
Version dated: May 30, 20171

BioRxiv/New Results2

Fast and Robust Inference of Phylogenetic3

Ornstein-Uhlenbeck Models Using Parallel Likelihood4

Calculation5

Venelin Mitov1,2, Tanja Stadler1,2
6

1Swiss Federal Institute of Technology in Zurich, Switzerland;7

2Swiss Institute of Bioinformatics, Switzerland8

Corresponding authors: Venelin Mitov, Department of Biosystem Sciences and9

Engineering, Swiss Federal Institute of Technology, Mattenstrasse 26, CH-4058 Basel,10

Switzerland; E-mail: vmitov@gmail.com.11

Tanja Stadler, Department of Biosystem Sciences and Engineering, Swiss Federal12

Institute of Technology, Mattenstrasse 26, CH-4058 Basel, Switzerland; E-mail:13

tanja.stadler@bsse.ethz.ch.14

Abstract15

Phylogenetic comparative methods have been used to model trait evolution, to test16

selection versus neutral hypotheses, to estimate optimal trait-values, and to quantify the17

rate of adaptation towards these optima. Several authors have proposed algorithms18

calculating the likelihood for trait evolution models, such as the Ornstein-Uhlenbeck (OU)19
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process, in time proportional to the number of tips in the tree. Combined with20

gradient-based optimization, these algorithms enable maximum likelihood (ML) inference21

within seconds, even for trees exceeding 10,000 tips. Despite its useful statistical22

properties, ML has been criticised for being a point estimator prone to getting stuck in23

local optima. As an elegant alternative, Bayesian inference explores the entire information24

in the data and compares it to prior knowledge but, usually, runs in much longer time,25

even for small trees. Here, we propose an approach to use the full potential of ML and26

Bayesian inference, while keeping the runtime within minutes. Our approach combines (i) a27

new algorithm for parallel likelihood calculation; (ii) a previously published method for28

adaptive Metropolis sampling. In principle, the strategy of (i) and (ii) can be applied to29

any likelihood calculation on a tree which proceeds in a pruning-like fashion leading to30

enormous speed improvements. As a showcase, we implement the phylogenetic31

Ornstein-Uhlenbeck mixed model (POUMM) in the form of an easy-to-use and highly32

configurable R-package. In addition to the above-mentioned usage of comparative methods,33

the POUMM allows to estimate non-heritable variance and phylogenetic heritability. Using34

simulations and empirical data from 487 mammal species, we show that the POUMM is far35

more reliable in terms of unbiased estimates and false positive rate for stabilizing selection,36

compared to its alternative - the non-mixed Ornstein-Uhlenbeck model, which assumes a37

fully heritable and perfectly measurable trait. Further, our analysis reveals that the38

phylogenetic mixed model (PMM), which assumes neutral evolution (Brownian motion)39

can be a very unstable estimator of phylogenetic heritability, even if the Brownian motion40

assumption is only weakly violated. Our results prove the need for a simultaneous account41

for selection and non-heritable variance in phylogenetic evolutionary models and challenge42

stabilizing selection hypotheses stated in numerous macro-evolutionary studies.43

Keywords: Phylogenetic mixed model, phylogenetic heritability, Brownian motion,44

measurement error, continuous trait, stabilizing selection, rate of adaptation,45

environmental contribution, Open MP, Single instruction multiple data, parallel pruning46

Introduction47

The past decades have seen active developement of phylogenetic comparative48

models of trait evolution, progressing from null neutral models, such as single-trait49
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Brownian motion (BM), to complex multi-trait models incorporating selection, interaction50

between trait values and diversification, and co-evolution of multiple traits (O’Meara 2012;51

Manceau, Lambert, and Morlon 2016). Recent works have shown that, for a broad family52

of phylogenetic comparative models, the likelihood of an observed tree and data53

conditioned on the model parameters can be computed in time proportional to the size of54

the tree (FitzJohn 2012; Ho and Ané 2014; Goolsby, Bruggeman, and Ané 2016; Manceau,55

Lambert, and Morlon 2016). This family includes Gaussian models like Brownian motion56

and Ornstein-Uhlenbeck phylogenetic models as well as some non-Gaussian models like57

phylogenetic logistic regression (Emmanuel Paradis and Claude 2002; Ives and Garland58

2009; Ho and Ané 2014). All of these likelihood calculation techniques rely on post-order59

tree traversal or ‘pruning’ as coined by (Felsenstein 1973). Using pruning algorithms for60

likelihood calculation in combination with a gradient-based optimization method (Boyd61

and Vandenberghe 2004), maximum likelihood model inference runs within seconds on62

contemporary computers, even for phylogenies containing many thousands of tips (Ho and63

Ané 2014). Other important features of the maximum likelihood estimate (MLE) are its64

simple interpretation as the point in parameter space maximizing the probability of the65

observed data under the assumed model, and its theoretical properties making it ideal for66

hypothesis testing and for model selection via likelihood ratio tests and information67

criteria. However, a major disadvantage of MLE is that, being a point estimate, it does not68

allow to explore the likelihood surface. Further, gradient based optimization, while fast, is69

prone to getting stuck in local optima.70

As an elegant alternative, Bayesian approaches such as Markov Chain Monte Carlo71

(MCMC) provide posterior samples and high posterior density (HPD) intervals for the72

model parameters but require many orders of magnitude more likelihood evaluations. This73

represents a bottleneck in Bayesian analysis, in particular, when faced with large74

phylogenies of many thousands of tips, such as transmission trees from large-scale75
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epidemiological studies, e.g. Hodcroft et al. (2014). While big data provides sufficient76

statistical power to fit a complex model, the time needed to perform a full scale Bayesian77

inference often limits the choice to a faster but less informative ML-inference, or a78

Bayesian inference on a simplified model. Another issue with Bayesian methods is that79

they require some level of expertise for specifying an apropriate prior, assessing the80

convergence of the MCMC and interpreting the results.81

In this article, we propose a general approach allowing to use ML and Bayesian82

inference to their full potential, even for complex phylogenetic comparative models and for83

very large trees exceeding millions of tips, where the limiting factor becomes the available84

memory and not the calculation time. To achieve this goal, our approach combines two85

ideas: (i) the pruning algorithm for likelihood calculation can be accelerated by orders of86

magnitude through parallelization on modern multi-core processors and graphics adapters;87

(ii) the number of iterations needed for MCMC convergence can be reduced by the use of88

adaptive Metropolis sampling (Vihola 2012; Scheidegger 2012). Our parallel algorithm89

relies on a previously unexplored representation of the likelihood function as a quadratic90

polynomial of the trait value at the root. A nice property of the algorithm is that its91

parallel efficiency converges to 1 as the number of tips in the tree goes to infinity. Thus, for92

large trees, the parallel speed-up is practically limited by the number of available93

processing cores.94

Numerous studies have discussed the Ornstein-Uhlenbeck (OU) process (Ornstein95

and Zernike 1919; Uhlenbeck and Ornstein 1930) as a model for trait adaptation under96

stabilizing selection, see e.g. Hansen (1997), Beaulieu et al. (2012), L. J. Harmon et al.97

(2010), Manceau, Lambert, and Morlon (2016) and references therein. However, in a98

cautionary note, Cooper et al. (2015) questionned the application of OU as a validation99

model for stabilizing selection and showed through simulations that OU-inferences are100

prone to overestimating the strength of selection if they do not account for measurement101
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error. Connecting to these studies and providing a showcase for our parallel pruning102

algorithm, we implemented the phylogenetic Ornstein-Uhlenbeck mixed model (POUMM).103

Formally, POUMM can be regarded as adding a white noise term to the non-mixed104

phylogenetic OU model (POU), also referred to as single stationary peak (SSP) model (L.105

