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Abstract.—The Phylogenetic Ornstein-Uhlenbeck Mixed Model (POUMM) allows to11

estimate the phylogenetic heritability of continuous traits, to test hypotheses of neutral12

evolution versus stabilizing selection, to quantify the strength of stabilizing selection, to13

estimate measurement error and to make predictions about the evolution of a phenotype14

and phenotypic variation in a population. Despite this variety of applications, currently,15

there are no R-packages supporting POUMM inference on large non-ultrametric16

phylogenetic trees. Large phylogenies of that kind are becoming increasingly available,17

predominantly in epidemiology, where transmission trees are inferred from pathogen18

sequences during epidemic outbreaks, but also in some macroevolutionary studies19
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incorporating fossil and contemporary data. In this article, we propose the R-package20

POUMM, providing Bayesian inference of the model parameters on large phylogenetic21

trees. We describe a novel breadth-first pruning algorithm for fast likelihood calculation,22

enabling highly parallelizable likelihood calculation on multi-core systems and GPUs. We23

report simulation-based results proving the technical correctness and performance of the24

software.25

Keywords: PMM, Brownian motion, Ornstein-Uhlenbeck, measurement error, Bayesian26

inference27

The past decades have seen active developement of phylogenetic models of28

continuous trait evolution, progressing from null neutral models, such as single-trait29

Brownian motion (BM), to complex multi-trait models incorporating selection, interaction30

between trait-values and diversification, and co-evolution of multiple traits (O’Meara 2012;31

Manceau, Lambert, and Morlon 2016). Fitting these models to data has become possible32

thanks to a growing collection of software packages, many of which written in the R33

language of statistical computing (R Core Team 2013) and freely available on the34

Comprehensive R Archive Network (CRAN) (O’Meara 2016).35

The phylogenetic heritability, introduced with the phylogenetic mixed model36

(PMM) (Housworth, Martins, and Lynch 2004), measures the proportion of phenotypic37

variance in a population attributable to heritable factors, such as genes, as opposed to38

non-heritable factors, such as environment and measurement error. Although the concept39

of phylogenetic heritability has been applied mostly in the context of the original PMM,40
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i.e. under the assumption of Brownian motion, the same concept applies to any41

evolutionary model allowing for the estimation of measurement error (ME) (Hansen and42

Bartoszek 2012). In its simplest form this means adding a white noise error term to the43

modeled trait-value. Therefore, it comes as a surprise that most recently published44

R-packages for phylogenetic analysis on large trees have very limited support for estimating45

ME and, thus, phylogenetic heritability. To give a few examples, the package Rphylopars46

(Goolsby, Bruggeman, and Ané 2016) allows for the estimation of intraspecies standard47

error only when the tips in the phylogeny are grouped with several tips per species;48

diversitree (FitzJohn 2012) only allows for the specification of a parameter states.sd49

through a call to make.bm or another function, but does not fit this parameter; geiger50

(Pennell et al. 2014) allows for fitting a standard error (SE), but similarly to diversitree51

and Rphylopars, does not support likelihood calculation on non-ultrametric trees; GLSME52

(Hansen and Bartoszek 2012) and RPANDA (Manceau, Lambert, and Morlon 2016) have a53

rich ME-support for both, ultrametric and non-ultrametric trees, but do not provide fast54

likelihood calculation on large trees.55

Here, we introduce the R-package POUMM providing Bayesian inference of56

phylogenetic heritability for traits evolving under stabilizing selection. Formally, this is an57

extension of the PMM, replacing the Brownian motion process by an Ornstein-Uhlenbeck58

process with a single global optimum (Ornstein and Zernike 1919; Uhlenbeck and Ornstein59

1930). The package implements a highly parallelizable breadth-first pruning algorithm for60

fast likelihood calculation on large ultrametric and non-ultrametric trees including61

polytomies. The same algorithm can be extended to multi-trait scenarios with different62

model-regimes assigned to different phylogenetic lineages. We present the model, the63

algorithm and simulation based results for validation of the technical correctness and64

performance of the software.65

Through the rest of the article we will rely on the following setup. Given is a rooted66
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phylogenetic tree T with N tips indexed by 1, ..., N and a root node, 0 (Fig. 1). Without67

restrictions on the tree topology, non-ultrametric trees (i.e. tips have different time-distance68

from the root) and polytomies (i.e. nodes with any finite number of descendants) are69

