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ABSTRACT 
 
Humans naturally group the world into coherent categories defined by membership 

rules. Rules can be learned implicitly by building stimulus-response associations using 

reinforcement learning (RL) or by using explicit reasoning. We tested if striatum, in 

which activation reliably scales with reward prediction error, would track prediction 

errors in a task that required explicit rule generation. Using functional magnetic 

resonance imaging during a categorization task, we show that striatal responses to 

feedback scale with a “surprise” signal derived from a Bayesian rule-learning model. We 

also find that striatal feedback responses are inconsistent with RL prediction error and 

demonstrate that striatum and caudal inferior frontal sulcus (cIFS) are involved in 

updating the likelihood of discriminative rules. We conclude that the striatum, in 

cooperation with the cIFS, is involved in updating the values assigned to categorization 

rules, rather than representing reward prediction errors.  
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1.1 INTRODUCTION 	
Humans possess a remarkable ability to learn from incomplete information, and rely 

on multiple strategies to do so. Consider a card game where hearts are rewarded and other 

cards are not. A simple learning strategy, model-free learning, directly associates stimuli 

and/or actions with rewards that they predict (Sutton and Barto 1998). This algorithm 

would efficiently learn that card suits predict different reward values. Now consider a 

more complex game in which the queen of spades is also rewarded, except when it is 

paired with all the hearts. A more efficient strategy than model-free learning would be to 

reason over abstract rules or categories that apply to cards. This strategy requires a 

cognitive model of the environment based on explicit rules (Miller and Cohen 2001). A 

large body of work has mapped the neural circuitry underlying model-free learning as 

well as the circuitry underlying the execution of well-learned cognitive models (Badre 

and D'Esposito 2009). However, little is known about how cognitive models are acquired 

or where the variables required to learn models are represented. 

 

Model-free and cognitive model learning have typically been associated with 

different neural systems: a mesolimbic striatal system for the former and a lateral cortical 

system for the latter (Glascher et al. 2010; Daw et al. 2011). In model-free learning, 

striatal neurons encode the value of different stimuli and actions and communicates 

values to cortical regions via recurrent loops (Haber & Knutson, 2010). Ascending 

midbrain dopamine projections carry signed reward prediction errors (Montague et al. 

1996; Schultz 1997) that underlies the learning of stimulus- and action-outcome 

associations (Reynolds et al. 2001; Kawagoe et al. 2004; Daw et al. 2005; Morris et al. 

2010). Conversely, in cognitive models, prefrontal neuronal pools represent abstract 
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rules, implement their control over behavior, and update rules when appropriate 

(Buschman et al. 2012). We tested the hypothesis that learning cognitive models depends 

on parallel neural circuitry to what is known to be involved in reinforcement learning 

(RL).  

 

This hypothesis may appear straightforward, but it faces several theoretical 

challenges. First, RL and rule-based learning operate on different information: the former 

assigns values to stimuli or actions and the latter reasons explicitly over abstract rules, 

concepts, or structured relationships (Goodman et al. 2008; Glascher et al. 2010; 

Tenenbaum et al. 2011). We propose that, in addition to encoding stimuli and action 

values, striatal neurons also encode values of cortical rule representations (e.g., “all hearts 

and queen of spades”). Second, explicit rule-learning does not require a reward prediction 

error (RPE). We propose that the mesolimbic dopamine system is not specialized for 

conveying RPEs; rather, it encodes update signals that reflect new information in a 

variety of learning contexts.  

 

In order to test this hypothesis, we focused on the robust observation in RL 

research that striatal activation changes in proportion to RPE (O'Doherty et al. 2003; 

Rutledge et al. 2010; Garrison et al. 2013). We tested whether the striatum represented 

RPEs when subjects are biased to learn by reasoning over explicit rules, rather than by 

the incremental buildup of stimulus-response relationships. If you are learning a card 

game where hearts are rewarded unless they are paired with a queen, and for many hands 

you have seen no queens, then discovering that hearts and queens together fail to deliver 
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a reward is highly surprising and also delivers a negative RPE. If the striatum represents 

RPE as part of a RL algorithm (Garrison et al. 2013), then the striatum should respond 

negatively to this disappointing outcome. Conversely, if the striatum is involved in 

updating value representations in response to new information, then it should respond 

positively to this surprising outcome. 

 

We found that in a task where participants do not use reinforcement learning, 

striatal feedback response was better described by Bayesian “surprise” than RL 

prediction error. We reconcile these findings by suggesting that, rather than coding RPE, 

the striatum updates its value representations in response to new information. Further, we 

found that posterior inferior frontal sulcus (cIFS), was involved in updating rules and was 

functionally connected to striatum during feedback. Our findings are consistent with a 

model in which both rule learning and model-free RL depend on plasticity in cortico-

striatal circuits that encode the values of stimuli, actions, and concepts. 

 

MATERIAL & METHODS 

2.1 Participants 

 19 participants completed the study (11 female; mean age 21.7 years; SD age 7.3 

years). Stanford University’s Institutional Review Board approved study procedures, and 

all participants provided informed consent. Three were excluded because their accuracy 

was not significantly better than chance. An additional two participants were excluded for 

excessive head motion (exceeding 2 mm in any direction), leaving 14 participants for 

analyses.  
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2.2 Rule Learning Task 

 We used a task that was designed to bias participants towards an explicit rule-

learning strategy, rather than relying on incremental learning of stimulus-response 

contingencies. On each trial, a stimulus was shown that varied on three perceptual 

dimensions (color: blue or yellow; shape: circle or square; and texture: striped or 

checkered). Participants assigned stimuli to one of two possible categories, “Dax” or 

“Bim,” based on perceptual features. Participants were informed that rules linking 

features to categories changed with each new block of trials. Six different rules were 

learned in counterbalanced order across blocks: A (e.g., blue stimuli are Bims; yellow are 

Daxes); A and B (e.g., blue square stimuli are Bims; all others are Daxes); A or B; (A or 

B) and C; (A and B) or C; and A XOR B (e.g., all blue or square stimuli, with the 

exception of blue square stimuli are Bims). Feature and category labels that defined each 

rule were randomly determined at the start of each block. Structurally, the order of trials 

within a given rule block was identical across participants, enabling direct comparison of 

performance on a trial-by-trial basis. Participants saw the same order of stimuli (e.g. 

