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Abstract

Systems neuroscience is in a head-long rush to record from as many neurons at the
same time as possible. As the brain computes and codes using neuron populations, it
is hoped these data will uncover the fundamentals of neural computation. But with
hundreds, thousands, or more simultaneously recorded neurons comes the inescapable
problems of visualising, describing, and quantifying their interactions. Here I argue
that network theory provides a set of scalable, analytical tools that already solve
these problems. By treating neurons as nodes and their interactions as links, a single
network can visualise and describe an arbitrarily large recording. I show that with this
description we can quantify the effects of manipulating a neural circuit, track changes
in population dynamics over time, and quantitatively define theoretical concepts of
neural populations such as cell assemblies. Using network theory as a core part of
analysing population recordings will thus provide both qualitative and quantitative
advances to our understanding of neural computation.

Neurons use spikes to communicate (Rieke et al., 1999). From this communication
arises coding and computation within the brain; and so arises all thought, perception, and
deed. Understanding neural circuits thus hinges critically on understanding spikes across
populations of neurons (Pouget et al., 2013; Wohrer et al., 2013; Yuste, 2015).

This idea has driven a technological arms race in systems neuroscience to record from
as many individual neurons as the same time as physically possible (Stevenson and Ko-
rding, 2011). Current technology, ranging from imaging of fluorescent calcium-binding
proteins (Chen et al., 2013; Peron et al., 2015a,b) to large scale multi-electrode arrays
and silicon probes (Buzsdki, 2004; Jun et al., 2017), now allows us to capture the activity
of hundreds of neurons in a range of brain systems. These include such diverse systems
as invertebrate locomotion, through zebrafish oculomotor control, to executive functions
in primate prefrontal cortex. With the data captured, the key question for any system
becomes: how do we describe these spike data? Visualise them? And how do we discover
the coding and computations therein?

Here I argue that network theory provides a set of tools ideally suited to both describe
the data and discover new ideas within it. Networks are simply a collection of nodes
and links: nodes representing objects, and links representing the interactions between
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Figure 1: Quantifying neural population dynamics using network theory.

A) Schematic of turning neural activity time-series into a network. Left: a raster plot of 52
simultaneously recorded neurons in rat medial prefrontal cortex, during a single trial of a Y-maze
navigation task. Blue line: reached end of goal arm. Grey lines: at, and returned to, the starting
position. Right: the corresponding network representation: nodes are neurons, links indicate
pairwise interactions, and their grey-scale indicates the strength of interaction. Top: Interactions
here are rectified Pearson’s R between pairs of spike-trains convolved with a Gaussian (¢ = 250
ms); two example convolved trains are plotted here. B) Representations of the network in panel A:
the adjacency matrix describes the presence (black) or absence (white) of links; the weight matrix
describes the strengths of those links. Neurons are ranked by total link strength in descending
order. Above each we give the global efficiency (Eff) and average clustering coefficient (C),
respectively measuring the ease of getting from one node to another, and the density of links in
the neighbourhood of one node. C) Distributions of node degree (total number of links per node),
node strength (total weight of links per node), and link strength for the network in panel A. D)
Network clustering fingerprint. A histogram of the weighted clustering coefficient for each neuron,
measuring the ratio of weighted triangles to weighted triples in which that neuron participates: the
higher the ratio, the more strongly connected is the neighbourhood of that neuron. Some neurons
(e.g. 2, 5) have strongly connected neighbourhoods, implying a local group of correlated neurons.
E) Network efficiency fingerprint, given by the decrease in the network’s global efficiency after
deleting each neuron in turn. Neurons that strongly decrease the efficiency (e.g. 3) are potential
network hubs, mediating interactions between many neurons.

those objects. This representation can encapsulate a wide array of systems, from email
traffic within a company, through the social groups of dolphins, to word co-occurrence
frequencies in a novel (Newman, 2003). By abstracting these complex systems to a network
description, we can describe their topology, compare them, and deconstruct them into their
component parts.
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Describing multi-neuron data as a network

A network description of multi-neuron recording data rests on two ideas: the nodes are the
neurons, and the links are the interactions between the neurons (Figure 1A). (Strictly, the
nodes are the isolated time-series of neural activity, with the usual caveats applied to the
accuracy of spike-sorting for electrodes or image segmentation and stability for imaging;
Harris et al., 2016). An immediate advantage of a network formalism is that it separates
the details of choosing the interaction from the network topology itself.