accepted. Internal nodes are indexed by the numbers N + 1, .... Associated with the tips is70

a N -vector of observed real trait-values denoted by z. We denote by Ti the subtree rooted71

at node i and by zi the set of values at the tips belonging to Ti. For any internal node j,72

we denote by Desc(j) the set of its direct descendants. Furthermore, for any i ∈ Desc(j),73

we denote by tji the length of the edge connecting j with i and by t0i the sum of74

edge-lengths (time-distance) from the root to i. For two tips i and k, we denote by t0(ik)75

the time-distance from the root to their most recent common ancestor (mrca), and by τik76

the sum of edge-lengths on the path from i to k (also called phylogenetic/patristic distance77

between i and k). We use the simbol t̄ to denote the mean root-tip distance in the tree.78

For converting branch-lengths in time-units into absolute time, by convention, the origin of79

time, 0, is assumed to be at the root, and the time is increasing positively towards the tips.80
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Figure 1: Breadth-first pruning on a tree with N = 10 tips. Each tree from left to right
depicts one pruning iteration; black: non-tip nodes at a current pruning step; red: tip nodes
to be pruned; grey: pruned nodes. Letters ‘a’ and ‘b’ next to branches denote the order in
which the coefficients aji, bji, cji are added to their parent’s aj, bj and cj (algorithm 1).
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The Phylogenetic Ornstein-Uhlenbeck Mixed81

Model82

The phylogenetic Ornstein-Uhlenbeck mixed model (POUMM) decomposes the trait83

value as a sum of a non-heritable component, e, and a genetic component, g, which (i)84

evolves continuously according to an Ornstein-Uhlenbeck (OU) process along branches; (ii)85

gets inherited by the branches descending from each internal node. In biological terms, g is86

a genotypic value (Lynch and Walsh 1998) that evolves according to random drift with87

stabilizing selection towards a global optimum; e is a non-heritable component, which can88

be interpreted in different ways, depending on the application, i.e. a measurement error, an89

environmental contribution, a residual with respect to a model prediction, or the sum of all90

these. The OU-process acting on g is parameterized by an initial genotypic value at the91

root, g0, a global optimum, θ, a selection strength, α>0, and a random drift unit-time92

standard deviation, σ. Denoting by Wt the standard Wiener process (Grimmett and93

Stirzaker 2001), the evolution of the trait-value, z(t), along a given lineage of the tree is94

described by the equations:95

z(t) = g(t) + e (1)

dg(t) = α[θ − g(t)]dt+ σdWt, (2)

The stochastic differential equation 2 defines the OU-process, which represents a random96

walk tending towards the global optimum θ with stronger attraction for bigger difference97

between g(t) and θ (Ornstein and Zernike 1919; Uhlenbeck and Ornstein 1930). The model98

assumptions for e are that they are iid normal with mean 0 and standard deviation σe at99

the tips. Any process along the tree that gives rise to this distribution at the tips may be100

assumed for e. For example, in the case of epidemics, a newly infected individual is101
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assigned a new e-value which represents the contribution from its immune system and this102

value can change or remain constant throughout the course of infection. In the case of103

macroevolution, e may represent the ecological (non-genetic) differences between species.104

In particular, the non-heritable component e does not influence the behavior of the105

OU-process g(t). Thus, if we were to simulate trait values z on the tips of a phylogenetic106

tree T , we could first simlate the OU-process from the root to the tips to obtain g, and107

then add the white noise e (i.e. an iid draw from a normal distribution) to each simulated g108

value at the tips.109

The POUMM represents an extension of the phylogenetic mixed model (PMM)110

(Lynch 1991; Housworth, Martins, and Lynch 2004), since, in the limit α→ 0, the111

OU-process converges to a Brownian motion (BM) with unit-time standard deviation σ.112

Both, the POUMM and the PMM, define an expected multivariate normal distribution for113

the trait values at the tips. Note that the trait expectation and variance for a tip i depends114

on its time-distance from the root (t0i), and the trait covariance for a pair of tips (ij)115

depends on the time-distance from the root to their mrca (t0(ij)), as well as their patristic116

distance (τij) (table 1).117

We note that the expressions for the expected variance-covariance matrix of the118

POUMM are only defined for strictly positive α. We obtain the limit for PMM by noting119

that limα→0 α/(1− eαt) = −1/t.120

Phylogenetic heritability121

The phylogenetic heritability is defined as the expected proportion of122

phenotypic variance attributable to g at the tips of the tree, σ2(g)/ [σ2(g) + σ2
e ]123