A̅BC̅, AB̅C̅, …; where A̅ and A refer to the two possible values of a feature) for each rule 

block, but the mapping of stimulus features (e.g. A to the color blue, or the shape square, 

etc.) was randomized. For more complex rules, evidence was presented in such a way 

that a simpler rule sufficed to explain the data for initial trials, and then a discriminating 

example was presented that required an update to a more complex rule later in the block. 
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 Each trial was divided into three phases: cue, response and feedback. Each phase 

lasted 2 s and was separated by a random 4 to 6 s delay. During the cue phase, the 

stimulus to be categorized was shown in the center of the screen. During the response 

phase, a question mark was shown in the center of the screen, which prompted 

participants to categorize the stimulus by pressing one of two buttons. During the 

feedback phase, a message was displayed in the center of the screen that indicated 

whether the response was “correct” (green text) or “incorrect” (red text).  

 

2.3 Bayesian rule-learning model 

The rule-learning model was based on the "rational rules" model (Goodman et al. 

2008) and implemented in the Python library LOTlib. This model formalizes a statistical 

learner that operates over the hypothesis space of Boolean propositional logic expressions 

(e.g. ((A AND B) OR C)). It implicitly defines the infinite hypothesis space of possible 

expressions using a grammar that permits only valid combinations of logical primitives 

(AND, OR, NOT) and observable perceptual features. This grammar also defines a prior 

probability P(H), that biases learners to prefer short expressions (H) that re-use grammar 

rules. The prior is combined with a likelihood, P(D|H), which quantifies how accurately a 

rule H predicts observed true/false labels. The likelihood contains a single parameter, α, 

which corresponds to the probability of generating a random label.  

 

The parameter α = 0.85 was fit across all concepts and subjects via grid search. 

We used Markov-Chain Monte-Carlo to perform inference by sampling hypotheses 

according to P(H|D). In order to predict incremental responses as the task progressed, 
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sampling was also run incrementally for 10,000 steps at every trial, based on observed 

data up to that point. The top 100 hypotheses for any amount of data and concept were 

collected into a set that was treated as a finite hypothesis space for the purposes of 

efficiently computing model predictions (Piantadosi et al. 2012). 

 

2.4 RL models 

 We designed our task in order to study the mechanism by which humans learn 

using explicit rules or concepts. Nonetheless, reinforcement learning is a powerful 

algorithm that can perform well in most tasks, including ours. We sought to buttress our 

claim that our task involved rule-learning by comparing our Bayesian rule-learning 

model with simple but powerful RL algorithms that are commonly used in the literature 

on categorization learning (Niv et al. 2015). We compared three different RL models 

with different state space representations. Naïve RL had just one feature for each stimulus 

(blue striped square). Feature RL had a different feature for each stimulus feature (blue), 

and each stimulus was associated with three features corresponding to each of its features 

and values were learned over features independently. Ideal RL had a feature associated 

with each stimulus feature, each pairwise combination of features, and each triplet of 

features. In this model, each stimulus was associated with seven features: one triplet of 

stimulus features, three pairwise combinations of features and three individual stimulus 

features. The value of a state-action pair on trial t was determined by taking a weighted 

sum of each of the feature-action pairs: 

 

! ", $% & = 	 )(+, $%)&

-∈/

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2017. ; https://doi.org/10.1101/115253doi: bioRxiv preprint 

https://doi.org/10.1101/115253


	

	 9	

 

where there are two actions associated with the two choices (Bim or Dax). After trial 

feedback, the model uses RL to update each feature weight for the next trial:  

 

) +, $012345 &67 = 	) +, $012345 & + 	9[;& − ! ", $012345 &] 

 

We departed from standard Q modeling by making two opposite updates to the weight of 

each feature-action pair: 

 

) +, $52&=012345 &67 = 	) +, $52&=012345 & − 	9[;& − ! ", $012345 &] 

 

This encodes the symmetry of the task (i.e., if a stimulus is a Bim then it is not a Dax). It 

also improved the likelihood of the observed data without adding an extra parameter, 

which only favored RL in model comparison. This change also made the model 

homologous to a standard value learning model that directly learns the probability that a 

stimulus is a Bim.  

 

Each models used a softmax decision rule to map task state Q values to the probability of 

a given action: 

 

> $% = 	
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Each RL models had two free parameters: a (learning rate) and b (inverse temperature of 

the softmax).  

 

We fit models by maximizing the likelihood of observed choices for each subject, 

using Scipy’s minimize function with the BGFS method. We constrained the models to 

fit a single b across subjects and an individual a, to enable a fair comparison with the 

Bayesian model that fits a single noise parameter across subjects. Fixing b has a 

regularizing effect on model fitting that biases results away from extreme parameter 

settings and reduces the correlation between a and b. For neuroimaging analyses, we 

calculated a single a and b across subjects, which provides additional regularization 

(Daw et al. 2011).  

 

2.5 Model Comparison 

 

We used the corrected Akaike Information Criterion (AICc) and the Bayesian 

Information Criterion (BIC) to estimate the posterior model evidence. We used both 

metrics since they differ in penalization of free parameters (BIC penalizes more 

strongly). For group model comparison, we used group Bayesian model comparison 

(Stephan et al. 2009; Rigoux et al. 2014), which is a random effects method for group 

model comparison robust to outliers.  

 

2.6 fMRI acquisition 
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Functional images were acquired with a 3T General Electric Discovery scanner 

(Waukesha, WI, USA). Whole-brain BOLD weighted echo planar images were acquired 

in 40 oblique axial slices parallel to the AC–PC line with a 2000 ms TR (slice thickness = 

3.4 mm, no gap, TE = 30 ms, flip angle = 77°, FOV = 21.8 cm, 64 × 64 matrix, 

interleaved). High-resolution T2-weighted fast spin-echo structural images (BRAVO) 

were acquired for anatomical reference (TR = 8.2 ms, TE = 3.2 ms, flip angle = 12°, slice 

thickness = 1.0 mm, FOV = 24 cm, 256 × 256). 