We are free to choose any measure of pairwise interaction we like; and indeed that
choice depends on what questions we want to ask of the data. Typical choices include
cosine similarity or a rectified correlation coefficient, as these linear measures are familiar,
easy to interpret, and not data-intensive. But with sufficient data we could also use non-
linear measurements of interaction including forms of mutual information (Bettencourt
et al., 2007; Singh and Lesica, 2010) and transfer entropy (Schreiber, 2000; Thivierge,
2014). We could fit an Ising model, so estimating “direct” interactions while factoring out
other inputs (Yu et al., 2008). We could even fit a model to each neuron for the generation
of its spike train, such as a generalised linear model (Truccolo et al., 2005; Pillow et al.,
2008), and use the fitted weights of the inputs from all other neurons as the interaction
values in a network (Gerhard et al., 2011). Whatever measure of interaction we use, the
important distinction is between whether the interaction measurement is undirected (e.g.
correlation coefficient) or directed (e.g. transfer entropy), and so whether we end up with
an undirected or directed network as a result.

And we end up with a weighted network (Newman, 2004). While much of network
theory, and its application in neuroscience, is focussed on binary networks in which a
link either exists or it doesn’t, any measurement of interaction gives us a weight for
each link (Figure 1B). Thresholding the weights to construct a binary network inevitably
loses information (Humphries, 2011; Zanin et al., 2012). Consequently, our multi-neuron
recording data are best captured in a weighted network.

One immediate advantage of using a network formalism is that we then have access to a
range of null models for testing the existence of meaningful interactions between neurons
and changes to those interactions. These models define the space of possible networks
obtained by some stochastic process. One common example is the configuration model
(Chung and Lu, 2002; Fosdick et al., 2016), in which we assume connections between nodes
are made proportional to the number of links they already have. This model, applied to
neural time-series, is a null model for testing whether the existence of interactions between
a pair of neurons is simply a result of those neurons having many interactions. Other null
model networks include the exponential random graph model (Robins et al., 2007), or
the stochastic block model and its variants (Newman and Martin, 2014). More work
though is needed for appropriate weighted network null models (Rubinov and Sporns,
2011; Palowitch et al., 2016). Whatever null model network we chose, by using networks
to describe neural recordings we open up a range of rigorous models for hypothesis testing.

What can we do with such “dynamical” networks of neurons? In the following I
show how with them we can quantify circuit-wide changes following perturbations and
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manipulations; we can track changes in dynamics over time; and we can quantitatively
define qualitative theories of computational concepts.

Capturing circuit-wide dynamics and their changes by ma-
nipulations

Applying network theory to large-scale recordings of neural systems allows us to capture
their complex dynamics in a compact form. The existing toolbox of network theory gives
us a plethora of options for quantifying the structure of a dynamical network. We may
simply quantify its degree and strength distributions, revealing dominant neurons (Figure
1C). We can assess the local clustering of the dynamical network, the proportion of a
neuron’s linked neighbours that are also strongly linked to each other (Watts and Strogatz,
1998; Figure 1D), revealing the locking of dynamics among neurons (Bettencourt et al.,
2007; Sadovsky and MacLean, 2013). We can compute the efficiency of a network (Latora
and Marchiori, 2001), a measure of how easily a network can be traversed (Figure 1E),
revealing how cohesive the dynamics of population are - the higher the efficiency, the
more structured the interactions amongst the entire population (Thivierge, 2014). We
may define structural measures relative to a null model, such as quantifying how much
of a small-world the dynamical network is (Yu et al., 2008; Gerhard et al., 2011). Our
choice of quantifying measures depends on the aspects of dynamics we are most interested
in capturing.

Having compactly described the dynamics, we are well-placed to then characterise
the effects of manipulating that system. Manipulations of a neural system will likely
cause system-wide changes in its dynamics. Such changes may be the fast, acute effect of
optogenetic stimulation (Miesenbock, 2009; Boyden, 2015; Deisseroth, 2015); the sluggish
but acute effects of drugs (Vincent et al., 2013); or the chronic effects of neurological
damage (Otchy et al., 2015). All these manipulations potentially change the interactions
between neurons, disrupting normal computation. By comparing the dynamical networks
before and after the manipulation, one could easily capture the changes in the relationships
between neurons.