J. Harmon et al. 2010) and ”Hansen” model with a single selection regime (Hansen 1997;106

Butler and King 2004). This white noise term is interpreted as a non-heritable component,107

i.e. a contribution to the measured trait-value not explainable by the assumed phylogenetic108

model, such as a measurement error, an environmental contribution and a model residual.109

Another way to interpret the POUMM is as an extension of the phylogenetic mixed model110

(PMM) (Lynch 1991; Housworth, Martins, and Lynch 2004), replacing the BM process111

with an OU process. The POUMM combines the applications of the above two models112

and, as we will show, is more reliable in terms of correct estimation of selection strength113

and phylogenetic heritability. However, currently, there are no software tools supporting114

fast Bayesian POUMM inference on large non-ultrametric trees. We provide our115

implementation in the form of a package written in the R language of statistical computing116

(R Core Team 2013). Based on our simulations, the time for a combined MLE and117

MCMC-fit on a tree of 10,000 tips, including two parallel MCMC chains of a million118

iterations is reduced from days to a few minutes. We present the model and its119

applications, the parallel algorithm for likelihood calculation and simulation results120

validating the technical correctness of the software and comparing its performance and121

robustness to alternative models and implementations. The POUMM R-package has122

already been used in several studies quantifying the heritability of continous traits, such as123

the ”set-point virus load” and the ”CD4 cell decline” in large HIV phylogenies with tips124

sampled through time (Mitov and Stadler (2016), Blanquart et al. (2017), Bertels et al.125

(2017), Bachmann et al. (2017)). Here, we additionally apply the method to an ultrametric126

tree and body weight data from 487 extant mammal species, including monophyletic127
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groups of 227 Rodentia, 138 Chiroptera and 122 Soricomorpha species (Bininda-Emonds et128

al. 2007; Raia, Carotenuto, and Meiri 2010; Smith et al. 2003). Strikingly, the analysis of129

this data reveals that the outcome of model selection based on a likelihood ratio (LR) test130

and the Akaike information criterion (AICc) depends on the inclusion of a non-heritable131

component in the model. When comparing models with a non-heritable component (PMM132

vs POUMM), the Brownian-motion based PMM gets selected for the three mammal orders,133

as well as the combined phylogeny. Conversely, if comparing models assuming full134

heritablity, the POU model gets selected over non-mixed phylogenetic Brownian motion135

(PBM). For all trees the PMM model has the best AICc compared to all other models.136

These results challenge previous hypotheses of stabilizing selection that have been137

validated through POU models acting at the class and order levels (e.g. Raia and Meiri138

(2011)). Before us, others have pointed out this issue in simulation studies (Cooper et al.139

2015). But the continuous use of phylogenetic comparative models assuming full140

phylogenetic heritability shows the low awareness for that issue and the need to provide141

strong empirical evidence. We revisit this issue in the Discussion section.142

Materials and Methods143

Through the rest of the article we will rely on the following setup. Given is a rooted144

phylogenetic tree T with N tips indexed by 1, ..., N and a root node, 0 (Fig. 1). Without145

restrictions on the tree topology, non-ultrametric trees (i.e. tips have different time-distance146

from the root) and polytomies (i.e. nodes with any finite number of descendants) are147

accepted. Internal nodes are indexed by the numbers N + 1, .... Associated with the tips is148

a N -vector of observed real trait values denoted by z. We denote by Ti the subtree rooted149

at node i and by zi the set of values at the tips belonging to Ti. For any internal node j,150

we denote by Desc(j) the set of its direct descendants. Furthermore, for any i ∈ Desc(j),151

we denote by tji the length of the edge connecting j with i and by t0i the sum of152
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edge-lengths (time-distance) from the root to i. The mean root-tip distance in the tree is153

denoted by t̄. For two tips i and k, we denote by t0(ik) the time-distance from the root to154

their most recent common ancestor (mrca), and by τik the sum of edge-lengths on the path155

from i to k (also called phylogenetic/patristic distance between i and k).156
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Figure 1: Breadth-first pruning on a tree with N = 9 tips. Each tree from left to right
depicts one pruning iteration; black: non-tip nodes at a current pruning step; red: tip nodes
to be pruned; grey: pruned nodes. Letters ‘a’ and ‘b’ next to branches denote the order in
which the coefficients aji, bji, cji are added to their parent’s aj, bj and cj (algorithm 1).

The Phylogenetic Ornstein-Uhlenbeck Mixed Model157

The phylogenetic Ornstein-Uhlenbeck mixed model (POUMM) decomposes the trait158

value as a sum of a non-heritable component, e, and a genetic component, g, which (i)159

evolves continuously according to an Ornstein-Uhlenbeck (OU) process along branches; (ii)160

gets inherited by the branches descending from each internal node. In biological terms, g is161

a genotypic value (Lynch and Walsh 1998) that evolves according to random drift with162

stabilizing selection towards a global optimum; e is a non-heritable component, which can163

be interpreted in different ways, depending on the application, i.e. a measurement error, an164

environmental contribution, a residual with respect to a model prediction, or the sum of all165
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these. The OU-process acting on g is parameterized by an initial genotypic value at the166

root, g0, a global optimum, θ, a selection strength, α>0, and a random drift unit-time167

standard deviation, σ. Denoting by Wt the standard Wiener process (Grimmett and168

Stirzaker 2001), the evolution of the trait-value, z(t), along a given lineage of the tree is169

described by the equations:170

z(t) = g(t) + e (1)

dg(t) = α[θ − g(t)]dt+ σdWt, (2)

The stochastic differential equation 2 defines the OU-process, which represents a random171

walk tending towards the global optimum θ with stronger attraction for bigger difference172

between g(t) and θ (Ornstein and Zernike 1919; Uhlenbeck and Ornstein 1930). The model173

assumptions for e are that they are iid normal with mean 0 and standard deviation σe at174

the tips. Any process along the tree that gives rise to this distribution at the tips may be175

assumed for e. For example, in the case of epidemics, a newly infected individual is176

assigned a new e-value which represents the contribution from its immune system and this177

value can change or remain constant throughout the course of infection. In the case of178

macro-evolution, e may represent the ecological (non-genetic) differences between species.179

In particular, the non-heritable component e does not influence the behavior of the180

OU-process g(t). Thus, if we were to simulate trait values z on the tips of a phylogenetic181

tree T , we could first simlate the OU-process from the root to the tips to obtain g, and182

then add the white noise e (i.e. an iid draw from a normal distribution) to each simulated g183

value at the tips.184

The POUMM represents an extension of the phylogenetic mixed model (PMM)185

(Lynch 1991; Housworth, Martins, and Lynch 2004), since, in the limit α→ 0, the186
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Table 1: Population properties at the tips of the phylogeny under POUMM and PMM. µi:
expected value at tip i; Σii: expected variance for tip i; Σij: expected covariance of the values
of tips i and j; H2

t̄ : phylogenetic heritability at mean root-tip distance; H2
∞: phylogenetic

heritability at long-term equilibrium; H2
e : time-independent (empirical) phylogenetic heri-

tability. Since the expressions for the expected variance-covariance matrix of the POUMM
are only defined for strictly positive α, the expressions for PMM are obtained noting that
limα→0 α/(1− eαt) = −1/t.