 

2.7 fMRI analysis 

Preprocessing and whole brain analyses were conducted with Analysis of 

Functional Neural Images (AFNI; Cox, 1996). Data were slice-time corrected and motion 

corrected. No participant included in the analyses moved more than 2 mm in any 

direction. Data used in whole brain analyses were spatially smoothed with a 4 mm 

FWHM Gaussian filter. Voxel-wise BOLD signals were converted to percent signal 

change.  

 

We transformed the T2-weighted structural image to Talairach space and applied 

this transform to preprocessed functional images. Normalized functional images were 

then analyzed using a general linear model in AFNI. The model contained multiple 

regressors to estimate responses to each task component, which were then convolved 

with a two-parameter gamma variate hemodynamic response function. For surface plots, 

we projected the group data onto the freesurfer template brain using Pysurfer with the 

default settings and a 6 mm cortical smoothing kernel.  
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We wanted to identify regions where event-related activity correlated with 

expected responses related to surprise and updating of rule hypotheses. Parametric 

regressors derived from the Bayesian model were used to identify brain regions where 

activation scaled with trial-by-trial estimates of surprise, as well as the degree of change 

to the hypothesis space as each new exemplar was integrated. This strategy has been 

recently applied with success in the perceptual domain (O'Reilly et al. 2013). Surprise 

was calculated as the probability against the label assigned to the stimulus on each trial 

by the model. Rule updating was calculated as the KL divergence between the posterior 

distribution on hypotheses before and after the trial.   

 

Three such parametric regressors were included in the model, capturing activation 

that scaled with 1) surprise at feedback, 2) rule updating at feedback, and 3) rule updating 

from the previous trial during the subsequent cue period. The final two regressors may 

seem redundant, but task switching studies show updating occurs when initially possible 

and at the beginning of subsequent trials, even when inter-trial intervals are several 

seconds long (Monsell, 2003).  

 

Each event in our general linear model was assumed to occur over a 2 s period 

(boxcar). We included three additional regressors to model mean activation during the 

cue, response and feedback periods. A parametric regressor was included to control for 

activation that varied with reaction time during the response period. Finally, regressors of 
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non-interest were included to account for head movement and third-order polynomial 

trends in BOLD signal amplitude across the scan blocks.  

 

Maps of t-statistics for each regressor were resampled and transformed into 

Talairach space. Whole-brain statistical maps were generated using one-sample t-tests at 

each voxel to localize brain areas with significant loadings on regressors across subjects. 

Whole-brain maps were thresholded at p < 0.05, cluster corrected (p < 0.005 voxel-level 

α with a minimum of 42 contiguous voxels, AlphaSim). Of note, we used AFNI version 

16.0.06, in which AlphaSim better estimates type II error. Coordinates are reported in 

Talairach space with the LAS convention. 

 

A hierarchical analysis was conducted to assess neural responses to Bayesian 

surprise and RL prediction error. First, activation was modeled with two regressors that 

encoded activation during positive and negative feedback, as well as task and nuisance 

variables described above. A second analysis was performed on the residual values 

obtained from the first regression. Two regressors were included in the second model: a 

parametric regressor encoding activation that scaled parametrically with surprise during 

feedback, and a parametric regressor encoding activation that scaled parametrically with 

prediction error during feedback, with prediction error derived from the best fitting 

(naïve) RL model. To test for voxels that varied with RL prediction error, we performed a 

conjunction between the first-level analysis of positive > negative outcomes and the 

parametric prediction error regressor. To test for voxels that varied with surprise, we 

performed a conjunction between the first-level analysis of negative > positive outcomes 
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and the parametric surprise regressor. Because prediction errors are strongly correlated 

with outcome valence, a performed a test for prediction error that accounts for both a 

main effect of outcome valence and an additional parametric effect once valence has been 

partialed out. We repeated the above analysis separately for the parametric rule updating 

analysis to ensure that the cIFS cluster we identified did not merely respond to outcome 

valence. 

 

We note that outcome valence accounted for 54% of variability in prediction error 

variance in our best fitting model, and this represents the more important half of 

variability in prediction error. An RL model that does not have outcome valence 

information cannot learn to distinguish actions and will respond randomly, while a RL 

algorithm that has access only to outcome valence, but does not remember recent trials, 

will implement a win-stay/loose-shift policy. Therefore, the outcome valence analysis is a 

robust test for prediction error signaling, because a region that does not dissociate 

outcomes based on valence cannot contribute to a RL algorithm that learns anything 

about the task. 

 

 We conducted region of interest (ROI) analyses in two areas. Based on the results 

of the rule-updating analyses, in which cIFS correlated with rule-updating and was 

functionally connected with the striatum, we hypothesized that surprise might be 

represented in striatal regions that interact with lateral PFC (Haber and Knutson 2009). 

We used an “executive striatum” ROI taken from a 3-way subdivision of striatum based 

on diffusion tractography imaging estimated connectivity with cortex (Tziortzi et al. 
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2013). For the ventral midbrain analysis, we used a probabilistic ventral tegmental area 

atlas (Murty et al. 2014) based on hand-drawn ROIs (Ballard et al. 2011). We thresholded 

and binarized the ventral tegmental area atlas at p>0.5.  

 

We also conducted a psychophysical interaction (PPI) in AFNI. First, BOLD signal was 

averaged over the cluster of significant activation identified in ROI analyses. This time 

course was mean-centered and included as a regressor in the PPI model. A second 

regressor was also included, which was the interaction between this time course and 

feedback. The feedback regressor that was used to make the interaction was centered 

according to the customary FSL PPI procedure, which ensures the interaction effect is not 

inflated by correlation that is constant across the timeseries. The PPI model also 

contained regressors to account for baseline activation during the cue, response, and 

feedback periods, as well as parametric regressors encoding reaction time and surprise. 

