as 0.5. We set the genetic covariance to be 0, 0.05, 0.1, 0.15, 
0.2, and 0.25. 
 
Setting 2. Instead of fixing the heritability, we only assumed the heritability for both traits to be 
equal. Genetic correlation was fixed as 0.2. We set the genetic covariance to be 0.05, 0.1, 0.15, 
and 0.2, and chose heritability value accordingly. 
 
Setting 3. We simulated two traits on the same sub-cohort of 7,959 samples. Heritability was 
fixed as 0.5 for both traits. We set the genetic covariance to be 0, 0.05, 0.1, 0.15, 0.2, and 0.25. 
Sample overlap correction was applied to estimate genetic covariance. 
  
Setting 4. We randomly partitioned the genome into two annotation categories of the same size. 
We set the heritability for both traits to be 0.5, and the heritability structure does not depend on 
functional annotations. Genetic covariance in the first annotation was set to be 0, 0.05, 0.1, 0.15, 
and 0.2. Genetic effects for two traits are not correlated in the second annotation category. 
 
Setting 5. We randomly partitioned the genome into three categories of the same size. Define 
annotation-1 to be the union of the first and the second categories, and let annotation-2 be the 
union of the second and the third categories. We set the heritability for both traits to be 0.5, and 
the heritability structure does not depend on functional annotations. Genetic covariance 
parameter for annotation-1 (i.e. 𝜌!) is set to be 0.1. We set 𝜌! to be -0.2, -0.1, 0, and 0.1. The 
genetic covariance in regions where two annotations overlap follows an additive structure. For 
example, when 𝜌! = 0.1 and 𝜌! = −0.2, the total covariance in annotation-1 is 

𝜌! +
𝜌!
2
= 0 

Similarly, the total covariance in annotation-2 is 
𝜌!
2
+ 𝜌! = −0.15 

 
 
GWAS data analysis 
Details of 50 GWASs and the URLs for summary statistics files are summarized in 
Supplementary Table 1. For each summary statistics dataset, we applied the same quality 
control steps described in [7] using the munge_sumstats.py script available at 
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https://github.com/bulik/ldsc/. In addition, we removed all the strand-ambiguous SNPs from each 
dataset. For each pair of complex traits, we took the overlapped SNPs between two summary 
statistics files, matched the effect alleles, and removed SNPs with MAF below 5% in the 1000 
Genomes Project phase-III samples with European ancestry. SNPs on sex chromosomes were 
also removed from the analysis. We then applied the GNOVA framework to the remaining SNPs 
to estimate genetic covariance. Sample overlap correction was applied when two GWASs have 
a large sample overlap (Supplementary Figure 8). When calculating genetic correlation 
between ALS and other traits, we used previously reported 0.085 as the heritability of ALS due 
to negative heritability estimates [37]. 
 
 
Annotation data 
GenoCanyon and GenoSkyline functional annotations, as previously reported [13, 17, 35], 
integrate various types of transcriptomic and epigenomic data from ENCODE [39] and 
Roadmap Epigenomics Project [40] to predict functional DNA regions in the human genome. 
GenoCanyon utilizes an unsupervised learning framework to identify non-tissue-specific 
functional regions. GenoSkyline and GenoSkyline-Plus further extended this framework to 
identify tissue and cell type-specific functionality in the human genome. We applied 
GenoSkyline-Plus annotations for seven broadly defined tissue categories (i.e. brain, 
cardiovascular, epithelium, gastrointestinal, immune, muscle and other) to stratify genetic 
covariance by tissue type. When integrating these annotations in GNOVA, we also included the 
whole genome as an annotation category to guarantee that the union of all annotations covers 
the genome. The MAF quartiles were calculated using the genotype data of phase-III samples 
with European ancestry from the 1000 Genomes Project after filtering SNPs with MAF below 
5%. 
 
 
LD score regression implementation 
We implemented cross-trait LD score regression using the LDSC software package available at 
https://github.com/bulik/ldsc/. For the purpose of fair comparison, we ran LD score regression 
on all SNPs in the dataset in the simulation studies. When analyzing real GWAS data, we 
followed the protocol suggested in [7]. LD scores were estimated using phase-I samples with 
European ancestry in the 1000 Genomes Project. LD score regression was applied to 
HAPMAP3 SNPs. 
 
 
Software availability 
Implemented GNOVA software is available at https://github.com/xtonyjiang/GNOVA 
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