There have been few studies examining this idea. Srinivas et al. (2007) used dynamical
networks to quantify the changes to network-wide activity in hippocampus caused by the
glutamate-injury model of epilepsy, suggesting a dramatic drop in network clustering in the
epilepsy model. Vincent et al. (2013) used dynamical networks to quantify the potential
neuroprotective effects of drug pre-conditioning in rat cortex in vitro, finding increased
clustering and increased efficiency in the network, implying the drugs enriched the synaptic
connections between groups of neurons. Quantifying manipulations using network theory
is an under-explored application, rich in potential.
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Figure 2: Tracking changes in neural population dynamics using network theory.

A) Recordings examined here are from one behavioural session of a Y-maze learning task. For this
session, the rat had to reach the end of the randomly-cued arm to receive reward (schematic, top).
This session showed evidence of behavioural learning (bottom), with a sustained increase in reward
accumulation after trial 10 (grey line). A trial lasted typically 70 s, running from the rat leaving
the start position through reaching the arm end and returning to the start position to initiate the
next trial. B) Dynamical networks from trials 1, 5 and 20 of that session. The top row plots the
networks, with nodes as neurons and greyscale links indicating the strength of pairwise interaction.
The bottom row plots the corresponding weight matrix (ordered by total node strength in trial 1
throughout). The networks show a clear re-organisation of interactions between neurons during
learning. C) Tracking network stability. The correlation between the weight matrix W at trial ¢
and at trial ¢ — 1. The dynamical network rapidly increased in similarity over the first few trials.
Grey line: behavioural learning trial. D) Clustering coefficient of the weighted network ("Data’) on
each trial; compared to the mean clustering coefficient over 20 null model weighted networks per
trial ("Model’). E) Excess clustering in the data compared to the null model on each trial (data
in panel D expressed as a ratio: 100 X Cgata/Cmodel). The variation across trials in the data is
well-accounted for by the null model, suggesting the average local clustering did not change over
learning.

Tracking the evolution of dynamics

Neural activity is inherently non-stationary, with population activity moving between
different states on a range of time-scales, from shifting global dynamics on time-scales of
seconds (Zagha and McCormick, 2014), to changes wrought by learning on time-scales
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of minutes and hours (Benchenane et al., 2010; Huber et al., 2012). For a tractable
understanding of these complex changes, ideally we would like a way describe the entire
population’s dynamics with as few parameters as possible. A recent example of such an
approach is population coupling, the correlation over time between a single neuron’s firing
rate and the population average rate (Okun et al., 2015). But with dynamical networks
we can use the same set of tools above, and more, to easily track changes to the population
activity in time.

Figure 2 illustrates the idea of tracking non-stationary activity with data from a study
by Peyrache et al. (2009). Rats were required to learn rules in a Y-maze to obtain reward.
I use here a single session in which a rat learned the rule “go to the cued arm” (Figure 2A);
52 simultaneously recorded neurons from medial prefrontal cortex were active in every trial
of this session. As the rat learned the rule in this session, we might reasonably expect the
population activity to evolve. Visualising trial-by-trial changes using dynamical networks
(built as in Figure 1A) shows a stabilisation of the interactions between neurons over trials
(Figure 2B). Quantifying this by correlating weight matrices on consecutive trials (Figure
2C), confirms there was a rapid stabilisation of neuron interactions at the start of this
learning session. These analyses thus track potentially learning-induced changes in the
population activity of prefrontal cortex.

We can also use these data to illustrate the benefits we accrue from the null models
in network theory. Figure 2D plots the average clustering coefficient ; for the dynamical
networks, and we can see that it varies across trials. We can compare this to a suitable null
model; here I use a null model that conserves node strength, but randomly re-assigns the
set of weights between nodes (Rubinov and Sporns, 2011). Plotting the average clustering
coefficient for this null model on each trial shows that the clustering in the data-derived
dynamical networks is well in excess of that predicted by the null model: the neurons
are more densely connected locally than predicted by just their total interactions with all
neurons.

But the null model also shows that the average local clustering does not change over
learning. Plotting the ratio of the data and model clustering coefficients shows that it is
approximately constant (Figure 2E), showing that trial-by-trial variation in clustering is
largely accounted for by variations in the overall interactions between neurons (one source
of these might be finite-size effects in estimating the interactions on trials of different
durations). So we can conclude that changes over learning in this population of neurons
reflected a local reorganisation (Figure 2B) and stabilisation (Figure 2C) of interactions,
but which did not change the population-wide distribution of clustering.