POUMM PMM (α→ 0)

Θ: <g0, α, θ, σ, σe> <g0, σ, σe>

µi(Θ, T ): e−αt0ig0+(1− e−αt0i) θ g0

Σii(Θ, T ): σ2

2α
(1− e−2αt0i) + σ2

e σ2 t0i + σ2
e

Σij(Θ, T ): σ2

2α
e−ατij

(
1− e−2αt0(ij)

)
σ2 t0(ij)

H2
t̄ :

σ2(1−e−2αt̄)
σ2(1−e−2αt̄)+2ασ2

e

t̄σ2/(t̄σ2 + σ2
e)

H2
∞: σ2/(σ2 + 2ασ2

e) 1

H2
e : 1− σ2

e/s
2(z) 1− σ2

e/s
2(z)

OU-process converges to a Brownian motion (BM) with unit-time standard deviation σ.187

Both, the POUMM and the PMM, define an expected multivariate normal distribution for188

the trait values at the tips. The mean vectors and the variance-covariance matrices of these189

distributions are written in table 1. Note that the trait expectation and variance for a tip i190

depends on its time-distance from the root (t0i), and the trait covariance for a pair of tips191

(ij) depends on the time-distance from the root to their mrca (t0(ij)), and, in the case of192

POUMM, on their patristic distance (τij) (table 1).193

A parallel pruning algorithm for fast likekelihood calculation194

For a fixed tree, T , the log-likelihood of the observed data is defined as the function:195

``(Θ) = ln(f(z0|T ,Θ)), (3)

where f denotes a probability density function (pdf) and Θ =< g0, α, θ, σ, σe >. Here, we196
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propose a parallel variant of the pruning algorithm (Felsenstein 1973). The log-likelihood is197

calculated by consecutive integration over the unobservable genotypic values, gi,198

progressing from the tips to the root. Central for the algorithm is the following theorem:199

Theorem 1 (Quadratic polynomial representation of the POUMM log-likelihood). For200

α ≥ 0, a real θ and non-negative σ and σe, the POUMM log-likelihood can be expressed as a201

quadratic polynomial of g0:202

``(Θ) = a0g
2
0 + b0g0 + c0, (4)

where a0 < 0, b0 and c0 are real coefficients. We denote by u(α, t) the function:203

u(α, t) :=


α/(1− eαt), for α > 0

−1/t, for α = 0

(5)

Then, the coefficients in eq. 4 can be expressed with the following recurrence relation:204

1. For j ∈ {1, ..., N} (tips):205

aj = − 1

2σ2
e

; bj =
zj
σ2
e

; cj = −
z2
j

2σ2
e

− ln
√

2πσ2
e (6)

10
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2. For j > N (internal nodes) or j = 0 (root):

aj =
∑

i∈Desc(j)

aiu(α, 2tji)

u(α, 2tji)− α + σ2ai

bj =
∑

i∈Desc(j)

u(α, 2tji) [2θai(e
αtji − 1) + bie

αtji ]

u(α, 2tji)− α + σ2ai

cj =
∑

i∈Desc(j)

{
ci + αtji −

0.25 b2
iσ

2

−α + aiσ2 + u(α, 2tji)
−

0.5 ln

(
−α + aiσ

2 + u(α, 2tji)

u(α, 2tji)

)
+

αθ [aiθ − (bi + aiθ)e
αtji ]

u(α, tji) + (−α + aiσ2) (1 + eαtji)

}
.

(7)

Proof. Induction from the tips to the root of the tree.206

• Basis: For a tip-node i, Ti is the trivial tree consisting of this tip-node only and the207

pdf of zi, conditioned on the unobservable genotypic value gi, is given by the normal208

pdf with mean gi and standard deviation σe. This pdf can be written as:209

f(zi|gi;σe) = N (zi; gi, σe) = e
− 1

2σ2
e
g2
i+

zi
σ2
e
gi−

z2i
2σ2
e
−ln(σe)−0.5 ln(2π)

(8)

By defining ai = − 1
2σ2
e
, bi = zi

σ2
e

and ci = − z2
i

2σ2
e
− log(σe)− 0.5 log(2π) and taking the210

natural logarithm of the pdf we obtain the log-likelihood representation from eq. 4,211

where a0 < 0, b0 and c0 can be calculated from the observed value zi and the model212

parameter σe.213

• Inductive hypothesis: Assume that for an internal node j, the statement of the214

theorem has been proven for all subtrees Ti, i ∈ Desc(j).215

• Inductive step: Substituting gj for g0 and tji for t0i in the POUMM expressions for µi216

and Σii (Table 1), and integrating over gi, we can write the pdf of zi, conditioned on217

gj, tji and Θ:218
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f(zi|Θ, tji, gj) =
∞∫
−∞

f(gi|Θ, tji, gj)× eaig
2
i+bigi+cidgi

=
∞∫
−∞
N
[
gi; e

−αtjigj + (1− e−αtji)θ, (1− e−2αtji)σ
2

2α

]
×

eaig
2
i+bigi+cidgi

=
∞∫
−∞

e(pji+ai)gi
2+(qji+bi)gi+(rji+ci)dgi , where

pji = − αe2αtji

σ2(e2αtji−1)

qji =
2αeαtji [gj+θ(eαtji−1)]

σ2(e2αtji−1)

rji = − α[gj+θ(eαtji−1)]
2

σ2(e2αtji−1)
− 1

2
ln

(
πσ2(1−e−2αtji)

α

)

(9)

We notice that pji, qji and rji in eq. 9 are not defined in the case of BM (α = 0). In

that case, we take the limit for α→ 0 represented by the function u(α, t) in the main

text (eq. 5). By substituting u(α, t) in the expressions for pji, qji and rji (eq. 9) we

obtain:

pji =
e2αtjiu(α, 2tji)

σ2

qji = −u(α, 2 tji)[gj+θ(eαtji−1)]
σ2

rji =
u(α, 2 tji)[gj+θ(eαtji−1)]

2

σ2 − 1
2

ln
(
− πσ2

u(α, 2tji)e
2αtji

)
.

(10)

Since ai < 0 and, for positive t and α ∈ [0,∞), u(α, t) accepts strictly negative219
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values in the interval [−1/t, 0), the integral in eq. 9 has a closed form solution:220



∞∫
−∞

e(pji+ai)g
2
i+(qji+bi)gi+(rji+ci)dgi

= exp

[
−(qji+bi)

2

4(pji+ai)
+ (rji + ci) + ln

(√
π

−(pji+ai)

)]
= eajig

2
j+bjigj+cji , where

aji =
aiu(α,2tji)

u(α,2tji)−α+σ2ai

bji =
u(α,2tji)(e

αtji (2θai+bi)−2θai)

u(α,2tji)−α+σ2ai

cji = ci + αtji − 0.25 b2i σ
2

−α+aiσ2+u(α,2tji)
−

0.5 ln
(
−α+aiσ

2+u(α,2tji)

u(α,2tji)

)
+

αθ[aiθ−(bi+aiθ)e
αtji ]

u(α,tji)+(−α+aiσ2)(1+eαtji)

(11)

In eq. 11 above, aji < 0 because it is a fraction with a positive nominator and a221

negative denominator (note that ai < 0 by the inductive hypothesis and u(α, 2tji) < 0222

by definition). Since the vectors zi, i ∈ Desc(j), are conditionally independent given223

Θ, the conditional pdf of zj factorizes as:224

f(zj|Θ, gj, Tj) =
∏

i∈Desc(j)

f(zi|Θ, tji, gj)

=
∏

i∈Desc(j)

eajig
2
j+bjigj+cji

= exp

 ∑
i∈Desc(j)

aji

 g2
j +

 ∑
i∈Desc(j)

bji

 gj +
∑

i∈Desc(j)

cji

 .
(12)

By denoting aj =
∑

i∈Desc(j) aji, bj =
∑

i∈Desc(j) bji and cj =
∑

i∈Desc(j) cji and225

noticing that aj < 0 as a sum of negative terms, we have proven the inductive step226

and, thus, the theorem.227

228
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It can be shown that current pruning implementations (FitzJohn 2012) rely on229

equivalent formulations of the above theorem. The parallel pruning algorithm differs from230

these implementations in the ordering of algebraic operations so that they can be231

performed in parallel for groups of tips or internal nodes rather than consecutively for232

individual nodes in order of depth-first traversal. This parallelization scheme can also be233

applied to the generalizaed 3-point representation of the likelihood described in Ho and234

Ané (2014), allowing to parallelize the likelihood calculation for some non-Gaussian models235

such as phylogenetic logistic regression and phylogenetic Poisson regression.236

Algorithm 1: Parallel pruning

Data: T , z; g0, α, θ, σ, σe
Result: ``(g0, α, θ, σ, σe; z, T )
initialization:
for tips i ∈ {1, ..., N}, set ai, bi, ci (eq. 6);
for nodes j > N or j = 0, set aj, bj, cj to 0;
set {< ji >} to the set of edges < ji > in T , where i ∈ {1, ..., N};
while {< ji >} 6= φ do

for < ji >∈ {< ji >} do
// Iterations can be executed in parallel
set a<ji>, b<ji>, c<ji> to the sub-summands in eq. 7 ;
add a<ji>, b<ji>, c<ji> to aj, bj, cj (see branch labels on Fig. 1);

end
pruning: set T to the tree obtained upon removal of i ∈ {< ji >};
set {i} to to the subset of parent nodes in {< ji >}, which have become tips after
the pruning (Fig. 1);

set {< ji >} to the edges leading to {i};
end
set ``(Θ) := a0g

2
0 + b0g0 + c0.