(Housworth, Martins, and Lynch 2004). This definition is a phylogenetic variant of the124

definition of broad-sense heritability, H2, from quantitative genetics (Lynch and Walsh125

1998). However, in the case of a trait evolving along a phylogeny, the expected genotypic126
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Table 1: Population properties at the tips of the phylogeny under POUMM and PMM. µi:
expected value at tip i; Σii: expected variance for tip i; Σij: expected covariance of the
values of tips i and j; H2

t̄ : phylogenetic heritability at mean root-tip distance; H2
∞: phyloge-

netic heritability at long-term equilibrium; H2
e : time-independent (empirical) phylogenetic

heritability.

POUMM PMM (α→ 0)
Θ: <g0, α, θ, σ, σe> <g0, σ, σe>
µi(Θ, T ): e−αt0ig0+(1− e−αt0i) θ g0

Σii(Θ, T ): σ2 (1−e−2αt0i)
2α

+ σ2
e σ2 t0i + σ2

e

Σij(Θ, T ): σ2
e−ατij

(
1−e−2αt0(ij)

)
2α

σ2 t0(ij)

H2
t̄ :

σ2(1−e−2αt̄)
σ2(1−e−2αt̄)+2ασ2

e

t̄σ2/(t̄σ2 + σ2
e)

H2
∞: σ2/(σ2 + 2ασ2

e) 1
H2
e : 1− σ2

e/s
2(z) 1− σ2

e/s
2(z)

variance, σ2(g), and, therefore, the phylogenetic heritability, are functions of time. The127

POUMM package reports the following three types of phylogenetic heritability (see table 1128

for simplified expressions):129

• Expectation at the mean root-tip distance :130

H2
t̄ :=

[
σ2 (1−e−2αt̄)

2α

]
/

[
σ2 (1−e−2αt̄)

2α
+ σ2

e

]
;131

• Expectation at equilibrium of the OU-process: H2
∞ := limt̄→∞H

2
t̄ ;132

• Empirical (time-independent) version of the heritability based on the sample133

phenotypic variance s2(z) : H2
e := 1− σ2

e/s
2(z).134

Algorithm135

For a fixed tree, T , the log-likelihood of the observed data is defined as the function:136

``(Θ) = ln(f(z0|T ,Θ)), (3)

where f denotes a probability density function (pdf) and Θ =< g0, α, θ, σ, σe >.137

7
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The POUMM package uses a breadth-first variant of the pruning algorithm138

(Felsenstein 1973). The log-likelihood is calculated by consecutive integration over the139

unobservable genotypic values, gi, progressing from the tips to the root. Central for the140

pruning likelihood calculation is the following theorem, for which we provide a proof in the141

appendix:142

Theorem 1 (Quadratic polynomial representation of the POUMM log-likelihood). For143

α ≥ 0, a real θ and non-negative σ and σe, the POUMM log-likelihood can be expressed as a144

quadratic polynomial of g0:145

``(Θ) = a0g
2
0 + b0g0 + c0, (4)

where a0 < 0, b0 and c0 are real coefficients. We denote by u(α, t) the function:146

u(α, t) :=


α/(1− eαt), for α > 0

−1/t, for α = 0

(5)

Then, the coefficients in eq. 4 can be expressed with the following recurrence relation:147

1. For j ∈ {1, ..., N} (tips):148

aj = − 1

2σ2
e

; bj =
zj
σ2
e

; cj = −
z2
j

2σ2
e

− ln
√

2πσ2
e (6)

8
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2. For j > N (internal nodes) or j = 0 (root):

aj =
∑

i∈Desc(j)

aiu(α, 2tji)

u(α, 2tji)− α + σ2ai

bj =
∑

i∈Desc(j)

u(α, 2tji) [2θai(e
αtji − 1) + bie

αtji ]

u(α, 2tji)− α + σ2ai

cj =
∑

i∈Desc(j)

{
ci + αtji −

0.25 b2
iσ

2

−α + aiσ2 + u(α, 2tji)
−

0.5 ln

(
−α + aiσ

2 + u(α, 2tji)

u(α, 2tji)

)
+

αθ [aiθ − (bi + aiθ)e
αtji ]

u(α, tji) + (−α + aiσ2) (1 + eαtji)

}
.