 

1 RESULTS 

1.1 Behavior	

 We collected fMRI data while participants completed six 20-trial blocks of a rule-

learning task (Figure 1a). In each trial, participants were shown an image and were 

instructed to classify it as belonging to one of two possible categories (“Dax” or “Bim”) 

based on perceptual features. Category membership was determined based on logical 

rules like “stimuli that are either blue or square are Bims” or “stimuli that are both striped 

and circular are Daxes.” Participants were informed that the rule determining category 
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membership would change at the start of each block. Blocks were separated into clearly 

demarcated scanning runs in order to minimize interference between rules. 

 

All participants included in analyses performed above chance. Accuracy and 

reaction times were averaged across participants for each rule block. There was an effect 

of condition on accuracy (within-subjects ANOVA; F = 10.1, p < 0.0001) and reaction 

time (F=3.1, p = 0.03). Post-hoc t-tests revealed accuracy was lower for complex rules (A 

XOR B) and ((A and B) or C; Tables S2, S3).  

 

Learning proceeded rapidly, generally reaching an initial asymptote within the 

first five trials (Figure 1b). For all but the simplest rules, accuracy diminished on later 

trials, evidenced by accuracy curve “spikes.” These accuracy drops occurred on trials 

where new, highly informative evidence was presented that required updating from a 

simple rule to a more complex rule. Accuracy recovered within one or two trials as 

participants rapidly integrated new evidence. 
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Figure 1: Rule Learning Task and Behavior 

a) Participants completed six 20-trial blocks of a rule-learning task. Trials were divided 

into three phases: cue, response and feedback, each separated by a random 4-6 s delay. 

During the cue phase (2 s), the stimulus to be categorized was presented in the center of 

the screen. During the response phase (2 s), a question mark was presented in the center 

of the screen, prompting participants to press a button to respond. During the feedback 

phase (2 s), a message was displayed indicating whether the response was correct.  

b) Mean participant accuracy and model predictions for each rule. For most rules, 

accuracy reached an initial asymptote on early trials, but showed decreases on later trials 
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when evidence was introduced that was inconsistent with the simpler hypotheses that 

sufficed to that point. 

 

1.2 Comparing	Bayesian	and	RL	Models	

Our task was designed to elicit an explicit learning strategy that relied on the 

testing of abstract rules. Nonetheless, reinforcement learning is a powerful learning 

algorithm that can perform well on many tasks, including ours. In addition, there are 

well-established cortico-striatal circuits for stimulus-response and feature-response 

learning that could give rise to decent performance on our task (Niv 2009). In order to 

strengthen our claim that subjects adopted a rule-learning strategy, we used 

computational modeling of behavior to assess the extent to which subjects employed rule-

learning rather than model-free RL. Our Bayesian rule-learning model predicts that 

subject would use rules that were consistent with previously observed evidence within the 

block, but with a bias toward parsimony. It also predicts that new evidence will be 

rapidly integrated as subjects search for a rule that is consistent with all of the observed 

evidence in a block.  

 

This model predicted behavior across participants, replicating previous work 

employing similar models (Figure 1b; (Goodman et al. 2008; Piantadosi 2011). Model 

predictions and average group behavior were correlated (A: ρ = .97, p = 3.8 ×10-12; (A 

and B) or C: ρ = .72, p = 5.6 ×10-4; (A or B): ρ = .83, p=8.4 × 10-6; (A and B): ρ = .84, p 

= 3.5 ×10-6; (A or B) and C: ρ = .84, p = 3.7 ×10-6; (A xor B): ρ = .6, p = 0.005) and met 

a Bonferroni corrected significance threshold of p<0.0083. We next correlated individual 
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subject behavior and model predictions. We conducted a t-test on Fisher transformed ρ 

values and observed that the model correlated with individual subject behavior for all 

rules at a Bonferroni corrected threshold of p<0.0083 (A: ρ = .60, p = 2.8 ×10-4; (A and 

B) or C: ρ = .43, p = 1.4 ×10-4; (A or B): ρ = .55, p=4.2 × 10-7; (A and B): ρ = .47, p = 9.7 

×10-5; (A or B) and C: ρ = .64, p = 2.5 ×10-6; (A xor B): ρ = .32, p = 9.7 ×10-4). We also 

observed an effect of condition on the correlation between model fit and behavior (F = 

3.28, p = 0.04). It is important to note that these correlations are derived from a model 

with no free parameters. Consequently, the model predicted rather than fit behavior. In 

order to compute likelihoods for model comparison, we fit a single noise parameter, 

corresponding to the probability that participants responded randomly on the given trial, 

independent of what they had learned up to that point.  

 

Figure 2: Comparison of Bayesian rule learning and RL 

a) Results of a random effects Bayesian model comparison procedure between the 

Bayesian rule learning model and two standard RL models shows strong evidence for the 

Bayesian rule model. b) When we include a novel, idealized RL model with a state space 

designed to perform optimally in the task, the evidence for the Bayesian rule learning 

model is weaker but still the strongest of all models. 
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 We next compared the Bayesian rule model with simple but powerful RL models 

from the existing literature on feature learning. We emphasize that humans and animals 

learn using RL in many circumstances, and the following analysis tests whether our 

specific task structure was successful in biasing participants towards rule-learning. For 

example, in feature learning tasks where the feedback is stochastic and only single 

features (rather than complex conjunctions) are reward predictive, RL provides a better 

account of behavior than a Bayesian inference model (Niv et al. 2015).  

 

Reinforcement models are a broad class of models and we focused our analysis on 

models that are 1) commonly used in the literature to describe behavior and 2) are based 

on the established circuits between sensory cortex and the striatum that support model-

free learning (Niv 2009). The first model, naïve RL, learns independently about each 

stimulus. Since each stimulus repeats 2.5 times, on average, this model can perform quite 

well. In addition, this model has described behavior well in related tasks (Niv et al. 