Applications of the POUMM model237

From a modeling perspective, the POUMM can be regarded as a combination of two238

of its widely used nested models:239

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 30, 2017. ; https://doi.org/10.1101/115089doi: bioRxiv preprint 

https://doi.org/10.1101/115089


• The non-mixed phylogenetic Ornstein-Uhlenbeck (POU) model, (also referred to as240

the ‘Hansen model’ (Butler and King 2004)), which has been used to infer local241

phenotypic optima in different phylogenetic clades or across discrete categories of242

phylogeneticall related species (Butler and King 2004), and to prove the presence of243

stabilizing selection towards a single stationary peak (SSP) (L. J. Harmon et al.244

2010).245

• The phylogenetic mixed model (PMM) (Lynch 1991; Housworth, Martins, and Lynch246

2004), which has been used to measure phylogenetic heritability (Hodcroft et al.247

2014);248

Thus, the POUMM combines the applications of the above two models and, as we249

will show in Results, it is much more accurate and robust in estimating the corresponding250

parameters. Besides inferring its parameters, the POUMM has several useful properties251

helping the interpretation of the data and allowing to make predictions about the future252

trait evolution of the considered population. The properties which we consider represent253

bijective functions of some of the POUMM parameters. Thus, it is possible to254

reparametrize the POUMM, so that the model inference is done directly on properties of255

interest, e.g. the phylogenetic heritability. This is particularly useful for Bayesian inference,256

since for Bayesian inference priors should be specified for the properties of interest rather257

than the default POUMM parameters. We call a parametrization any numerical bijective258

function mapping its argument into the default POUMM parameter-space259

(< g0, α, θ, σ, σe >).260

Trait distribution at equilibrium.—261

An interesting property of the POUMM is that, in the limit t0,(ij) →∞, it defines a262

stationary normal distribution for the heritable component (g) at the tips with mean θ and263

a variance-covariance matrix:264
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Σii = σ2
∞ = σ2

2α

Σij = Σij,∞ = σ2
∞ e
−ατij

(13)

The above property proves useful when there is a prior knowledge that the observed265

population is at equilibrium, because one can use the trait variance in the population,266

σ2
z = σ2

∞ + σ2
e as model parameter. The corresponding parametrization is:267

< g0, α, θ, σ
2
z , σe >→< g0, α, θ, σ =

√
2α(σ2

z − σ2
e), σe > (14)

With this parametrization, one can specify an informed prior for σ2
z based on268

empirical estimates on similar data.269

Another important aspect of the above property (eq. 13) is that it helps to better270

understand the selection stregnth parameter α. As it turns out, α can have two different271

biological interpretations. Considering the expression for µ in table 1, α defines the rate of272

convergence of the population mean towards the long-term optimum θ. This rate is bigger273

for bigger values of α and for bigger deviations from θ. Thus, α is considered as selection274

strength or rate of adaptation under stabilizing selection. Assuming that the majority of275

the tips and their mrca’s are far enough from the root, Σij can be viewed as an276

exponentially decreasing function of the phylogenetic distance τij (eq. 13). Seen from that277

angle, the parameter α can be interpreted as the rate of phenotypic decorrelation between278

tips, due to genetic drift. When interpreting the results of a model fit, it is important to be279

aware of this dual interpretation of α. In many cases (e.g. in ultrametric280

macro-evolutionary tree), the only source of information for inferring α are the observed281

differences between the tips in the tree. Thus, in the absence of additional evidence, it can282
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be erronous to assume that the inferred value of α informs stabilizing selection and an283

adaptation rate towards θ.284

A likelihood ratio test between the ML POUMM and PMM fits can be used to test285

if the inferred parameter α is significantly above 0. As pointed out in the previous286

paragraph, a significantly positive α does not necessarily imply stabilizing selection287

towards θ. Further, it is important to note that the value of α can only be interpreted with288

respect to the time scale of the phylogeny. It can be more intuitive to consider the289

phylogenetic half-life, t1/2 = ln(2)
α

, which equals the time it takes for a species entering a290

new niche to evolve halfway toward its new expected optimum (Hansen 1997).291

Phylogenetic heritability.—292

The term phylogenetic heritability, introduced with the phylogenetic mixed model293

(PMM) (Housworth, Martins, and Lynch 2004), measures the proportion of phenotypic294

variance in a population attributable to heritable factors, such as genes, as opposed to295

non-heritable factors, such as environment and measurement error. Although this concept296

has been applied mostly in the context of the original PMM, i.e. under the assumption of297

Brownian motion, the same concept applies to any evolutionary model allowing for the298

estimation of measurement error (ME) (Hansen and Bartoszek 2012). The phylogenetic299

heritability is defined as the expected proportion of phenotypic variance attributable to g300

at the tips of the tree, σ2(g)/ [σ2(g) + σ2
e ] (Housworth, Martins, and Lynch 2004). This301

definition is a phylogenetic variant of the definition of broad-sense heritability, H2, from302

quantitative genetics (Lynch and Walsh 1998). However, in the case of a trait evolving303

along a phylogeny, the expected genotypic variance, σ2(g), and, therefore, the phylogenetic304

heritability, are functions of time. Depending on the applicaiton, the following three types305

of phylogenetic heritability might all be of interest:306

• Expectation at the mean root-tip distance (t̄):
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H2
t̄ :=

[
σ2 (1−e−2αt̄)

2α

]
/

[
σ2 (1−e−2αt̄)

2α
+ σ2

e

]
. This definition gives rize to three

parametrizations where H2
t̄ is a free model parameter, while one of the parameters α,

σ or σe is a function of H2
t̄ and the two other parameters. These parametrizations

can be expressed as:

< g0, α, θ,H
2
t̄ , σe >→< g0, α, θ, σ =

√
2αH2

t̄ σ
2
e

(1− e−2αt)(1−H2
t̄ )
, σe > (15)

< g0, H
2
t̄ , θ, σ, σe >→< g0, α =

y +W (ye−y)

2t̄
, θ, σ, σe > (16)

< g0, α, θ, σ,H
2
t̄ >→< g0, α, θ, σ, σe =

√
σ2(1− e−2αt̄)

2α
(

1

H2
t̄

− 1) >, (17)

where y = t̄σ2

σ2
eH

2
t̄

− t̄σ2

σ2
e

and W is the Lambert-W function.307

• Expectation at equilibrium of the OU-process (t→∞): H2
∞ := limt̄→∞H

2
t̄ = σ2

σ2+2ασ2
e
.