(7)

It can be shown that current pruning implementations (FitzJohn 2012; Pennell et149

al. 2014) rely on equivalent formulations of the above theorem. The breadth-first algorithm150

differs from these implementations in the ordering of algebraic operations so that they can151

be performed “at once” for groups of tips or internal nodes rather than consecutively for152

individual nodes in order of depth-first traversal.153

Implementation154

Before model fitting, the user can choose from different POUMM parametrizations155

and prior settings (function specifyPOUMM). Model fitting is done through a combination156

of likelihood optimization and adaptive Metropolis sampling (Vihola 2012; Scheidegger157

2012). A set of standard generic functions, such as plot, summary, logLik, coef, etc.,158

provide means to assess the quality of a fit (i.e. MCMC convergence, consistence between159

ML and MCMC fits) as well as various inferred properties, such as high posterior density160

(HPD) intervals.161

We implemented the breadth-first pruning algorithm in R and in C++ using the162

library Armadillo (Sanderson and Curtin 2016) through the R-package RcppArmadillo163
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Algorithm 1: Breadth-first pruning

Data: T , z; α, θ, σ, σe
Result: maxg0 ``(g0, α, θ, σ, σe; z, T )
initialization:
for tips i ∈ {1, ..., N}, set ai, bi, ci (eq. 6);
for nodes j > N or j = 0, set aj, bj, cj to 0;
set {< ji >} to the set of edges < ji > in T , where i ∈ {1, ..., N};
while {< ji >} 6= φ do

for < ji >∈ {ji} do
// vectorized operations
set a<ji>, b<ji>, c<ji> to the sub-summands in eq. 7 ;
add a<ji>, b<ji>, c<ji> to aj, bj, cj (see branch labels on Fig. 1);

end
pruning: set T to the tree obtained upon removal of i ∈ {< ji >};
set {i} to to the subset of parent nodes in {< ji >}, which have become tips after
the pruning (Fig. 1);

set {< ji >} to the edges leading to {i};
end
set g0 := − 0.5 b0/a0;
set ``(Θ) := a0g

2
0 + b0g0 + c0.

(Eddelbuettel and Sanderson 2014). While slightly slower, the R implementation can164

switch transparently between double and Rmpfr floating point precision (Maechler 2014),165

thus, guaranteeing numerical stability in cases of extreme parameter values, trait values or166

branch lengths.167

In addition the POUMM package uses the following third-party R-packages: ape168

v3.4 (Paradis, Claude, and Strimmer 2004), data.table v1.9.6 (Dowle et al. 2014) and coda169

v0.18-1 (Plummer et al. 2006), foreach v1.4.3 (Analytics and Weston 2015), ggplot2 v2.1.0170

(Wickham 2009) and gsl v1.9-10.3 (Hankin 2006).171

Simulations172

To validate the correctness of the Bayesian POUMM implmentation, we used the173

method of posterior quantiles (Cook, Gelman, and Rubin 2006). In this method, the idea is174
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to generate samples from the posterior quantile distributions of selected model parameters175

(or functions thereof) by means of numerous “replications” of simulation followed by176

Bayesian parameter inference. In each replication, “true” values of the model parameters177

are drawn from a fixed prior distribution and trait-data is simulated under the model178

specified by these parameter values. Then, the posterior quantiles of the “true” parameter179

values (or functions thereof) are calculated from the corresponding posterior samples180

generated by the to-be-tested software. By running in parallel multiple independent181

replications on a fixed prior, it is possible to generate large samples from the posterior182

quantile distributions of the individual model parameters, as well as any derived quantities.183

Assuming correctness of the simulations, any statistically significant deviation from184

uniformity of these posterior quantile samples indicates an error in the to-be-tested185

software (Cook, Gelman, and Rubin 2006).186

In order to test the robustness of the POUMM against model mis-specifications, we187

extended the above approach by running POUMM inference on data simulated under pure188

PMM (α = 0), and PMM inference on data simulated under POUMM (α ≥ 0).189

Simulations scenarios of 2000 replications were run on an ultrametric and non-ultrametric190

tree (N = 4000), using the parametrization Θ =< α, θ, H2
t̄ , σe, g0 > and the prior191

Θ ∼ Exp(0.1)× U(2, 8)× U(0, 1)× Exp(1)×N (5, 25) (Supplementary Text).192

Without exception, both, the PMM and POUMM implementation, generate193

uniformly distributed posterior quantiles for all trees and all relevant parameters when the194