2015), and captures the essence of stimulus-value coding thought to occur in cortico-

striatal pathways (Niv 2009). Because our task is noiseless, it also describes an approach 

to the task based on episodic memory.  

 

The next model, feature RL, learns about each feature (e.g., blue, circular, striped) 

independently. This model reflects the idea that the decomposition of stimuli into 

constituent features in sensory cortex can support cached-value learning based on those 

features (O’Reilly and Rudy 2001). Feature RL could be expected to learn some rules 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2017. ; https://doi.org/10.1101/115253doi: bioRxiv preprint 

https://doi.org/10.1101/115253


	

	 21	

well, {A, A or B}, but struggle with rules that involve conjunctions of features {A and 

B}. We fit each RL model to maximize the likelihood of each participant’s choices and 

computed the corrected Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) approximations to the log model evidence (Experimental Procedures). 

The protected exceedance probability, or the probability that one model is more likely 

than others above and beyond chance (Stephan et al. 2009), for the Bayesian rule learning 

model was very high (BIC: 99.5%, AIC: 99.4 %), suggesting that subjects used Bayesian 

rule learning rather than RL. 

 

These analyses are based on RL models commonly used in the psychological and 

neuroscience literatures on reinforcement learning and motivated by neural circuits for 

reinforcement learning. However, we also constructed a RL model that would be ideally 

suited to learning the rules in our specific task. This third RL model, ideal RL, learns 

weights for all stimuli (unique combinations of shape, color, texture), each individual 

feature, and each pairwise combination of features. This optimized RL model can both 

generalize and learn to represent AND rules.  

 

The ideal RL model is more complex than the naïve RL model. For stimuli with 

multiple features, the state space grows very rapidly (roughly with n choose 2 for n 

features), challenging feasibility of this model. Despite these concerns, we fit this model 

as a best-case scenario of a RL algorithm ideally suited to the demands of our particular 

task. Model comparison across all four models still favored the Bayesian rule learning 

model (pEP = 80.6% for BIC and pEP = 54.6% for AIC; Figure 2), but the evidence in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2017. ; https://doi.org/10.1101/115253doi: bioRxiv preprint 

https://doi.org/10.1101/115253


	

	 22	

favor of the Bayesian rule comparison model was moderate. Rule-by-rule model 

comparison suggests that the naïve RL model outperforms all of the others on the 

challenging XOR rule in which the Bayesian rule model does not describe behavior well, 

as well as (A and (B or C)). The ideal RL model is worse than the Bayesian model for the 

other complex rules and is a bad model for simple rules. These model comparisons 

highlight the need for better modeling of XOR learning and show that the Bayesian rule 

learning model provides a good account of participants’ choices even when compared to 

an RL model using an optimal state space for our task. We conclude that our task 

manipulation was successful in biasing participants towards an explicit rule-based 

learning strategy. 

 

1.3 Striatum activation does not reflect reinforcement learning prediction errors 

  

Our behavioral analysis suggested that our task design successfully biased 

participants towards rule-learning rather than stimulus or feature response learning. We 

next tested whether the striatum reflects prediction errors, which would underlie 

incremental stimulus response learning, or Bayesian “surprise”, which reflects beliefs 

about abstract rules. The learning signal used by RL algorithms is the prediction error, 

which is the difference between the predicted strength of the chosen action and an 

indicator function on whether the action was correct. In our case,  

 

>H& = 	I(Correct&) − ! "&, $012345  
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The analogous signal in our Bayesian rule-learning model, which we call surprise, is 

equal to the difference between the strength of evidence for a category and the actual 

category. If on trial t a given stimulus	"&is a Bim (P& = Bim), then the surprise is given by 

 

"QRSRTU?& = 1 − >(P& = 	WTX	|	"7, … , "&; 	P7, … , P&=7	)  

  

Although RL prediction errors and “surprise” are generally correlated, they diverge in an 

important way. RL prediction error is signed and therefore will almost always be greater 

for correct than for incorrect responses. Although “unsigned prediction errors” exist in 

other modeling frameworks such as predictive coding, we emphasize that in any non-

degenerate environment, reinforcement learning does not work without a signed 

prediction error. The signed error is what endows the model with the ability to prefer 

states and actions that lead to rewards over those that do not. In contrast, surprise will be 

larger for incorrect than correct outcomes because incorrect predictions are necessarily 

more surprising. We designed our sequence of stimuli so that initially a simple rule 

accounted for the data, but later on new data required an update to a more complex rule. 

This procedure ensured there would be trials with large positive surprise and large 

negative prediction error.  

 

Surprise was larger for negative outcomes (t = 21.8, p = 3.7 ×10-93, Figure 3b), 

and outcome valence alone accounted for 22.1% of the variance in surprise. Conversely, 

RL prediction errors extracted from the best-fitting ideal model were larger for positive 

outcomes (t = 47.2, p = 2.3 ×10-310, Figure 3a) and outcome valence alone accounted for 
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57.1% of the variance. The effect of outcome valence on these learning signals was 

powerful and in opposite directions. These effects are useful because they allow for a 

simple and non-parametric test of RPE: a region that does not show a larger response to 

positive than negative outcomes cannot code for a RPE  (See Methods for discussion). 

We therefore predicted that, if the striatum reflects “surprise” in our task, then mean 

striatal blood oxygen level dependent (BOLD) activation should be larger for negative 

compared to positive outcomes. This is a novel prediction given the extensive body of 

work showing larger striatal responses to positive outcomes (Delgado 2007). We 

emphasize that this prediction is specific to our particular task in which negative 

feedback is generally more informative than positive feedback.  