By taking the limit t̄→∞ in equations 15, 16 and 17, we obtain the corresponding

parametrizations:

< g0, α, θ,H
2
∞, σe >→< g0, α, θ, σ =

√
2αH2

∞σ
2
e

1−H2
∞
, σe > (18)

< g0, H
2
∞, θ, σ, σe >→< g0, α =

σ2(1−H2
∞)

2H2
∞σ

2
e

, θ, σ, σe > (19)

< g0, α, θ, σ,H
2
∞ >→< g0, α, θ, σ, σe =

√
σ2

2α
(

1

H2
∞
− 1) >, (20)

308

• Empirical (time-independent) version of the heritability based on the sample

phenotypic variance s2(z) : H2
e := 1− σ2

e/s
2(z). This definition is useful when the

tree is non-ultrametric but there is sufficient evidence that the empirical distribution

of the trait is stationary along the tree. In this case, s2(z) coincides with the sum of

18
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the OU variance at equilibrium and σ2
e . The corresponding parametrization is:

< g0, α, θ, σ,H
2
e >→< g0, α, θ, σ, σe =

√
s2(z)(1−H2

e ) > (21)

309

Implementation310

Likelihood calculaiton.—311

We tested four implementations of algorithm 1 as follows:312

• R on 1 core: A serial R-implementation based on operations with numerical vectors313

in R. This implementation can switch transparently between double and Rmpfr314

floating point precision (M. Maechler 2014), thus, guaranteeing numerical stability in315

cases of extreme parameter values, trait values or branch lengths.316

• C++, Armadillo on 1 core: A C++ implementation using the library Armadillo317

(Sanderson and Curtin 2016), through the R-package RcppArmadillo (Eddelbuettel318

and Sanderson 2014);319

• C++, omp-for on X core(s): A serial or parallel C++ implementation where320

vector elementwise operations are written as C++ for loops and the Open MP321

preprocessor directive "#pragma omp for" is used to parallelize the iterations;322

• C++, omp-for-simd on X core(s): A serial or parallel C++ implementation where323

vector elementwise operations are programmed as C++ for loops and the Open MP324

preprocessor directive "#pragma omp for simd" is used to parallelize and vectorize325

the iterations.326

We compiled the above C++ implementations using version 16.0.0 of the Intel327

compiler (command icpc with enabled -O3 -march=corei7-avx -mavx optons) on328
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GNU/Linux OS and performed parallelization benchmarks on up to 10 cores on a processor329

Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz (Results).330

Possible treatments of g0.—331

Recalling that g0 is an unknown parameter, ``(Θ) is maximized over g0 by taking332

g0 = − 0.5 b0/a0, which is the maximum of eq. 4. During the Bayesian inference, a prior for333

the parameter has to be specified and it needs to be sampled like all other parameters. Note334

that, in many cases, e.g. for long ultrametric trees, the likelihood surface can be nearly flat335

for the parameter g0, and maximizing over g0 may result in extremely high or low values.336

In these cases, it is better to admit that the data does not inform this parameter, and to337

exclude it from the free model parameters. This can be done in the following ways:338

• assume that g0 coincides with the long-term optimum θ;339

• assume a fixed value for g0;340

• Integrate the log-likelihood over g0 by assuming that it is sampled from a normal341

distribution such as the OU equilibrium normal distribution with mean θ and342

variance σ2

2α
. We note, that the latter option may be tricky since the OU equilibrium343

distribution is not defined for α = 0.344

Fitting the POUMM model.—345

Fitting of the POUMM model was implemented as a pipeline including the346

following steps, where each step can employ any of the four likelihood implementations347

mentioned above:348

1. Perform three MLE searches using the R-function optim and the L-BFGS-B method349

(Byrd et al. 1995), starting from three different points in parameter space;350

2. Run three MCMC chains as follows: (i) a chain sampling from the prior distribution;351

(ii) a chain sampling from the posterior distribution and started from the MLE found352
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in step 1; (iii) a chain sampling from the posterior distribution and started from a353

random point in parameters space.354

3. If the parameter tuple of highest likelihood sampled in the MCMC has a likelihood355

higher than the MLE found in step 1, repeat the MLE search starting from that356

parameter tuple;357

To reduce the number of iterations for MCMC convergence, we use adaptive358

Metropolis sampling with coerced acceptance rate (Vihola 2012; Scheidegger 2012). By359

using the R-package foreach (Analytics and Weston 2015), our implementation supports360

running the MCMC chains in parallel. By comparing the posterior samples from two361

MCMCs initiated from different starting points, it can be assessed whether the MCMCs362

have converged to the true posterior. We do this quantitatively by the use of the363

Gelman-Rubin convergence diagnostic (Brooks and Gelman 1998) implemented in the364

R-package coda (Plummer et al. 2006). Values of the Gelman-Rubin (G.R.) statistic365

significantly different from 1 indicate that at least one of the two posterior samples366

deviates significantly from the true posterior distribution. By visual comparison of367

posterior density with prior desnity plots, it is possible to assess whether the data contains368

information differring from the prior for a given sampled parameter.369

An R-package.—370

We provide the model implementation in the form of an R-package called POUMM.371

Before model fitting, the user can choose from different POUMM parametrizations and372

prior settings (function specifyPOUMM). A set of standard generic functions, such as plot,373

summary, logLik, coef, etc., provide means to assess the quality of a fit (i.e. MCMC374

convergence, consistence between ML and MCMC fits) as well as various inferred375

properties, such as high posterior density (HPD) intervals.376

In addition, the POUMM package uses several third-party R-packages: ape (E377
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Paradis, Claude, and Strimmer 2004), data.table (Dowle et al. 2014), coda (Plummer et al.378

2006), foreach (Analytics and Weston 2015), ggplot2 (Wickham 2009), GGally (Schloerke379

et al. 2016), gsl (Hankin 2006) and Matrix (Bates and Maechler 2017).380

Results381

Simulations382

To validate the correctness of the Bayesian POUMM implmentation, we used the383

method of posterior quantiles (S. R. Cook, Gelman, and Rubin 2006). In this method, the384

idea is to generate samples from the posterior quantile distributions of selected model385

parameters (or functions thereof) by means of numerous “replications” of simulation386

followed by Bayesian parameter inference. In each replication, “true” values of the model387

parameters are drawn from a fixed prior distribution and trait-data is simulated under the388

model specified by these parameter values. We perform these simulations on a fixed tree of389

size N = 4000. Then, the to-be-tested software is used to produce a posterior distribution390

of parameters based on the simulated trait-data. Next, the posterior quantiles of the “true”391

parameter values (or functions thereof) are calculated from the corresponding posterior392

samples generated by the to-be-tested software. By running multiple independent393

replications on a fixed prior, it is possible to generate large samples from the posterior394

quantile distributions of the individual model parameters, as well as any derived quantities.395

Assuming correctness of the simulations, any statistically significant deviation from396

uniformity of these posterior quantile samples indicates an error in the to-be-tested397

software (S. R. Cook, Gelman, and Rubin 2006).398

We compared the accuracy of the POUMM to its two nested models - the PMM399

which restricts α = 0 and infers <g0, σ, σe>, and the non-mixed Ornstein-Uhlenbeck model400
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(abbreviated as POU) which restricts σe = 0 and infers <g0, α, θ, σ>. Two phylogenetic401

trees were used for the simulations:402

• Ultrametric (BD, N = 4000) - an ultrametric birth-death tree of 4000 tips generated403

using the TreeSim R-package (Stadler et al. 2013,Boskova, Bonhoeffer, and Stadler404

(2014)) (function call: sim.bd.taxa(4000, lambda = 2, mu = 1, frac = 1,405

complete = FALSE));406

• Non-ultrametric (BD, N = 4000) - a non-ultrametric birth-death tree of 4000 tips407

generated using the TreeSim R-package (Stadler et al. 2013,Boskova, Bonhoeffer, and408

Stadler (2014)) (function call: sim.bdsky.stt(4000, lambdasky = 2, deathsky =409

1, timesky=0)).410

Simulation scenarios of 2000 replications were run using the prior distribution411