The rich potential for tracking dynamics with the readily-available metrics of network
theory has not yet been tapped. As just demonstrated, with dynamical networks we can
track trial-by-trial or event-by-event changes in population dynamics. For long record-
ings of spontaneous activity, building dynamical networks in time-windows slid over the
recorded data allows us to track hidden shifts underlying global dynamics (Humphries,
2011). On slower time-scales, we can track changes during development of neural sys-
tems, either using ex-vivo slices (Dehorter et al., 2011) or in vitro cultures (Downes et al.,
2012; Schroeter et al., 2015). These studies of development have all shown how maturing
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neuronal networks move from seemingly random connectivity to a structured network.

Other tools from network theory could be readily re-purposed to track neural popu-
lation dynamics. The growing field of network comparison uses distributions of network
properties to classify networks (Guimera et al., 2007; Onnela et al., 2012). A particularly
promising basis for comparison is the distributions of motifs (or graphlets) in the networks
(Przulj, 2007). Re-purposed to track changes in dynamical networks, by comparing motif
distributions between time-points, these would provide tangible evidence of changes to the
information flow in a neural system. Ongoing developments in temporal networks (Holme,
2015) — networks that include links between the same nodes at different time-points — and
network-based approaches to change-point detection algorithms (Peel and Clauset, 2014;
Barnett and Onnela, 2016; Darst et al., 2016) also promise powerful yet tractable ways to
track neural population dynamics.

Network theory quantitatively defines computational con-
cepts of neural populations

The mathematical framework of networks can also provide precise quantitative definitions
of important but qualitative theories about neural populations. A striking example is
the theory of neural ensembles (Harris, 2005). An ensemble is qualitatively defined as
a set of neurons who are consistently co-active (Harris, 2005), thereby indicating they
code or compute the same thing. This qualitative definition leaves open key quantitative
questions: what defines co-active, and what defines consistent?

The network theory concept of modularity provides answers to these questions. Many
networks are modular, organised into distinct groups: social networks of friendship groups,
or collaboration networks of scientists. Consequently, the problem of finding modules
within networks in an unsupervised way is an extraordinarily fecund research field (Fortu-
nato and Hric, 2016). Most approaches to finding modules are based on the idea of finding
the division of the network that maximises its modularity ) = {number of links within
a module} - {expected number of such links} (Newman, 2006). Maximising @ thus finds
a division of a network in which the modules are densely linked within themselves, and
weakly linked between them.

Applied to dynamical networks, modularity defines neural ensembles (Humphries,
2011; Billeh et al., 2014; Bruno et al., 2015): groups of neurons that are more co-active
with each other than with any other neurons in the population, given the choice of pair-
wise interaction used. Figure 3 demonstrates this idea using an example recording of 94
neurons from the motor circuit of the sea-slug Aplysia during fictive locomotion (Bruno
et al., 2015). The weight matrix and network view in Figure 3A clearly indicate some
structure within the dynamical network. Applying an unsupervised module-detection al-
gorithm finds a high modularity division of the dynamical network (Figure 3B). When we
plot the 94 spike-trains grouped by their modules in the dynamical network, the presence
of multiple ensembles is clear (Figure 3C).

With this modularity-based approach, we can also easily check how robust these ensem-
bles are to the choice of time-scale of co-activity. When computing pairwise interactions,
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we often have a choice of temporal precision, such as bin-size or Gaussian width (Fig-
ure 1A): choosing small values emphasises spike-time precision; large values emphasise
co-varying firing rates. As shown in Figure 3D, we can also use ) to look for time-scales
at which the population dynamics are most structured (see Humphries, 2011, for more
examples): this view suggests a clear peak time-scale at which the ensembles are struc-
tured. Nonetheless, we can also see a consistent set of modules at all time-scales: the
weight matrix W at the smallest and largest Gaussian width are similar (Figure 3E); and
the majority of neurons are placed in the same group at every time-scale (Figure 3F).
Modularity not only defines ensembles, but also lets us quantify their time-scales and find
consistent structure across time-scales.