 

An analysis of negative versus positive outcomes yielded a large cluster of voxels 

that encompassed most of the dorsal striatum as well as part of the ventral striatum 

(Figure 3d). The reverse contrast (positive vs. negative outcome) yielded regions in the 

dorsomedial prefrontal cortex (dmPFC) and posterior paracentral lobule (pPCL; corrected  

p < .05, Figure 3c), but no striatal regions were found, even at liberal thresholds (p<0.01, 

uncorrected). The striatum is a functionally heterogeneous structure, but this 

heterogeneity does not follow clear anatomical landmarks (Haber and Knutson 2009). We 

hypothesized that the striatum was tracking the values of rules maintained in lateral 

frontal cortex. We therefore examined whether a striatal subregion defined by its 

connectivity to lateral frontal cortex (Tziortzi et al. 2013), referred to as executive 

striatum, showed the same BOLD activation pattern. We observed a larger response to 

negative outcomes in the executive striatum ROI (t = 3.03, p < 0.01, Figure 4a). 
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Together, these results are incompatible with RL prediction error signaling in the 

striatum.  

 

 

Figure 3: Striatum represents Bayesian Surprise, not reinforcement learning prediction 

error 

a) Mean prediction error from the best fitting RL model, sorted by whether outcome was 

positive or negative. b) Mean surprise from Bayesian rule learning model, sorted by 

whether outcome was positive or negative. c) Whole brain corrected results for the 

contrast of positive > negative outcomes. There were no significant voxels in the striatum 

for this contrast. d) Whole brain corrected results for the contrast of negative > positive 

outcomes. e) Results of a conjunction analysis displaying voxels that are significantly 

active for both negative > positive outcomes and the parametric effect of surprise. Both 

contrasts were corrected for multiple comparisons across the whole brain before being 

entered into the conjunction analysis. f) Whole brain corrected results for the contrast of 

parametric surprise > parametric prediction error, without the effect of outcome partialed 

out.  
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1.4 Striatum activation varies with Bayesian surprise 

 

The outcome valence analysis ruled out RL prediction errors as a plausible 

account of striatal activation in our task. This analysis hinged on the mean effect of 

valence on error signal. We next turned to a model-based analysis to probe whether trial-

by-trial fluctuations in surprise account for striatal activation. We implemented a 

stringent criterion for detecting surprise in a voxel: it must show a conjunction of a main 

effect of negative > positive outcomes and a parametric effect of surprise once outcome 

valence has been partialed out. We used an analogous criterion for RL prediction error. 

This strict criterion is necessary because outcome valence accounts for a large proportion 

of the variance attributable to both surprise and prediction error. If this variance isn’t 

accounted for, a parametric surprise regressor could account for significant variability in 

voxels that are sensitive to some unrelated aspect of outcome, such as the color of the 

outcome text on the display screen. 

 

We included surprise and prediction error in the same model so that any shared 

variability would not systematically bias results. Using the conjunction criterion 

described above, we observed striatal regions sensitive to surprise, in addition to regions 

in supplementary motor area (SMA; p <.05 corrected, Figure 3e). Conversely, we did not 

observe any significant RL prediction error associated activations at our whole brain 

threshold, and did not observe any in the striatum even at a lenient threshold (p<0.01, 

uncorrected). Since the conjunction criterion established that the striatal surprise response 
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was not due to outcome alone, we next formally compared surprise and prediction error 

regressors without projecting out variance due to outcome. This more traditional analysis 

ruled out any potential impact of removing the outcome variance associated with surprise 

or prediction error. We observed a robust response in the striatum for the contrast of 

surprise > prediction error (p < .05 corrected, Figure 3f), but did not observe any 

activation for the reverse contrast in the striatum, even at a lenient threshold (p<0.01 

uncorrected). We additionally tested surprise > prediction error in the executive striatum 

ROI and found the same pattern (t = 4.9, p<0.001, Figure 4b). Together with the results 

of the outcome analysis, we concluded that in our rule-learning task, striatal activation 

reflects Bayesian surprise rather than RL prediction error. This result is consistent with 

our behavioral analysis that established that our task design biased subjects towards a 

strategy of reasoning over rules rather than the incremental buildup of stimulus-response 

contingencies.  
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Figure 4: Striatum and Ventral Midbrain ROI Analyses 

a) Feedback response to positive and negative outcomes taken from a striatum ROI 

defined based on its connectivity to executive cortical areas. This pattern is inconsistent 

with prediction error representation. b) Activation to surprise and RL prediction error 

taken from the same ROI as in (a).  This result indicates that the striatum represents 

Bayesian surprise rather than prediction error. Note that in this analysis the effect of 

outcome has not been partialed out, and therefore the negative beta weight for prediction 

error can arise from the outcome effect in (a). c) Feedback response to positive and 

negative outcomes taken from a ventral tegmental area ROI. This pattern is inconsistent 

with prediction error representation. d) Activation to surprise and prediction error taken 

from the same midbrain ROI. Although the ventral midbrain activation does not support a 
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prediction error signaling account, and its outcome response is consistent with surprise, 

the parametric effect of surprise was not significant.  

 

1.5 Ventral midbrain activation is inconsistent with prediction error 

 Midbrain dopamine neurons have been repeatedly shown to signal reward 

prediction errors, and this property has driven much of the research on the neurobiology 

of learning. However, midbrain dopamine neurons are heterogeneous, and some respond 

to surprising outcomes regardless of the valence (Matsumoto and Hikosaka 2009; 

Bromberg-Martin et al. 2010; Lammel et al. 2012). Such dopamine neurons are 

hypothesized to be important for a salience signal used for orienting responses. We 

expected a salience response to roughly correspond to the surprise signal in our rule 

learning model. We tested wheter ventral midbrain activation was consistent with 

surprise or prediction error, as evidence for the former would suggest neurons in this 

region are important for other types of learning. 

 

 Ventral midbrain activation was greater for negative compared to positive 

outcomes (t = 3.66, p=0.003, Figure 4c), indicating that the ventral midbrain signal did 

not reflect RL prediction errors in our task. Further, surprise provided a better account of 

ventral midbrain activation than prediction error in a direct comparison (t=3.63, 

p=0.003). However, in our more stringent test of surprise that separately examined the 

effect of outcome and the residual variance, residual surprise did not significantly 

account for ventral midbrain activation (p = 0.56, Figure 4d). We therefore cannot rule 

out outcome signaling as underlying this effect. Even though fMRI in the ventral 
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midbrain is complicated by many factors (D'Ardenne et al. 2008) and additional 

brainstem-focused studies are merited, our finding that the ventral midbrain responds 

more to negative outcomes argues against it being engaged in RL prediction error 

signaling in this task.  

