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Abstract Genomes are vulnerable to selfish genetic elements that enhance their 23 

own transmission often at the expense of host fitness. Examples are cytoplasmic 24 

elements such as maternally inherited bacteria that cause feminization, 25 

male-killing, parthenogenesis and cytoplasmic incompatibility. We demonstrate, 26 

for the first time, that segregation distortion, a phenomenon so far seen only for 27 

nuclear genetic elements, can also be caused by a cytoplasmic element, the 28 

ubiquitous endosymbiotic bacterium Wolbachia. For Eurema mandarina butterfly 29 

lineages with a Z0 sex chromosome constitution, we provide direct and 30 

conclusive evidence that Wolbachia induces production of all-female progeny by 31 

a dual role: the compensation for the female-determining function that is absent 32 

in Z0 lineages (feminization) and the prevention of maternal sex chromosome 33 

inheritance to offspring as a specific type of segregation distortion. Therefore, 34 

our findings highlight that both sex determination and chromosome inheritance 35 

— crucially important developmental processes of higher eukaryotes — can be 36 

manipulated by cytoplasmic parasites.37 
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Introduction 38 

Genomes of sexually reproducing organisms are exposed to genetic conflicts. 39 

For example, some genes bias reproduction towards male offspring while other 40 

genes within the same genome may favor reproduction of more daughters. 41 

Selfish genetic elements (SGEs), such as meiotic drivers, cytoplasmic sex ratio 42 

distorters and transposons, are extreme examples, which enhance their own 43 

transmission often at the expense of their hosts’ fitness [1,2]. There is growing 44 

evidence that SGEs, and their genetic conflict with host genomes, trigger 45 

important evolutionary change and innovation in eukaryotes [2]. 46 

Segregation distortion (SD), also referred to as meiotic drive, is a 47 

violation of Mendelian law as it leads to the more frequent inheritance of one 48 

copy of a gene than the expected 50% [3,4]. A segregation distorter that sits on a 49 

sex chromosome biases the sex ratio. For example, X-linked segregation 50 

distorter (X drive) and Y-linked segregation distorter (Y drive) in flies (Diptera), 51 

result in female-biased and male-biased sex ratios, respectively [4]. In 52 

male-heterogametic species, X and Y segregation distorters are expected to be 53 

encoded in the nuclear genome. In female-heterogametic species, however, W 54 

chromosome and cytoplasm behave as a single linkage group and thus 55 

distortion of sex chromosome inheritance in female-heterogametic species can 56 

theoretically also be caused by cytoplasmic elements. Although this possibility 57 

has previously been proposed [5,6], lack of empirical evidence questions 58 

whether it is mechanistically possible for cytoplasmic elements to cause SD. 59 

Wolbachia pipientis (Alphaproteobacteria), simply referred to as 60 

Wolbachia, attracts significant interest in evolutionary and developmental biology 61 
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but also in applied fields such as pest management because it can manipulate 62 

reproduction of arthropods in various ways such as cytoplasmic incompatibility, 63 

parthenogenesis induction, feminization and male-killing [7]. Here we 64 

demonstrate for the first time that Wolbachia is responsible for the disruption of 65 

sex chromosome inheritance, which can also be seen as a form of segregation 66 

distortion, in any host species. We do this by providing multifaceted and 67 

conclusive evidence that in the butterfly Eurema mandarina Wolbachia-induced 68 

SD is the underlying mechanism for the production of all-female progeny. In 69 

most populations, E. mandarina is infected with the cytoplasmic-incompatibility 70 

(CI)-inducing Wolbachia strain wCI at a high prevalence of close to 100% [8,9]. 71 

Hiroki et al. [10,11] first reported all-female offspring production in E. mandarina 72 

(then known as Eurema hecabe yellow type), which was considered to be due to 73 

the feminization of genetic males (ZZ) by co-infections with the Wolbachia strain 74 

wFem (hereafter referred to as double infection CF while single infection with 75 

wCI is referred to as C). Three observations about CF lineages supported this 76 

view, i.e., (a) antibiotic treatment of adult females led to the production of 77 

all-male offspring [10], (b) antibiotic treatment of larvae resulted in intersex 78 

adults [12] and (c) females did not have the W chromatin body [10,12]. This has 79 

recently been challenged, because it was demonstrated that CF females have 80 

only one Z chromosome and that this Z chromosome always derived from their 81 

fathers implying that a SD mechanism may be in place albeit it was not clear 82 

whether Wolbachia induced this SD [13]. As a consequence two novel (yet 83 

untested) hypotheses were formed, namely, that CF females have either a Z0 or 84 

a W’Z sex chromosome set (whereby W’ cannot be visualized in W chromatin 85 
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assays and does not have a female-determining function), and that the 86 

disruption of Z chromosome inheritance occurs in CF lineages due to Wolbachia 87 

or another factor, such as those encoded by the host nucleus. 88 

In a multifaceted approach, by combining fluorescence in situ 89 

hybridization (FISH), genome sequencing, quantitative PCR, reverse 90 

transcription PCR and antibiotic treatment, we have tested these two 91 

hypotheses and revealed that CF females are Z0, and that Wolbachia is the 92 

cause for both the disruption of Z chromosome inheritance and the feminization 93 

of Z0 individuals. Our results demonstrate, for the first time, Wolbachia as the 94 

agent that is responsible for distorted sex chromosome inheritance, and thereby 95 

highlight that cytoplasmic elements can have profound effects on oogenesis, sex 96 