As a final step, we can now quantitatively define a Hebbian cell assembly (Holtmaat
and Caroni, 2016). By definition, a cell assembly is an ensemble of neurons that become
co-active because of synaptic changes between them during learning. Thus, by combining
the ideas of tracking dynamical networks and of module detection, we can test for the
formation of assemblies: if we find dynamical network modules that appear during the
course of learning, then we have identified potential cell assemblies.

Outlook

The dynamics of neural populations are emergent properties of the wiring within their
microcircuits. We can of course use network theory to describe physical networks of the
microcircuit too (Humphries et al., 2006; Lee et al., 2016; Schroeter et al., 2017), gaining
insight into the mapping from wiring to dynamics. But dynamical networks need not
map to any circuit. Indeed while dynamical networks are constrained by their underlying
physical connections, they can change faster than their corresponding physical networks.
A clear example is with the actions of neuromodulators - these can increase or decrease
the effective strength of connections between neurons and the responsiveness of individual
neurons (Nadim and Bucher, 2014), so changing the dynamical network without changing
the underlying physical network. More broadly, rapid, global changes in brain state can
shift the dynamics of a neural population (Zagha and McCormick, 2014). Thus, dynamical
networks describing the simultaneous activity of multiple neurons capture the moment-
to-moment changes in circuit dynamics.

Our motivation for turning to network theory as a toolbox for systems neuroscience is
rooted in the extraordinarily rapid advances in recording technology, now scaling to hun-
dreds or thousands of simultaneously recorded neurons (Stevenson and Kording, 2011).
Capturing whole nervous systems will require scaling by further orders of magnitude
(Ahrens et al., 2012; Lemon et al., 2015). And here is where network theory has its
most striking advantage: these tools have been developed to address social and technolog-
ical networks of millions of nodes or more, so easily scale to systems neuroscience problems
now and in the foreseeable future.

This is not a one-way street. Systems neuroscience poses new challenges for network
theory. Most network theory studies concern a handful of static or slowly changing data
networks. Neural populations have non-stationary dynamics, that change rapidly com-
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Figure 3: Defining and detecting neural ensembles using network theory.

A) A dynamical network of population dynamics during crawling in Aplysia. The weight matrix
(top) and network view (bottom) for a simultaneous recording of 94 neurons during 90 seconds
from the initiation of crawling (from the experimental protocol of Bruno et al., 2015). Weights
are rectified Pearson’s R between pairs of neurons convolved with a Gaussian of o = 0.306 s. B)
Modules within the dynamical network. Coloured nodes indicate different modules found within
the dynamical network using an unsupervised consensus module-detection algorithm (Bruno et al.,
2015). Placement of the modules reflects the similarity between them (Traud et al., 2009). C)
Raster plot of the corresponding spike-trains, grouped according to the modules in panel B. The
detection of multiple neural ensembles is evident. D) Dependence of the modular structure on
the time-scale of correlation. Smaller Gaussian o detects precise spike-timing; larger o detects
co-variation in firing rates. Circle: time-scale used in panels A-C. E) Weights matrices for the
smallest and largest time-scale used for the Gaussian convolution. F) Stability of modules over
time-scales. The confusion matrix showing for each pair of neurons the proportion of time-scales
for which that pair was placed in the same module. The majority of neuron pairs were placed in
the same module at every time-scale.

pared to the temporal resolution of our recordings. And systems neuroscience analysis
requires quantitatively comparing multiple defined networks within and between brain
regions, within and between animals, and across experimental conditions - stimuli, de-
cisions, and other external changes. Bringing network theory to bear on challenges in
systems neuroscience will thus create a fertile meeting of minds.
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Supportive Information

Visualisations and analyses here drew on a range of open-source MATLAB (Mathworks,
NA) toolboxes:

e Brain Connectivity Toolbox (Rubinov and Sporns, 2010): https://sites.google.
com/site/bctnet/

e Network visualisations used the MATLAB code of Traud et al. (2009), available here:
http://netwiki.amath.unc.edu/VisComms. This also the needs MatlabBGL li-
brary: http://uk.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl.
Mac OSX 64-bit users will need this version: https://dgleich.wordpress.com/
2010/07/08/matlabbgl-osx-64-bit/

e Spike-Train Communities Toolbox (Humphries, 2011; Bruno et al., 2015): https:
//github.com/mdhumphries/SpikeTrainCommunitiesToolBox
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