Bayesian inference has been done on data simulated under the correct simulation mode, i.e.195

“Simulate BM” for PMM and “Simulate OU” for POUMM. This is confirmed visually by196

observing the corresponding histograms on Fig. 2, as well as statistically, by a197

non-significant p-value from a Kolmogorov-Smirnov uniformity test at the 0.01 level. This198

observation validates the technical correctness of the software.199

When fitting the PMM to simulations of stabilizing selection (OU), there is a highly200
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Figure 2: Posterior quantiles from simulation scenarios on a non-ultrametric tree (N = 4000).
Values tending to 1 indicate that the true value dominates the inferred posterior sample for
most of the replications. This means that the model fit tends to underestimate the true
parameter. The number n at the top of each histogram denotes the number of replications out
of 2000 which reached acceptable MCMC convergence and mixing at the by the one milionth
iteration. An asterisk indicates significant uniformity violation (Kolmogorov-Smirnov P-
value < 0.01).
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significant deviation from uniformity of the posterior quantiles for the parameters H2
t̄ , g0,201

and σe and H2
e . The fact that most posterior quantiles for H2

t̄ and H2
e are at the extremes202

of the histogram is indicative for a systematic negative or positive bias in the inferred203

parameters. These results indicate that the PMM can be a very unstable erronous204

estimator of phylogenetic heritability when the data violates the Brownian motion205

assumption.206

Discussion207

A main advantage of a breadth-first approach with respect to to depth-first pruning208

implementations (e.g. diversitree (FitzJohn 2012) and geiger (Pennell et al. 2014)) is that209

most of the algebraic calculations are done on vectors instead of single numbers.210

Contemporary computer architectures and languages such as Matlab and R are optimized211

for vector operations. Therefore, an implementation of breadth-first pruning written in R is212

nearly as fast as an analogous (breadth-first-) or a depth-first implementation written in213

C++ (Supplementary Materials). Moreover, on multi-core systems, a breadth-first214

implementation can be easily parallelized by linking to OpenMP- or GPU-accelerated215

libraries.216

The OU process has been applied as a model for stabilizing selection in217

macro-evolutionary studies (LANDE 1976; Felsenstein 1988; Hansen 1997; Harmon et al.218

2010). Most of theses studies and the accompanying software packages assume that the219

whole trait evolves according to an OU process, usually disregarding the presence of a220

biologically relevant non-heritable component or of a measurement error with a-priori221

known variance (FitzJohn 2012). When modelling species trait evolution, a non-heritable222

ecological contribution may be well justified and may in fact be important to understand223

the full evolutionary process. When modeling pathogen evolution, the branching points in224
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the tree represent transmission events, and the environmental contribution is the225

contribution of the host immune system. Thus, for pathogens, it is crucial to incorporate e226

in the model in order to quantify the importance of host- versus pathogen factors in trait227

formation (Alizon et al. 2010; Shirreff et al. 2013).228

The idea to infer phylogenetic heritability assuming that g follows an OU process229

along the phylogeny has so far been discouraged mainly for interpretational and practical230

reasons: (i) in biology, individuals get selected based on their whole trait-values z, rather231

than the genotypic component g (unless e is simply measurment noise); (ii) small232

ultrametric macro-evolutionary trees do not contain sufficient signal for a simultaneous233

inference of the OU-and environmental variance (Housworth, Martins, and Lynch 2004).234

We argue that modeling an OU process on z rather than g comes at the cost of additional235

parameters and reduced statistical power, because it necessitates to account for jumps in z236

at the branching points as well as the unobserved speciation/transmission events along the237

tree. Conversely, assuming that the OU process acts directly on g rather than z is238

mathematically more convenient, because it allows the inference of a single continuous239

OU-process along the tree, while adding e only at the tips of the tree.240

Finally, our simulations suggest that the POUMM could make a suitable estimator241

of phylogenetic heritability when the trait is subject to stabilizing selection, but also, tends242

to be more robust than PMM towards model mis-specification (Fig. 2). Thus, the243

POUMM R-package should provide a useful tool for furture phylogenetic analysis in244

epidemiology and macro-evolution.245

Supplementary Material246

The proof of theorem 1 and further details on the simulation setup can be found in247

an online appendix. A performance benchmark for the breadth-first pruning algorithm is248
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provided in the supplementary file CompareOUPackages.html. The user manual for the249

POUMM package is provided in the package vingnette.250

Funding251
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