chromosome inheritance and sex determination – fundamental biological 97 

processes of eukaryotes. 98 

 99 

Results 100 

All-female-producing CF females have a Z0 sex chromosome constitution 101 

We performed FISH on E. mandarina chromosomes prepared from CF females, 102 

C females, and C males collected on Tanegashima Island (Figure 1; Figure 103 

1—figure supplement 1). In the mitotic complement of C females, which harbor 104 

a 2n = 62 karyotype, genomic probes highlighted the W chromosome, with 105 

scattered signals on the other chromosomes (Figure 2A; see Materials and 106 

Methods for technical details). A probe for the Z-linked gene Kettin (Ket) 107 

identified the single Z chromosome in C females (Figure 2A), and also 108 

hybridized to the Z chromosome paired with the W chromosome in pachytene 109 
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bivalents (Figure 2J). The Ket probe identified two Z chromosomes in the mitotic 110 

complement of C males (Figure 2B; 2n = 62). No painted W chromosome was 111 

observed in interphase nuclei (Figure 2H, I), the mitotic complement (Figure 112 

2C) and pachytene complement (Figure 2L) of CF females, but the Ket signal 113 

appeared on the single Z chromosome in the mitotic complement (Figure 2C) 114 

and Z univalent in the pachytene complement (Figure 2L). Based on the relative 115 

read counts homologous to Bombyx mori Z-linked and autosomal genes in 116 

females and males, our genome sequencing data support the notion that CF and 117 

C females have one Z chromosome (Figures 2M–O; Figure 2—figure 118 

supplement 1), which is consistent with genomic qPCR data based on two loci, 119 

Triosephosphate isomerase (Tpi) and Ket, relative to the autosomal gene EF-1α 120 

[13]. Thus, our results directly reveal the sex chromosome constitution of C 121 

females, C males, and CF females as WZ, ZZ, and Z0, respectively. This 122 

confirms one of two previously suggested sex chromosome constitution of CF 123 

females [13] while it disproves another previous interpretation based on W-body 124 

diagnosis that CF females are ZZ [10,12]. 125 

 126 

All embryos oviposited by CF females are Z0 127 

We performed real-time genomic qPCR (to detect Z-linked Tpi or Ket relative to 128 

autosomal EF-1α) on individual fertilized eggs, and found that C females 129 

oviposited embryos with either one or two Z chromosomes at nearly equal 130 

frequencies (Figure 3A left; Figure 3—figure supplement 1). In contrast, all 131 

embryos oviposited by CF females were single Z carriers (Figure 3A middle; 132 

Figure 3—figure supplement 1). These findings indicate that the progeny of CF 133 
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females are exclusively Z0 individuals, supporting the view that the maternal Z 134 

chromosomes are not inherited in CF lineages. 135 

 136 

Wolbachia causes the exclusive production of Z0 embryos by CF females 137 

To abolish the effects of Wolbachia, tetracycline (tet) was administered to adult 138 

CF females previously inseminated by antibiotic-treated male offspring of C 139 

females. The Z-linked gene dose of embryos laid by these tet-treated females 140 

ranged from approximately 0.5–1.0, indicating that some embryos are Z0 and 141 

others are ZZ (Figure 3A right; Figure 3—figure supplement 1). This suggests 142 

that the Wolbachia strain wFem in CF females causes the exclusive production 143 

of gametes without sex chromosomes that then develop as Z0 embryos after 144 

fertilization. Therefore, our finding is the first empirical evidence that in a 145 

female-heterogametic species the sex-specific linkage disequilibrium can be 146 

caused by cytoplasmic elements [5,6]. Furthermore, Wolbachia-like structures 147 

were observed near the chromosomes in CF females while less apparent in C 148 

females and C males, and this may represent different tropism and function of 149 

wFem when contrasted with wCI (Figure 2C). Sixty-nine adults (15 females and 150 

54 males) were obtained from offspring produced by five tet-treated adult CF 151 

females (Figure 3B). Three of these tet-treated females produced only male 152 

offspring. Exclusive production of males was previously observed in tet-treated E. 153 

mandarina females derived from a different population on Okinawa-jima Island, 154 

Okinawa Prefecture, Japan [10]. In this study, we obtained 15 female offspring 155 

from two broods in the first days after tet treatment; however, the mothers 156 

produced more males as the duration of tet treatment increased, and eventually 157 
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produced only males. Examination of the Z-linked gene dose of these offspring 158 

by genomic qPCR showed that the females had one Z chromosome, whereas 159 

almost all of the males had two Z chromosomes (Figure 3C). The nucleotide 160 

sequences of the introns of the Tpi gene demonstrate that, in brood 19-1, all 161 

females (n = 12) were hemizygous and nine out of 10 males were heterozygous 162 

(Figure 3C; Figure 3—figure supplement 2). Curiously, one male (21m) that 163 

exhibited the lowest gene dose of Ket (0.588) appeared to be hemizygous 164 

(Figure 3C). These results suggest that the emerged females had a Z0 sex 165 

chromosome constitution, whereas most males had a ZZ sex chromosome 166 

constitution, with one exception (21m) of either Z0 or ZZ’ (Z’ represents partial 167 

deletion/mutation in Z). These results also demonstrate that, in principle, 168 

tet-treated adult CF females can oviposit embryos with either a Z0 or ZZ sex 169 

chromosome constitutions (Figure 3A right). However, Z0 individuals appear to 170 

have zero or very low survival rates because few emerge as adults. 171 

 172 

Involvement of Wolbachia in the sex determination of Eurema mandarina 173 

Next, we fed CF larvae a tet-containing diet. As previously observed [12], all 174 

individuals treated in this way developed an intersex phenotype at the adult 175 

stage, typically represented with male-like wing color and an incomplete 176 

male-specific structure on the wing surface (Figure 4E and H; Figure 4—figure 177 

supplement 2). The qPCR assay to assess the Z-linked gene dose revealed 178 

that these intersexes (n = 23) had just one Z chromosome (Figure 4I), and 179 

therefore a Z0 genotype. Because these Z0 individuals were destined to develop 180 

as females without tet treatment, wFem is likely to be responsible for female sex 181 
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determination. Further evidence in support of this idea was obtained by 182 

examining the sex-specific splicing products of dsx (Figure 4—figure 183 

supplement 3), a widely conserved gene responsible for sexual differentiation 184 