 

1.6 Rule updating 

Our analyses show that the Bayesian model described striatal activation better 

than RL prediction errors in a rule learning task. However, the striatum also tracks RPE 

in reinforcement learning tasks(Rutledge et al. 2010). These observations can be 

reconciled under a model where striatal neurons represent values and these values change 

in response to errors. In RL tasks, the errors should come from a RPE algorithm, and in a 

rule-learning task like ours they should reflect rational beliefs about rules. This model 

suggests that apparent BOLD error signals in the striatum can be better characterized as 

changes in value signals. Indeed, striatal extracellular dopamine tracks value, rather than 

prediction error, in a learning task (Hamid et al. 2015). In addition, striatal neurons code 

stimulus and action values in other domains (Samejima et al. 2005; Lau and Glimcher 

2008). However, it is very difficult to distinguish value updating and reward prediction 

error in existing work that uses RL models of BOLD data because the value update and 

reward prediction error are perfectly correlated (their ratio is the learning rate). Our 

Bayesian model allows us to separately examine representation of surprise and rule 

updating because these quantities are not perfectly correlated in the model (Methods).  
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We expected that rule updating would involve both the striatum and the caudal 

inferior frontal sulcus (cIFS), because of the known role of the cIFS in feature-based rule 

maintenance and execution (Koechlin et al. 2003; Badre and D'Esposito 2007; 2009). 

Specifically, we hypothesized that if the cIFS maintains and executes the feature-based 

rule governing behavior, then neural activity in this region should change when the rule 

governing behavior was more likely to change. 

 

We defined rule updating as the Kullback-Liebler (KL) divergence between the 

rule probability distributions estimated by the Bayesian model before and after feedback. 

The KL divergence quantity will be higher when participants were more likely to shift 

their internal representation of rule likelihoods. Although surprise and rule updating were 

correlated (ρ = 0.27, p=0.003), regressors modeling surprise and hypothesis updating 

responses were entered into the same linear model to ensure that each captured a distinct 

component of neural activation. We identified brain regions correlated with rule updating 

at the time of feedback; these regions extended through the bilateral cIFS, intra-parietal 

lobule (IPL), fusiform gyrus, and portions of the dorsal caudate (Figure 5). 

 

Although rule updating occurs during feedback, it is likely that some updating of 

rule-response contingencies happens during subsequent cue periods. Evidence for this 

comes from task-switching paradigms, in which subjects incur a residual switch cost even 

when they have ample time to prepare for the new task (Sohn et al. 2000; Monsell 2003). 

We reasoned that rule updating might occur both during feedback and during the cue 

period of the subsequent trial. We observed activation patterns corresponding to rule 
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updating during the cue period of the subsequent trial in the cIFS and fusiform gyrus 

bilaterally (Figure 5). These clusters appeared to overlap substantially with the feedback 

period results; we formally tested this relationship by performing a conjunction analysis 

to identify the voxels that were active across both maps (Figure 5; (Nichols et al. 2005). 

Both analyses yielded a statistically significant subregion in the cIFS.  

 

Finally, because the change to rule likelihoods is greater following negative 

feedback, we wished to exclude outcome valence as a possible mediator of the effects in 

cIFS. We excluded outcome valence by performing a conjunction test of 1) negative > 

positive feedback and 2) rule updating, after the effect of valence had been partialed out 

via hierarchical regression. Again, we observed activation that included the striatum and 

the cIFS, indicating striatal and cIFS involvement in both the representation of surprise 

and associated rule updating at the time of feedback. However, only the cIFS (not the 

striatum) scaled with rule updating during both the feedback and subsequent cue periods. 

Our findings are consistent with a model in which the cIFS maintains and updates the 

rules governing behavior, while the striatum maintains and updates the values of the 

dominant and competing rules. 

 

1.7 Functional connectivity 

 

The results of the preceding analyses suggest that model-based reward learning is 

facilitated by interactions between the dorsal striatum and cIFS.  We expected that 

functional connectivity between these regions should increase during the feedback 
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period, during which most rule updating was likely to occur. We used the cIFS subregion 

involved in rule updating during both cue and feedback as the seed region in a psycho-

physiological interaction (PPI) analysis. Connectivity between cIFS and dorsal striatum 

increased during the feedback period (Figure 5A), buttressing our claim that rule 

updating occurs via interactions between the striatum, which we hypothesize represents 

the values of rules, and the cIFS, which other literature suggests maintains and executes 

the most accurate one (Miller and Cohen 2001; Koechlin et al. 2003; Badre and 

D'Esposito 2009). 

 

Figure 5: Rule Updating 

a) Rule updating during the feedback period in the striatum and left cIFS b) Rule 

updating during the subsequent cue period in the left cIFS. c) Projections of a and c onto 
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the cortical surface. Red corresponds to rule updating during the feedback period, blue 

corresponds to rule updating during the following cue period. d) Connectivity analysis 

showing functional connectivity between the cIFS conjunction cluster and the striatum.  

 

 

DISCUSSION 

 The association of the striatal feedback response with reward prediction error 

saturates the human cognitive neuroscience literature. Several studies have hypothesized 

that reward prediction error representation is the primary function of striatum during 

learning (Hare et al. 2008; Daw et al. 2011; Garrison et al. 2013). We found that the 

striatal feedback response does not reflect prediction error in a rule learning task that does 

not depend on reinforcement learning. To accommodate both sets of findings, we suggest 

that the striatal feedback response reflects an update to its representation of values of 

stimuli, actions or cortical representations. We additionally find that both the striatum and 

cIFS track the change in beliefs about rules, and that they are functionally coupled during 

feedback. Together, these results suggest that cortico-striatal interactions support learning 

about structured relationships.  