< g0, α, θ, σ, σe >∼ N (5, 25)× Exp(0.1)× U(2, 8)× Exp(0.4)× Exp(1). The goal of using412

this prior was to explore a large enough subspace of the POUMM parameter space, while413

keeping MCMC convergence and mixing within reasonable time (runtime up to 30 minutes414

for two MCMCs of 106 adaptive Metropolis iterations at target acceptance rate of 1%).415

From the above prior, we drew a sample of n = 2000 parameter tuples, {Θ(1), ...,Θ(n)},416

which were used as replication seeds in two simulation-modes:417

• Simulate POUMM - for a given Θ(i), simulate genotypic values g(i)(T ,Θ(i)) according418

to an OU-branching process with initial value g
(i)
0 and parameters α(i), θ(i), σ(i). Then419

add random white noise (∼ N (0, σ2
e

(i)
)) to the genotypic values at the tips, to obtain420

the final trait values z(i).421

• Simulate PMM - for a given Θ(i), reset α(i) to 0, so that the genotypic values come422

from a BM process, then, repeat the procedure as in mode “Simulate POUMM”. The423

purpose of implementing this mode was (i) to validate the technical correctness of our424

PMM implementation by testing for uniformity its posterior quantile distributions;425
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(ii) to obtain an impression of the robustness of the POUMM method to a prior426

favoring OU (α > 0) in the case of true BM processes (α = 0).427

Combining the two phylogenies with the two simulation modes we obtained four428

test-scenarios with a total of 4× 2000 = 8000 replications. The resulting posterior quantile429

distributions for the PMM and POUMM Bayesian fits in each of these scenarios are shown430

on Fig. 2 for the non-ultrametric and Fig. S1 for the ultrametric tree.431

Technical correctness.—432

Both, the PMM and POUMM implementation, generate uniformly distributed433

posterior quantiles for all relevant parameters when the Bayesian inference has been done434

on data simulated under the correct simulation mode, i.e. “Simulate PMM” for PMM and435

“Simulate POUMM” for POUMM. This is confirmed visually by the corresponding436

histograms (Fig. 2 and Fig. S1), as well as statistically, by a non-significant p-value from a437

Kolmogorov-Smirnov uniformity test at the 0.01 level. This observation validates the438

technical correctness of the software.439

Robustness to model misspecification.—440

Robustness results discussed in this section are all visualized in Fig. 2. When fitting441

POUMM to data simulated under PMM (α = 0), there is a tendency to infer a positive α,442

overestimating σ and underestimating σe. The cause for this is the wrong prior for α443

pulling it away from 0. Thus, we recommend to always test the hypothesis α = 0,444

e.g. through a likelihood ratio test between the maximum likelihood PMM and POUMM445

fits. The deviation from uniformity is far less pronounced for H2
t̄ (posterior quantiles446

tending slightly to 1) and H2
e (posterior quantiles tending slightly to 0).447

When fitting PMM to simulations under POUMM, there is a highly significant448

deviation from uniformity of the posterior quantiles for all parameters and derived449

quantities. The fact that most posterior quantiles for H2
t̄ and H2

e are at the extremes of the450
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Figure 2: Posterior quantiles from simulation scenarios on a non-ultrametric tree (N = 4000).
Values tending to 1 indicate that the true value dominates the inferred posterior sample for
most of the replications. This means that the model fit tends to underestimate the true
parameter. Conversely, values tending to 0 indicate overestimation. The number n at the
top of each histogram denotes the number of replications out of 2000 which reached accept-
able MCMC convergence and mixing after 106 iterations. An asterisk indicates significant
uniformity violation (Kolmogorov-Smirnov P-value < 0.01). For the analogous results on an
ultrametric tree, see Fig. S1.
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histogram is indicative for a systematic negative or positive bias in the inferred parameters.451

These results indicate that the PMM can be a very unstable erronous estimator of452

phylogenetic heritability when the data violates the Brownian motion assumption.453

When fitting POU (σe = 0) to simulations including environmental contribution454

(both simulation modes), there is a strong tendency to overestimate α and σ. This indicates455

that POU-inference ignoring non-heritable contributions is prone to false positive tests for456

stabilizing selection. The next section provides empirical evidence for this prediction.457

Analysis of body weight evolution in mammals458

We analysed phylogenetic and body weight data from 227 Rodentia, 138 Chiroptera459

and 122 Soricomorpha species. An ultrametric tree composed of three monophyletic groups460

of the above mammal orders was extracted from a previously published supertree of 4510461

extant mammal species (Bininda-Emonds et al. 2007) and the body weights have been462

taken from (Raia, Carotenuto, and Meiri 2010). The orders Rodentia, Chiroptera and463

Soricomorpha represented the largest groups of species in the supertree with available body464

weight measures. To extract the phylogeny from the supertree, we used the function465

“‘drop.tip“‘ from the R-package “‘ape“‘ (E Paradis, Claude, and Strimmer 2004), removing466

all species of other orders and/or species without available body weight (fig. 3). Further,467

because all of the phylogenetic models discussed here assume that the trait values at the468

tips of an ultrametric tree are samples from a normal distribution, we dropped 10469

Rodentia, 15 Chiroptera, 4 Soricomorpha species, which appeared as ”giants” compared to470

other species in their corresponding orders and visibly distorted the normality of the data471

(fig. 3, Discussion). Upon the above filtering, we obtained four trees as follows:472

• Rodentia: N = 217, t̄ = 85.3 million years (Myr);473

• Chiroptera: N = 123, t̄ = 74.9 Myr;474
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• Soricomorpha: N = 118, t̄ = 84 Myr;475

• All (combining the three above trees): N = 458, t̄ = 98.9 Myr.476
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Figure 3: Phylogenetic tree and body weights of 227 Rodentia, 138 Chiroptera and 122
Soricomorpha species (extracted from mammal supertree published in Bininda-Emonds et
al. (2007)). Colored bullets represent color-coded lg(body-mass) (blue: low, orange: high,
data from Raia, Carotenuto, and Meiri (2010)); outliers (“giants”) species are shown as
colored circles positionend slightly outwards; body weight distributions are represented as
colored histograms (corresponding to each order), a grey histogram in the top-left corner
representing the total body weight distribution across the three orders, including outliers.
Dashed vertical bars represent the outlier cut-off for each order. A grey line from the root
to the tips indicates the time-scale (length) of the tree in million years (Myr).

For these four trees, we compared the maximum likelihood fits of the following five477

models:478

• PBM / brown: Brownian motion assuming full phylogenetic heritability (σe = 0). For479

this model, we used our implementation based on the POUMM package480

(parametrization < θ, σ >→< g0 ≡ θ, α = 0, θ, σ, σe = 0 >) and the implementation481
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in the R-package ouch (function brown). The MLEs for the two implementations482

were matching exactly, except for the tree “All”, where the brown function returned483

maximum log-likelihood of −∞.484

• POU(
∫
g0) / hansen: Ornstein-Uhlenbeck assuming full phylogenetic heritability485

(σe = 0). For this model, we tested our implementation based on the POUMM486

package (parametrization < α, θ, σ >→<
∫∞
−∞, α, θ, σ, σe = 0 >) and the487

implementation in the R-package ouch v2.9.2, function hansen with one global488

selection regime (Butler and King 2004). By the notation
∫∞
−∞ g0, we mean that the489

OU-likelihood is defined as the expectation of the conditional likelihood on g0,490

assuming that the distribution of g0 is the long-term equilibrium (stationary)491

OU-distribution. The log-likelihood values and the MLEs for the two492

implementations were matching up to the 5th decimal digit (table 2).493

• POU: Ornstein-Uhlenbeck assuming full phylogenetic heritability (σe = 0) and494

substituting the value of θ for the parameter g0. While the only difference of this495

model with the Hansen model above is that it replaces integration over g0 with a496

concrete value, this model includes PBM/brown as a special case (α = 0) and,497

therefore, one can use a likelihood-ratio test for model selection. For this model, we498

tested our implementation based on the POUMM package (parametrization499

< α, θ, σ >→< g0 ≡ θ, α, θ, σ, σe = 0 >). The resulting maximum log-likelihoods and500