[14]. Similar to B. mori [15], C females exhibited female-specific splicing 185 

products of E. mandarina dsx (EmdsxF), whereas C males had a male-specific 186 

splicing product of E. mandarina dsx (EmdsxM; Lanes 1 and 2 in Figure 4A, 187 

respectively; Figure 4B). Similarly to C females, CF females exhibited exclusive 188 

expression of EmdsxF (Lanes 3 and 4 in Figure 4A; Figure 4B). Intersexual 189 

butterflies, generated by feeding the larval offspring of CF females a 190 

tet-containing larval diet, expressed both EmdsxF and EmdsxM (Lanes 5 and 6 in 191 

Figure 4A; Figure 4—figure supplement 1). 192 

 193 

Discussion 194 

We provide comprehensive and conclusive indirect (qPCR of Z gene dosage) 195 

and direct (W chromosome painting; genomic analyses) evidence for the loss of 196 

the W chromosome from CF individuals. Furthermore, we demonstrate that the 197 

Wolbachia strain wFem is directly responsible for chromosomal segregation 198 

distortion (SD) by causing the disruption of sex chromosome inheritance in CF 199 

females of E. mandarina. This is the first empirical proof for previous theoretical 200 

predictions that cytoplasmic SGEs, such as Wolbachia, can cause SD. In E. 201 

mandarina, wFem has a dual role in both causing segregation distortion and 202 

feminization in Z0 lineages that have lost W chromosome and its feminizing 203 

function. 204 

 205 
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Wolbachia disrupts Z chromosome inheritance in Z0 females 206 

Our data provides evidence that the exclusive production of Z0 embryos by CF 207 

females is due to a yet unidentified developmental process that leads to the 208 

disruption of sex chromosome inheritance in CF females prior to oviposition, 209 

thereby the absence of maternal Z chromosome in CF offspring. This process 210 

can be referred to as SD, according to established conceptual frameworks [5,6]. 211 

We believe that two mutually exclusive hypotheses can account for the SD 212 

observed in CF individuals (Figure 5A). The first assumes that a gamete without 213 

the maternal Z chromosome (or without any sex chromosome overall), is always 214 

selected to become an egg pronucleus (meiotic drive sensu stricto) (Figure 5A 215 

left) [16]. The second assumes that meiosis itself is normal, and that maternal Z 216 

chromosomes (or sex chromosomes in general), are selectively eliminated from 217 

Z-bearing gametes during, or possibly after, meiosis (Figure 5A right). At 218 

present, it is unclear which of the two scenarios (meiotic drive sensu stricto or 219 

elimination of the maternal Z at a later stage) is more plausible. However, it is 220 

noteworthy that, in the moth Abraxas grossulariata, a matriline consisting of 221 

putative Z0 females was observed to produce only females or a great excess of 222 

females, and the underlying mechanism was considered to be the selective 223 

elimination of Z chromosomes [17–20]. However, the presence of cytoplasmic 224 

bacteria such as Wolbachia has not yet been examined for this moth species. If 225 

we assume that the elimination of the maternal Z chromosome is the mechanism 226 

of the SD in E. mandarina, the exceptional individual 21m (Figure 3C) could be 227 

viewed as ZZ’ rather than Z0, wherein Z’ is a maternal Z chromosome that was 228 

only partially deleted in the position including Tpi and Ket by the incomplete 229 
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action of wFem. It is possible to further speculate that the presence of wFem 230 

results in the elimination of sex chromosomes in general (Z or W chromosomes) 231 

and, therefore, the absence of W chromosomes in CF females may also be a 232 

direct effect of wFem. 233 

 234 

The feminizing effect of Wolbachia compensates for the loss of the W 235 

chromosome in Z0 individuals 236 

In general, lepidopterans species with Z0/ZZ sex chromosome constitution are 237 

considered to determine their sexes by Z-counting mechanisms, wherein ZZ is 238 

male and Z0 is female [21,22]. However, the appearance of the male phenotype 239 

in Z0 individuals of E. mandarina after antibiotic treatment suggests that wFem in 240 

Z0 individuals compensates for the loss of W and its feminizing function (Figure 241 