 

In order to probe the nature of the striatal update signal outside of the realm of 

reinforcement learning, we designed a task in which participants are biased towards 

reasoning about explicit rules, rather than relying on the gradual build-up of stimulus-

response contingencies. Our behavioral analysis confirmed that our task design elicited 

behavior that was consistent with a Bayesian optimal rule learning strategy. We next 
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exploited a difference between the feedback signals generated from RL models (reward 

prediction error) and Bayesian rule learning (surprise). RL prediction error is a signed 

learning signal that is larger for positive than negative feedback; in contrast, surprise is 

larger for negative feedback in our task. Negative feedback generated a stronger response 

in the striatum, which rules out a RL prediction error account of the striatal feedback 

response in our task. Further, a striatal BOLD responses tracked a parametric measure of 

Bayesian surprise. Finally, surprise accounted for striatal responses better than prediction 

error. Together, these results indicate that the striatal feedback response reflects Bayesian 

surprise in task conditions where behavior is driven by explicit reasoning about abstract 

rules. 

 

Striatal feedback responses were not well characterized by RL prediction error in 

our learning paradigm. Yet, in reinforcement learning tasks, the striatal feedback 

response clearly tracks reward prediction error (Rutledge et al. 2010). These differences 

across paradigms can be accounted for if the striatal feedback response reflects the 

change in values encoded by striatal neurons in response to new information. This more 

general account of the striatal feedback response is bolstered by several experimental 

observations. First, striatal response to negative feedback increases if the feedback is less 

predictable (Lempert and Tricomi 2015). Second, striatal feedback responses are 

sensitive to subjects’ goals, responding differentially to episodic retrieval success and 

feedback depending on task demands (Han et al. 2010). Third, striatum responds more to 

negative feedback that indicates a set-shift in the Wisconsin card sorting task (Monchi et 

al. 2001); however, this observation is less reliable than the typical prefrontal findings 
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(Buchsbaum et al. 2005; Nyhus and Barceló 2009). Finally, cyclic voltammetry 

measurements in rodents learning a task indicate that striatal dopamine appears to track a 

value, rather than prediction error, signal (Hamid et al. 2015). To build upon these 

experimental observations, we leveraged model-based fMRI and designed a novel 

paradigm to examine the feedback response under conditions where learning does not 

depend on the incremental adjustment of stimulus-response contingencies. However, 

future work measuring the response properties of striatal neurons in humans should 

directly probe the information carried by these neurons during learning.  

 

We did not use explicit rewards, such as money, in our task, which differs from 

some RL experiments. However, the striatum is consistently sensitive to feedback in a 

manner that is similar to its response to explicit rewards (Elliott et al. 1997; Seger and 

Cincotta 2005; Tricomi et al. 2006; Marco-Pallarés et al. 2007; Dobryakova and Tricomi 

2013; Swanson and Tricomi 2014; Lempert and Tricomi 2015). Also, striatum has been 

shown to respond to internally generated reward prediction errors used in hierarchical RL 

(Ribas-Fernandes et al. 2011; Diuk et al. 2013; Iglesias et al. 2013). Both empirical and 

theoretical work suggests that the brain’s learning system should use surrogate rewards to 

learn in the absence of monetary reward receipt.  

 

 We not only found that BOLD responses in the striatum were best represented by 

Bayesian surprise in our task, but we also found that ventral midbrain activation was 

inconsistent with a prediction error signal. Though surprising, this result agrees with 

empirical and theoretical work documenting complexity in the dopamine system 
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(Bromberg-Martin et al., 2010). The prediction error hypothesis of midbrain dopamine 

function has broad empirical support (Glimcher 2011), including recent optogenetic work 

(Steinberg et al. 2013; Eshel et al. 2015) but has never been able to account for the full 

repertoire of midbrain dopamine neuronal firing patterns (Redgrave et al. 1999; Fiorillo 

et al. 2003; Bromberg-Martin and Hikosaka 2009; Bromberg-Martin et al. 2010; Berridge 

2012). This complexity should not be surprising given the profound effects of dopamine 

on physiology in multiple circuits throughout the brain (Goto et al. 2007). There is 

widespread empirical data suggesting that prediction error is just one of several signals, 

including novelty (Lisman and Grace 2005) and motivational salience (Bromberg-Martin 

et al. 2010), that cause downstream dopamine to modulate circuit properties like signal-

to-noise ratio in the prefrontal cortex or plasticity in the hippocampus.  

 

 In some studies, striatal BOLD responses reflect prediction errors, but in ours, it 

reflects Bayesian surprise. We interpret this apparent discrepancy as evidence that 

striatum is involved in updating internal value representations in response to new 

information. In RL, prediction error and value updating are perfectly correlated and 

therefore difficult to distinguish. We leveraged the fact that surprise and rule updating are 

less correlated in the Bayesian model and were able to show that striatum and cIFS were 

involved in updating task rules. The cIFS subregion we identified overlaps with the so-

called “pre-PMd” (Badre and D'Esposito 2009), which is involved in the maintenance 

and execution of rules that depend on the features of visual stimuli (Koechlin et al. 2003; 

Badre and D'Esposito 2007). Our observation that cIFS activation scaled with rule 

updating agrees with a model in which this area maintains and executes the dominant task 
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rule and that the dominant rule driving behavior is changed based on rule value 

representations in the striatum. The observation that cIFS and striatum are functionally 

connected during the feedback period provides support for this model. Future work will 

investigate the chain of sensory processing that connects visual features to abstract 

decision rules in cortex, and the hippocampus may play a critical role in this process 

(Mack et al. 2016). 

 

This study tested the simple idea that the role of the striatum during learning is 

flexible: the striatum computes the value of potential behavioral policies and updates 

them in response to new information, including reward prediction errors. We delineated 

the functional neuroanatomy underlying rule-based learning and in the process ruled out a 

RL account of striatal activation in deterministic category learning.  Our results suggest 

that value updates in the striatum and cortico-striatal connections facilitate the integration 

of evidence to guide behavior based on abstract rules.   
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