MLEs were very close to the hansen estimates (table 2).501

• PMM: The phylogenetic mixed model (Lynch 1991; Housworth, Martins, and Lynch502

2004), i.e. Brownian motion plus error (σe ≥ 0). For this model, we used our503

implementation based on the POUMM package with parametrization504

< g0, H
2
t̄,σe

>→< g0 ≡ θ, α = 0, θ, σ, σe = 0 >, where the parameter σ is calculated505

from eq. 15, after setting α to 0.506

• POUMM: The phylogenetic Ornstein-Uhlenbeck mixed model. For this model, we507
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used our implementation based on the POUMM package with parametrization508

< g0, H
2
t̄,σe

>→< g0 ≡ θ, α = 0, θ, σ, σe = 0 >, where the parameter σ is calculated509

from eq. 15.510

The results from fitting the above models to the four mammal trees are written in511

table 2. According to best (lowest) Akaike information criterion corrected for finite sample512

size (AICc), all four trees are unanimous about the best fit being the PMM model. The513

POUMM method MLE is very similar to the PMM MLE in all cases, but is the514

second-best model in terms of AICc, because it gets an extra penalty for the515

extra-parameter α, which’s MLE is approximately 0 in all trees. This reveals stronger516

support for neutral drift evolution (i.e. BM) compared to stabilizing selection acting at the517

class and order levels. However, if the model would not account for a non-heritable518

component in the trait and would assume H2
t̄ = 1, i.e. the PBM/brown, Hansen and POU519

models, the model selection would turn in favour of the OU-models. This suggests that the520

conclusion on whether or not stabilizing selection acts on the class and order levels521

depends strongly on the inclusion of a non-heritable component in the model, even if this522

component explains only a small relative proportion of the total phenotypic variance523

(PMM estimates of phylogenetic heritablity above 93% for all trees, except Soricomorpha).524
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Table 2: Model selection criteria and MLEs for five phylogenetic models fitted to mammal
body-weight data. The abbreviation LR refers to a likelihood ratio test statistics against
a nested null-model (PBM or PMM); asterisks denoting significant p-values: ∗ < 0.05,
∗∗ < 0.01, ∗ ∗ ∗ < 0.001. The best (the lowest) AICc values for each tree are shown in bold.
Fixed parameters are written in grey. The parameters g0 and σe are not shown, since g0 is
fixed or integrated over (see text) and the positive value of σe can be calculated from the
phylogenetic heritability H2

t̄ . The half-life t1/2 is given in Millions of years (Myr).

Model N dof
log-
lik.

LR vs
PBM

LR vs
PMM AICc

MLE:
< α× 100, θ, σ × 10, H2

t̄ , t1/2 >

Rodentia
PBM / brown 217 2 -66.33 0 - 136.72 < 0, 2.04, 0.81, 1,∞ >
POU(

∫
g0)/hansen 217 3 -64.61 - - 135.32 < 1.37, 2.03, 0.91, 1, 50.75 >

POU 217 3 -64.18 4.3* - 134.48 < 1.23, 2.03, 0.9, 1, 56.46 >
PMM 217 3 -63.68 5.3* 0 133.48 < 0, 2.04, 0.71, 0.96,∞ >
POUMM 217 4 -63.46 5.75 0.45 135.11 < 0.57, 2.04, 0.77, 0.97, 121.19 >

Chiroptera
PBM/brown 123 2 2.13 0 - -0.16 < 0, 1.15, 0.59, 1,∞ >
POU(

∫
g0)/hansen 123 3 5.11 - - -4.02 < 1.8, 1.12, 0.68, 1, 38.58 >

POU 123 3 5.5 6.74** - -4.79 < 1.67, 1.13, 0.67, 1, 41.61 >
PMM 123 3 11.89 19.53*** 0 -17.59 < 0, 1.14, 0.43, 0.93,∞ >
POUMM 123 4 11.89 19.53*** 0 -15.45 < 0, 1.14, 0.43, 0.93,∞ >

Soricomorpha
PBM/brown 118 2 -24.24 0 - 52.58 < 0, 1.2, 0.74, 1,∞ >
POU(

∫
g0)/hansen 118 3 -23.24 - - 52.68 < 1.72, 1.2, 0.84, 1, 40.3 >

POU 118 3 -23.05 2.37 - 52.32 < 1.54, 1.2, 0.83, 1, 44.97 >
PMM 118 3 -22.19 4.09* 0 50.6 < 0, 1.2, 0.46, 0.8,∞ >
POUMM 118 4 -22.19 4.09 0 52.74 < 0, 1.2, 0.46, 0.8,∞ >

All
PBM/brown 458 2 -98.36 0 - 200.74 < 0, 1.56, 0.74, 1,∞ >
POU(

∫
g0)/hansen 458 3 -96.42 - - 198.9 < 0.8, 1.55, 0.79, 1, 86.78 >

POU 458 3 -95.65 5.41* - 197.35 < 0.74, 1.55, 0.79, 1, 94.25 >
PMM 458 3 -90.41 15.89*** 0 186.88 < 0, 1.56, 0.63, 0.96,∞ >
POUMM 458 4 -90.4 15.9*** 0.01 188.9 < 0.07, 1.53, 0.64, 0.96, 1041.29 >

Performance525

Likelihood calculation time.—526

We measured the time for one likelihood calculation on random ultrametric and527

non-ultrametric trees of up to 100,000 tips running on an Intel(R) Xeon(R) CPU E5-2697528

v2 at 2.70GHz processor with X ∈ {1, 2, 4, 6, 8, 10} parallel cores. We compared the serial529
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and parallel pruning implementatoins of the POUMM package to several serial pruning530

implementations provided in the R-packages geiger (Pennell et al. 2014), and diversitree531

(FitzJohn 2012). To measure the likelihood calculation times we used the R-package532

microbenchmark (Mersmann 2015) with argument times set to 100. All of the above533

implementations were compiled from source-code using the R-command534

install.packages('package-directory', repos=NULL, type='source'), and the535

same C++ compiler and compiler arguments (version 16.0.0 of the Intel compiler,536

command icpc with options -O3 -march=corei7-avx -mavx). The resulting average times537

in milliseconds are shown on fig. 4. On small trees of 100 tips, the fastest implementation538

was the serial implementation from the package diversitree (0.05 ms) followed by the539

POUMM omp-for-simd-on-1-core (0.07 ms). On trees of 1000 tips, the fastest540

implementation was the POUMM omp-for-simd-on-1-core (0.12 ms) followed by the541

parallel POUMM implementation omp-for-simd-on-X-cores and omp-for-on-X-cores542

(below 0.2 ms). With N > 1000 tips, the simd and multicore parallelization resulted in up543

to 13 times speed-up compared to non-simd serial POUMM C++ implementations (Fig. 5)544

and speed-ups of up to two orders of magnitude when comparing to serial pruning545

implementations (Fig. 4 and Fig. 5). These results show that the parallel efficiency tends546

to increase with N , so that on big trees, or in cases of smaller trees but numerous traits, a547

parallel pruning implementation could potentially achieve 100% parallel efficiency. Also548

noteworthy is that, thanks to the single instruction multiple data (simd) techology,549

parallelization is also possible on a single core. This is why, the time for the omp-for-simd550

implementation on a single core (5 ms for N = 100, 000) is several times shorter than the551

time for the omp-for and the Armadillo based implementations. This also explains why the552

parallel speed-up is bigger than the number of cores when comparing the omp-for-simd on553