5B). We speculate that the W chromosome of E. mandarina acts as an epistatic 242 

feminizer. In B. mori, the W chromosome – more specifically, a piRNA located on 243 

the W chromosome – acts as an epistatic feminizer by silencing Masculinizer on 244 

the Z chromosome [23]. 245 

Reduced survival of Z0 individuals or their offspring after antibiotic 246 

treatment of larvae or adults, respectively, may suggest improper dosage 247 

compensation in Z0 males. Improper dosage compensation was also proposed 248 

to be the cause of male- and female-specific lethality in Wolbachia-infected and 249 

cured lines of Ostrinia moths [24–27]. 250 

 251 

How did the coordinated dual effects of Wolbachia evolve? 252 

We demonstrated that wFem causes SD and feminization in E. mandarina in two 253 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2017. ; https://doi.org/10.1101/115386doi: bioRxiv preprint 

https://doi.org/10.1101/115386


Page 12 of 36 
 

 
 

steps (Figure 5B). This is similar to the dual role of Wolbachia and Cardinium in 254 

haplodiploid parasitoid wasps where they induce thelytokous parthenogenesis in 255 

a two-step mechanism, comprising diploidization of the unfertilized egg followed 256 

by feminization [28,29]. Here, we develop the potential evolutionary scenario 257 

that led to the appearance of both effects in E. mandarina (Figure 6). A WZ 258 

female Eurema butterfly may have acquired wFem that exerted a feminizing 259 

effect on ZZ males. The feminizing effect was lethal to ZZ individuals because of 260 

improper dosage compensation, as evident in Wolbachia-infected Ostrinia 261 

moths (Figure 6A) [26,27]. This could be viewed as a manipulation similar to a 262 

male-killing phenotype [30,31]. However, the feminizing effect of wFem was 263 

redundant in WZ females where the W chromosome acted as a female 264 

determiner [23]. Conversely, the function of W had also become redundant in CF 265 

individuals and this could have led to the loss of the W chromosome and the rise 266 

of a Z0 lineage (Figure 6B). Similarly, in Ostrinia moths, a female-determining 267 

function is thought to have been lost from the W chromosome in 268 

Wolbachia-infected matrilines [25]. Spontaneous loss of a nonfunctional W 269 

chromosome may be easier than expected: in a wild silkmoth Samia cynthia, the 270 

W chromosome does not have a sex-determining function, and Z0 females are 271 

frequently obtained in experimental crosses between subspecies [32]. 272 

Wolbachia has previously been found to be involved in the loss and birth of W 273 

chromosomes in the woodlouse Armadillidium vulgare [33,34]. However, in A. 274 

vulgare it has not yet been tested whether Wolbachia interferes with 275 

chromosome segregation and inheritance as we have mechanistically 276 

demonstrated it for E. mandarina; i.e., after the loss of the W chromosome in CF 277 
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lineages, Wolbachia then acquired a novel function that affected female 278 

oogenesis and resulted in SD (Figure 6C). It is unlikely that SD arose prior to the 279 

feminization function of Wolbachia: if the appearance of SD were to precede the 280 

loss of the W chromosome, the feminizing or female-determining function would 281 

become unnecessary for Wolbachia because there would be no males. In the 282 

short term, disruption of Z chromosome inheritance in females in a 283 

female-heterogametic species represents a great advantage to cytoplasmic 284 

symbionts because all vertically transmitted symbionts gain the opportunity to 285 

survive. However, males are still required for fertilization, and fixation of the 286 

symbionts in the host population will inevitably lead to the extinction of both the 287 

symbionts and the hosts [35]. In the long term, suppressors against sex ratio 288 

distortion, as has been observed for the male-killing phenotypes in the butterfly 289 

Hypolimnas bolina or a ladybird beetle [36,37], can be expected to evolve in the 290 

host. However, the evolutionary outcomes of the suppression of a combined SD 291 

and feminization would be different from that of male-killing suppression, 292 

because it would lead to all-male progeny, resulting in the loss of the matriline 293 

that inherits the feminizing and sex-distorting Wolbachia. This process thereby 294 

selects for an increased frequency of WZ females. 295 

 296 

Concluding remarks 297 

In summary, we demonstrate for the first time that the manipulation of sex 298 

chromosome inheritance and cytoplasmically induced SD can be added to the 299 

repertoire of host manipulations induced by Wolbachia. Therefore, the host 300 

effects of this bacterium are far more diverse and profound than previously 301 
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appreciated. Disentangling these complex interactions between insects and 302 

Wolbachia may provide further exciting discoveries in the areas of host–parasite 303 

interactions, endosymbiosis as well as cell and chromosome biology in years to 304 

come, and perhaps also provide new avenues for pest population control. 305 

 306 

Materials and methods 307 

Collection and rearing of E. mandarina 308 

Female adults of E. mandarina (Lepidoptera: Pieridae) were collected on 309 

Tanegashima Island, Kagoshima, Japan (Figure 1—figure supplement 1). In 310 

the laboratory, each female was allowed to lay embryos on fresh leaves of 311 

Lespedeza cuneata (Fabales: Fabaceae) in a plastic cup with absorbent cotton 312 

immersed with 5% honey solution. The artificial diet for larvae was prepared by 313 

mixing leaf powder of Albizia julibrissin (Fabales: Fabaceae) in the custom-made 314 

Silkmate (Nihon-Nosa, Yokohama, Japan) devoid of mulberry leaves. Insects 315 

were reared under the 16 h/ 8 h light /dark photoperiod at 25°C. 316 

 317 

Antibiotic treatment 318 

We performed antibiotic treatment of two different stages (larval stage and adult 319 

stage) of E. mandarina. For larval antibiotic treatment, larvae were fed with the 320 

artificial diet (shown above) containing 0.05% tetracycline hydrochloride (tet). 321 

For adult antibiotic treatment, female adults were fed with 5% honey solution 322 

containing 0.1% tet. Specifically, CF females were mated to antibiotic-treated 323 

male offspring of C females. Antibiotic treatment of these males was performed 324 

in the larval stage and prevented CI in the crossing. After mating, each CF 325 
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female was allowed to lay embryos on fresh leaves of L. cuneata in a plastic cup 326 

with absorbent cotton immersed with 5% honey solution containing 0.1% tet. 327 

Fresh leaves of L. cuneata and cotton with tet-containing honey solution were 328 

exchanged daily. 329 

 330 

Diagnosis of Wobachia strains 331 

To diagnose Wolbachia strains in E. mandarina, several legs of each adult were 332 

homogenized in STE buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0), 150 333 

mM NaCl) and incubated at 56°C for 30 min followed by 92°C for 5 min. After 334 

centrifugation at 15,000 rpm for 2 min, the supernatant was used for polymerase 335 

chain reaction (PCR) using different primer pairs. The primer pair wsp81F 336 

(5'–TGGTCCAATAAGTGATGAAGAAAC–3') and wsp691R 337 

(5'–AAAAATTAAACGCTACTCCA–3') amplifies a ca. 610-bp fragment of the 338 

Wolbachia wsp gene [38]. The primer pair wsp81F and HecCIR 339 

(5'–ACTAACGTCGTTTTTGTTTAG–3') amplifies a 232-bp fragment of the wsp 340 

gene of wCI, while the primer pair HecFemF 341 

(5'–TTACTCACAATTGGCTAAAGAT–3') and the wsp691R amplifies a 398-bp 342 

fragment of wsp gene of wFem [11,39]. 343 

 344 

Whole genome sequencing and de novo assembly 345 

We performed whole genome sequencing for three types of E. mandarina 346 

individuals (CF females, C females and C males) that were collected on 347 

Tanegashima Island, Japan (Figure 1—figure supplement 1). Six genomic 348 

DNA libraries (two libraries for each sample type derived from two individuals) 349 
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were constructed following manufacturer’s instructions (http://www.illumina.com). 350 

The average insert size of the libraries was approximately 350 bp and each 351 

library was multiplexed using a single indexing protocol. The genomic DNA 352 

libraries were sequenced by Illumina MiSeq using MiSeq Reagent Kit v3 353 

(600-cycle) (Illumina, San Diego, CA). Generated raw reads (8.31 Gb, 5.34 Gb, 354 

and 6.94 Gb for CF females, C females and C males, respectively) were filtered 355 

by Trimmomatic [40] and then mapped to the complete genome of Wolbachia 356 

strain wPip (GenBank: NC_010981.1) by Bowtie2 [41]. Mapped reads were 357 

discarded and then remaining reads of the three samples were merged and de 358 

novo assembled by SGA assembler [42]. Generated genome contig sequences 359 

were used for further analysis. 360 

 361 

Analysis of mapped read counts on chromosomes 362 

To verify that CF and C females have one Z chromosome, we compared 363 

normalized mapped read counts of the three samples on Z chromosomes and 364 

remaining chromosomes. The filtered reads of each sample were mapped to the 365 

genome contigs by Bowtie2 (only concordantly and uniquely mapped reads were 366 

counted) and then normalized mapped read count of each sample on each 367 

contig was calculated based on the ratio of the number of total mapped reads 368 

between the three samples. Nucleotide sequences of relatively long genome 369 

contigs (length is 2 kb or more) with enough coverage (20 or more mapped 370 

reads) were extracted and compared with the gene set A of B. mori [43] by blastx 371 

search (cutoff e-value is 1e-50). Genome contigs with blastx hits were extracted 372 

and classified into 28 chromosomes based on the location of the homologous B. 373 
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mori genes. For each chromosome, the average number of relative normalized 374 

mapped read counts was calculated for each sample (the number of C males 375 

was normalized to 1) using the normalized mapped read counts in the classified 376 

genome contigs, respectively. 377 

 378 

Sanger sequencing 379 

To genotype Z chromosomes, a highly variable intron of Z-linked 380 

triosephosphate isomerase (Tpi) gene was PCR amplified using the primers, 381 

5'–GGTCACTCTGAAAGGAGAACCACTTT–3' and 382 

5'–CACAACATTTGCCCAGTTGTTGCAA–3', located in coding regions [44]. The 383 

PCR products were treated with ExoSAP-IT® (Affymetrix Inc., Santa Clara, CA) 384 

and subjected to direct sequencing at Eurofins Genomics K.K. (Tokyo, Japan). 385 

No indels or SNPs were observed in sequence chromatograms of females; 386 

some males where heterozygous due to detected double peaks and shifts of 387 

sequence reads. By sequencing from both sides, it was possible to obtain the 388 

genotypes of males and females (Figure 3—figure supplement 2). 389 

 390 

FISH analysis 391 

In most lepidopteran species a conspicuous heterochromatic body is exclusively 392 

found in female polyploid nuclei. Since W derived-BAC as well as genomic 393 

probes have highlighted the W chromosomes and heterochromatin bodies in B. 394 

mori [45,46], there is no doubt that the bodies consist of the W chromosomes. 395 

The diagnosis however retains unreliable if a species of interest carries a 396 

W–autosomal translocation and/or partial deletion of the W [47,48]. Hiroki et al. 397 
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[10] as well as Narita et al. [12] relied on the W-body diagnosis for C and CF 398 

females and concluded that they have WZ and ZZ sex chromosome 399 

constitutions, respectively. However, Kern et al. [13] has recently found that, on 400 

the basis of genomic qPCR designed to amplify Z-linked gene sequences (Tpi 401 

and Ket) relative to an autosomal gene (EF-1α), both CF and C females have 402 

only one Z chromosome while males have two Z chromosomes. This finding 403 

rejected the previous conclusion that the sex chromosome constitution of CF 404 

females is ZZ [10,12] but was inconclusive about whether CF females have a Z0 405 

or W’Z system (with W’ as a modified W that has lost the feminization function 406 

and cannot be detected by the W-body assay). Hence we carried out more 407 

extensive chromosome analysis (other than just the W-body) to directly prove 408 

whether CF females carry the W or not. 409 

In Lepidoptera, the W chromosome can be highlighted by FISH using 410 

probes prepared from whole genomic DNA of males or females. The capablity of 411 

FISH probes in detecting the W chromosome is due to the numerous repetitive 412 

short sequences occupying the W chromosome, which is then prone to be 413 

hybridized by random sequences. Genomic probes also paint repetitive regions 414 

scattered across other chromosomes, albeit at a lower density (autosomes and 415 

Z chromosome). Here we made mitotic and pachytene chromosome 416 

preparations from wing discs and gonads, respectively, in the last instar larvae of 417 