X cores to the non-simd (omp-for on 1 core) implementations.554
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Figure 4: Likelihood calculation times for R and C++ implementations of the pruning
algorithm.
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Improved MCMC convergence and MLE inference through adaptive Metropolis sampling.—555

To measure the MCMC convergence speed-up from the adaptive Metropolis556

sampling, we reran one simulation scenario (2000 replications on a non-ultrametric tree of557

4000 tips) with disabled adaptation. As a criterion for convergence, we used the absolute558

difference from 1 of the Gelman-Rubin convergence diagnostic (Brooks and Gelman 1998)559

(the closer |G.R.− 1| is to 0, the better the convergence). When enabling adaptive560

Metropolis sampling, more than 1600 (80%) of the 2000 replications had reached561

|G.R.− 1| < 0.01 after a million iterations. Conversely, when disabling adaptive Metropolis562

sampling, less than 300 (15%) of the replications had reached |G.R.− 1| < 0.01 after a563

million iterations (the 80% quantile of |G.R.− 1| was equal to 0.57, indicating very power564

convergence). We also noticed that 1455 out of 2000 replications (73%) of the POUMM565

inferences with enabled adaptative Metropolis sampling resulted in an improved MLE after566

running the MCMC chains, compared to 1045 (50%) when disabling adaptation. These567

observations show that adaptive Metropolis sampling considerably accelerates the MCMC568

convergence towards the posterior distribution and can be used to improve the MLE569

inference when using a weak prior or a prior that does not strongly contradict with the570

evidence (likelihood).571

Discussion572

The OU process has been applied as a model for stabilizing selection in573

macro-evolutionary studies (LANDE 1976; Felsenstein 1988; Hansen 1997; L. J. Harmon et574

al. 2010; Raia and Meiri 2011). Most of these studies assume that the whole trait evolves575

according to an OU process, usually disregarding the presence of a biologically relevant576

non-heritable component. When modelling species trait evolution, a non-heritable577

component including ecological contribution, measurement error, model residual error and578

possible inaccucies in the phylogenetic tree may be well justified and may in fact be579
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important to understand the full evolutionary process. In our empirical example, we have580

shown that the evolution of body weight in three orders of mammals is best described by581

the sum of a Brownian motion process and a non-heritable white noice (PMM). Except for582

the Soricomorpha tree, in which most of the species are in an unresolved polytomy583

descending from a single ancestor (12.6 Myr), the relative contribution of white noice to584

the trait variance is estimated between 3% to 7%. Strikingly, it is the inclusion or not of585

this small contribution in the model that decides the choice between a BM or an OU model586

of evolution.587

Recently, the OU process has been applied in a micro-evolutionary context as a588

model for the evolution of pathogen traits, such as set-point virus load (spVL) during HIV589

infection (Mitov and Stadler (2016), Blanquart et al. (2017), Bertels et al. (2017),590

Bachmann et al. (2017)). When modeling pathogen evolution, the branching points in the591

tree represent transmission events, and the non-heritable component includes the592

contribution of the host immune system, the environment and the measurement and593

phylogenetic error. Thus, for pathogens, it is crucial to incorporate e in the model in order594

to quantify the importance of host- versus pathogen factors in trait formation (Alizon et al.595

2010; Shirreff et al. 2013). In contrast to our macro-evolutionary example, based on AICc,596

the above studies have selected an OU process with added white noice (POUMM) as the597

best model for the evolution of spVL and CD4.598

In agreement with our simulations, the above empirical examples provide evidence599

that mixed models are more appropriate than PBM and POU for modeling the evolution of600

continuous traits in epidemiology and macroevolution. Note also that the concept of model601

mixing and phylogenetic heritability is applicable to any phylogenetic model, beyond BM602

and OU.603

Our R-package joins a growing collection of tools implementing phylogenetic OU604

inference. Among others, these include the R-packages ape v4.0 (E Paradis, Claude, and605
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Strimmer 2004), ouch v2.9-2 (Butler and King 2004), GLSME v1.0.3 (Hansen and606

Bartoszek 2012), diversitree v0.9-9 (FitzJohn 2012), geiger v2.0.6 (Pennell et al.607

2014), surface v0.4-1 (Ingram and Mahler 2013), mvMORPH v1.0.8 (Clavel, Escarguel,608

and Merceron 2015), bayou v1.0.0 (Uyeda, Eastman, and Harmon 2015), OUwie v1.50609

(Beaulieu and OMeara 2016), phylolm v2.5 (Ho and Ané 2014), RPANDA v1.1 (Manceau,610

Lambert, and Morlon 2016). It may come as a surprise that most of the above package611

versions do not implement inference of a non-heritable component, i.e. a parameter σe. To612

our knowledge, of the above mentioned package versions only geiger and GLSME allow σe613

to be estimated from the phylogeny. However geiger does not seem to support614

non-ultrametric trees (mismatching likelihood values on non-ultrametric trees), and615

GLSME is much slower than the other packages. Most of the above packages allow the616

specification of a fixed standard measurement error before the model is fit to the data.617

This seems useful in macro-evolutionary studies where the standard measurement error can618

be estimated from the observed empirical variance within a species and the finite sample619

size. However, estimating a parameter σe from the data is still necessary, because620

measurement error is only one of many non-heritable factors contributing to the trait.621

The idea to infer phylogenetic heritability assuming that g follows an OU process622

along the phylogeny has so far been discouraged mainly for interpretational and practical623

reasons: (i) in biology, individuals get selected based on their whole trait values, rather624

than the genotypic component g; (ii) small ultrametric macro-evolutionary trees do not625

contain sufficient signal for a simultaneous inference of the OU-and environmental variance626

(Housworth, Martins, and Lynch 2004). We argue that modeling an OU process on the627

whole trait value rather than g comes at the cost of additional parameters and reduced628

statistical power, because it necessitates to account for jumps in the trait value at the629

branching points as well as the unobserved speciation/transmission events along the tree.630

Conversely, assuming that the OU process acts directly on g is mathematically more631
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convenient, because it allows the inference of a single continuous OU-process along the632

tree, while adding e only at the tips of the tree. The implications of these simplified633

assumptions must be validated through simulations as done, e.g. in toy model simulations634

in Mitov and Stadler (2016).635

Finally, we have shown the gain in speed performance from parallelizing the636

likelihood calculation of a univariate Ornstein-Uhlenbeck model. A main advantage of the637

parallel pruning algorithm with respect to sequential pruning implementations, e.g.638

diversitree (FitzJohn 2012) and geiger (Pennell et al. 2014), is that most of the algebraic639

calculations are done on vectors instead of single numbers and can be executed in parallel640

on contemporary SIMD and multicore systems. Languages such as Matlab and R are641

optimized for vector operations. This also explains why the serial POUMM pruning642

implementation in R is nearly as fast as serial pruning implementations written in C++643

(Fig. 4). The parallelization scheme described here applies to all phylogenetic models644

where pruning can be used for likelihood calculation. Previously, it has been shown that645

this class of models spans over all multivariate Gaussian and some non-Gaussian models646

(Ho and Ané 2014). It is noteworthy that the performance benefit from parallelization647

increases with the complexity of the model (i.e. number of observable variables) and the648

size of the data (number of observations, N).649

Another feature of the parallel pruning alogrithm is that it can be applied when650

parameters of the model change through time or across clades, e.g. when the values of the651

parameters are functions of geological time, geographic location or environment. Following652

this approach, the lineages of the tree can be cut into segments associated with different653

model regimes. These applications suggests that the parallel pruning algorithm has the654

potential to meet the challenges of increasing model complexity and volumes of data in655

comparative phylogenetic analysis.656
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Supplementary Material657

Supplementary figures are available online. Data from the performance benchmarks,658

simulations and the analysis of mammal body weight is available on the dryad database.659

The POUMM package and user guide is available at660

https://CRAN.R-project.org/package=POUMM.661
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