C and CF individuals of E. mandarina (see [49] for details). Genomic DNA was 418 

extracted from tet-treated C female larvae. Insect telomeric repeats were 419 

amplified by non-template PCR [50]. Kettin (Ket) gene fragments were amplified 420 

from adult cDNA synthesized by PrimeScript™ RT reagent Kit (TaKaRa, Otsu, 421 
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Japan) and cloned by TOPO® TA Cloning® Kit (Thermo Fisher Scientific, 422 

Waltham, MA). We used 4 pairs of primers, Em_kettin_F1: 423 

5'–AGGTAATCCAACGCCAGTCG–3' and Em_kettin_R1: 424 

5'–TGCTTGCCCTAAGGCATTGT–3', Em_kettin_F2: 425 

5'–ACAATGCCTTAGGGCAAGCA–3' and Em_kettin_R2: 426 

5'–TGGGCAAAGCCTCTTCATGT–3', Em_kettin_F3: 427 

5'–AGATTCCGCACTACGCATGA–3' and Em_kettin_R3: 428 

5'–TAAATTGTGGTGGGACGGCA–3', Em_kettin_F5: 429 

5'–ACATGAAGAGGCTTTGCCCA–3' and Em_kettin_R5: 430 

5'–TCATGCGTAGTGCGGAATCT–3', for PCR amplification with 94°C for 5 min 431 

followed by 35 cycles of 94°C for 30 s, 60°C for 30 s and 72°C for 3 min finalized 432 

by 72°C for 10 min. Probe labeling was done by using the Nick Translation Kit 433 

(Abbott Molecular, Des Plaines, IL). We selected Green-dUTP, Orange-dUTP 434 

(Abbott Molecular Inc.) and Cy5-dUTP (GE Healthcare Japan, Tokyo) 435 

fluorochromes for genomic DNA, Ket and insect telomeric repeat (TTAGG)n 436 

probes respectively. Hybridizations were carried out according to protocols 437 

described elsewhere [49]. Signal and chromosome images were captured with a 438 

DFC350FX CCD camera mounted on a DM 6000B microscope (Leica 439 

Microsystems Japan, Tokyo) and processed with Adobe Photoshop CS2. We 440 

applied green, red and yellow pseudocolors to signals from Green, Orange and 441 

Cy5 respectively. 442 

 443 

Quantitative polymerase chain reaction (qPCR) 444 

Embryos of mated females were sampled 48 h after the oviposition and stored at 445 
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–80°C until DNA extraction. Embryos were individually subjected to DNA 446 

extraction using DNeasy® Blood & Tissue Kit (Qiagen, Tokyo, Japan). Real-time 447 

fluorescence detection quantitative PCR (qPCR) was performed using SYBR 448 

Green and a LightCycler® 480 System (Roche Diagnostics K.K., Tokyo, Japan). 449 

Z-linked Tpi was amplified using TPI-F (5'–GGCCTCAAGGTCATTGCCTGT–3') 450 

and TPI-R (5'–ACACGACCTCCTCGGTTTTACC–3'), Z-linked Ket was amplified 451 

using Ket-F (5'–TCAGTTAAGGCTATTAACGCTCTG–3') and Ket-R 452 

(5'–ATACTACCTTTTGCGGTTACTGTC–3'), and autosomal EF-1α was 453 

amplified using EF-1F (5'–AAATCGGTGGTATCGGTACAGTGC–3') and EF-1R 454 

(5'–ACAACAATGGTACCAGGCTTGAGG–3') [13]. For each qPCR, a standard 455 

dilution series of PCR products (108, 107, 106, 105, 104 and 103 copies per 456 

microliter) was included in order to estimate the absolute copy numbers of the 457 

target sequence in the samples. To prepare standard samples, PCR products 458 

were gel-excised and purified by Wizard® SV (Promega). Copy numbers of the 459 

standard samples were estimated by the concentration measured by a 460 

spectrophotometer, considering that the molecular weight of a nucleotide is 309 461 

g/mol. For each qPCR, two replicates were performed that delivered similar 462 

results. All qPCRs were performed using a temperature profile of 40 cycles of 463 

95°C for 5 s, 60°C for 10 s, and 72°C for 10 s. The qPCR data were analyzed by 464 

the Absolute Quantification analysis using the Second Derivative Maximum 465 

method implemented in the LightCycler® 480 Instrument Operator Software 466 

Version 1.5 (Roche). 467 

 468 
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RT-PCR 469 

RNA was extracted from adult abdomens that were stored at -80°C using 470 

RNeasy® Mini Kit (Qiagen, Tokyo, Japan). The cDNA synthesized by using 471 

Superscript™ III (Invitrogen) and Oligo(dT) was used as a template for RT-PCR. 472 

A partial sequence of dsx which contains alternative splicing sites was amplified 473 

using a primer pair, E520F (5'–GCAACGACCTCGACGAGGCTTCGCGGA–3') 474 

and EhdsxR4 (5'–AGGGGCAGCCAGTGCGACGCGTACTCC–3') and a 475 

temperature profile of 94°C for 2 min, 30 cycles of 94°C for 1 min, 57°C for 1 min 476 

and 72°C for 1 min 30 s, followed by 72°C for 7 min. The sequences of seven 477 

dsxF isoforms and a dsxM isoform were deposited in DDBJ/EMBL/Genbank 478 

(LC215389-LC215396). 479 

 480 
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Figure legends 666 

 667 

Figure 1. E. mandarina butterflies used in this study. (A) A photo of E. 668 

mandarina taken in Tanegashima Island. (B) Characteristics of three types of E. 669 

mandarina individuals inhabiting Tanegashima Island. 670 

 671 

Figure 2. Fluorescence in-situ hybridization and sequence read counts for a C 672 

female, C male, and CF female E. mandarina. A–C: Mitotic complements 673 

hybridized with a genomic probe (green; green arrows) and a Z-linked Ket probe 674 

(red; red arrows) in a C female (2n = 62) (A), C male (2n = 62) (B), and CF 675 

female (2n = 61) (C). D–I: Genomic in situ hybridization (GISH) and FISH with a 676 

Z-linked Ket probe performed on interphase nuclei of E. mandarina C females (D, 677 

E), C males (F, G), and CF females (H, I). J–L: GISH, telomere-FISH and FISH 678 

with Ket probe performed on pachytene complements of E. mandarina C 679 

females (G, n = 31), C males (H, n = 31), and CF females (I, n = 31). Green paint 680 

signals in A, E and J revealed that C females have the W chromosome. The Ket 681 

probe signals (red) appeared on the Z pairing to the W in C females (J), the ZZ 682 

bivalent in C males (K), and the Z univalent of CF females (L). The single signals 683 

were observed both in C and CF female nuclei. The signals in C females (J) and 684 

males (K) clearly showed their respective WZ and ZZ chromosome sets, and a 685 

Z0 chromosome set in CF females (L). W: W chromosome; Z: Z chromosome; 686 

white arrows: Wolbachia-like structures. A bar represents 10 μm. M–O: Relative 687 

normalized sequence read counts in CF females, C females, and C males for 67 688 

contigs homologous to Bombyx mori loci on chromosome 1 (Z chromosome; M), 689 
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28 contigs homologous to B. mori loci on chromosome 4 (N), and 33 contigs 690 

homologous to B. mori loci on chromosome 16 (O), with relative read counts set 691 

to 1 (males). Details about genome sequencing are provided in Materials and 692 

Methods. 693 

 694 

Figure 3. Effects of wFem on Z-linked gene dose in E. mandarina offspring. (A) 695 

Estimate of the gene dose of Ket (relative gene copies per copy of EF-1α) by 696 

genomic quantitative polymerase chain reaction (qPCR) analysis in each of the 697 

fertilized eggs laid by C females, CF females, and tetracycline (tet)-treated CF 698 

females. Each colored circle represents a single fertilized egg. Sample sizes are 699 

given in parentheses. (B) Offspring sex ratio of five females tet-treated prior to 700 

oviposition and three non-treated CF females. Numbers to the left of the arrows 701 

represent duration (days) of tet treatment. Blue dots and red dots represent 702 

males and females, respectively. (C) Estimate of the gene dose of Ket (relative 703 

gene copies per copy of EF-1α) by genomic qPCR in each of the adult offspring 704 

produced by CF females that were tet-treated during the adult stage (prior to 705 

oviposition). Each circle represents an adult offspring. Z chromosomes of these 706 

offspring individuals were genotyped as ZA, ZB, ZC or ZD on the basis of intron 707 

nucleotide sequence of Z-linked Tpi. The green arrow points to a male individual 708 

(adult) whose karyotype was considered to be Z0 but possibly ZZ’ (see text for 709 

details). f: female, m: male. 710 

 711 

Figure 4. Effects of wFem on splicing of the doublesex gene in E. mandarina. 712 

(A) Reverse-transcription polymerase chain reaction (RT-PCR) products of E. 713 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2017. ; https://doi.org/10.1101/115386doi: bioRxiv preprint 

https://doi.org/10.1101/115386


Page 32 of 36 
 

 
 

mandarina doublesex (Emdsx) run on an agarose gel. Lane 1: C female; lane 2: 714 

C male; lanes 3 and 4: CF females; lanes 5 and 6: intersexes generated by 715 

tetracycline (tet) treatment of larvae produced by CF females; lane 7: 100-bp 716 

ladder. Females have at least seven splicing products, whereas males have a 717 

single product. (B) Structures of the splicing products of Emdsx. Translated 718 

regions are indicated by red and blue bars, untranslated regions by gray bars, 719 

and stop codons by triangles. Numbers of clones obtained by cloning the 720 

RT-PCR products are shown in the table on the right. C–H: color and 721 

morphology of forewings. Females are pale yellow on the dorsal side of the 722 

forewings (C) and do not have sex brand on the ventral side of the forewings (F), 723 

while males are intense yellow on the dorsal side of the forewings (D) and have 724 

sex brand on the ventral side of the forewings (G). Many of the intersexes 725 

generated by tet-treating CF larvae are strong yellow on the dorsal side of the 726 

forewings (E) and have faint sex brand on the ventral side of the forewings (H). 727 

 728 

Figure 5. (A) Schematic illustration of two alternative mechanistic models of 729 

sex-chromosome segregation distortion that explain the observed data. The 730 

“Selection against Z gametes” model assumes that Z-bearing gametes are 731 

selected against during meiosis (left). The “Elimination of maternal Z” model 732 

assumes that Z chromosomes are eliminated during or after normal meiosis, 733 

while all the autosomes being intact (right). (B) All-female production explained 734 

by Wolbachia–host interaction. Effects of wFem on the development and sex 735 

determination of E. mandarina, and outcomes of larval versus adult tet treatment 736 

are illustrated. Asterisk: The majority of Z0 males die, but a few survived. 737 
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 738 

Figure 6. Hypothetical evolutionary trajectory of the Wolbachia–host interaction 739 

in E. mandarina. See Discussion for details.740 
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Legends of figure supplements 741 

 742 

Figure 1 743 

Figure supplement 1. Habitat of E. mandarina in Japanese archipelago. (A) In 744 

this study, female adults of E. mandarina were collected on Tanegashima Island 745 

(map), located ca. 40 km from the southern tip of Kyushu, Japan. Within E. 746 

mandarina, the Wolbachia strain wCI is currently spreading northwards [8] 747 

together with the mitochondrial haplotypes introgressed from a sibling species (E. 748 

hecabe) by hybridization (hitchhiking effect; [9]). (B) On the basis of Wolbachia 749 

infection status, E. mandarina females can be categorized into three groups: 750 

uninfected females, C females (those singly infected with wCI), and CF females 751 

(those doubly infected with wCI and wFem). These designations and their 752 

offspring sex ratio are summarized in the table. To date, in E. mandarina, CF 753 

females have only been found on Okinawa-jima Island [10,11] and Tanegashima 754 

Island [12,39]. 755 

 756 

Figure 2 757 

Figure supplement 1. Relative normalized sequence read counts for 440 758 

contigs of E. mandarina that matched to B. mori loci on 28 chromosomes. Means 759 

and standard errors are shown for CF females and C females while those of C 760 

males were set to 1. 761 

 762 

Figure 3 763 

Figure supplement 1. Estimate of Z-linked gene dose of E. mandarina. 764 
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Estimate of the gene dose of Ket (top) and Tpi (bottom), relative gene copies per 765 

EF-1α, by genomic qPCR in each of the fertilized eggs laid by C females, CF 766 

females and tet-treated CF females. Each circle represents an egg. Each of the 767 

codes along the x-axes indicate the brood produced by a single mother. 768 

Figure supplement 2. Genotyping of Z chromosome based on nucleotide 769 

polymorphism of Tpi. (A) Sequence polymorphism of Tpi. In our experiment, Z 770 

chromosomes were categorized into four (ZA, ZB, ZC and ZD) on the basis of Tpi 771 

sequence. An en dash represents a gap. (B) Examples of genotyping based on 772 

Tpi sequence data. Red triangles represent polymorphic sites. When ZB was 773 

paired to ZA, ZC or ZD, sequence gaps resulted in ambiguity from the position 109 774 

(shown with a red arrow). 775 

 776 

Figure 4 777 

Figure supplement 1. Detection of Emdsx in adults that were tet-treated during 778 

various larval stages. The numbers of adults that failed to emerge from their 779 

pupal cases are shown with gray. 780 

Figure supplement 2. (A-B) Intersexual adults generated by feeding the CF 781 

larvae with tet-containing diet. Their wings are often curled or crumpled. Most of 782 

them are trembling and cannot stand still. (C) Normal females. Their wings are 783 

neatly closed. 784 

Figure supplement 3. (A) Amino acid sequences of female splice forms of dsx 785 

genes derived from Eurema mandarina (EmdsxF: LC215389) and other 786 

lepidopteran species, Lymantria dispar (LddsxF: BAN82533), Ostrinia scapulalis 787 

(OsdsxF: BAJ25851) and Bombyx mori (BmdsxF: NP_001036871). (B) Amino 788 
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acid sequences of male splice forms of dsx genes derived from E. mandarina 789 

(EmdsxM: LC215396), L. dispar (LddsxM: BAN82532), O. scapulalis (OsdsxM: 790 

BAJ25850), and B. mori (BmdsxM: AHF81625). (C) Unrooted NJ tree of the dsx 791 

gene based on amino acid sequences. Em: E. mandarina (LC215389), Dp: 792 

Danaus plexippus (EHJ78146), Px: Papilio xuthus (XP_013171086), Ob: 793 

Operophtera brumata (KOB69684), Bm: B. mori (NP_001036871), Tv: Trilocha 794 

varians (BAS02078), Amy: Antheraea mylitta (ADL40853), At: Amyelois 795 

transitella (XP_013184257), Ha: Helicoverpa armigera (AHF81652), Of: Ostrinia 796 

furnacalis (AHF81640), Ld: L. dispar (BAN82533), Am: Apis mellifera 797 

(ABV55180), Nl: Neodiprion lecontei (XP_015517992), Ar: Athalia rosae 798 

(XP_012262273), Cm: Cyclommatus metallifer (BAO23810), Td: Trypoxylus 799 

dichotomus (BAM93344), Ot: Onthophagus taurus (AEX92939), Tc: Tribolium 800 

castaneum (AFQ62107), Ag: Anopheles gambiae (XP_309601), Cq: Culex 801 

quinquefasciatus (AJB28478), Aa: Aedes aegypti (ABD96571), Md: Mayetiola 802 

destructor (AGW99160), So: Sciara ocellaris (CDN30082), Bc: Bradysia 803 

coprophila (CDN30080). 804 
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FIGURE 2—figure supplement 1
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FIGURE 4—figure supplement 2
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