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ABSTRACT

Systems neuroscience is in a head-long rush to record from as many neurons at the same
time as possible. As the brain computes and codes using neuron populations, it is hoped
these data will uncover the fundamentals of neural computation. But with hundreds,
thousands, or more simultaneously recorded neurons comes the inescapable problems of
visualising, describing, and quantifying their interactions. Here I argue that network
science provides a set of scalable, analytical tools that already solve these problems. By
treating neurons as nodes and their interactions as links, a single network can visualise
and describe an arbitrarily large recording. I show that with this description we can
quantify the effects of manipulating a neural circuit, track changes in population dynamics
over time, and quantitatively define theoretical concepts of neural populations such as cell
assemblies. Using network science as a core part of analysing population recordings will
thus provide both qualitative and quantitative advances to our understanding of neural
computation.

Neurons use spikes to communicate (Rieke, Warland, de Ruyter van Stevninck, & Bialek,
1999). From this communication arises coding and computation within the brain; and so
arises all thought, perception, and deed. Understanding neural circuits thus hinges criti-
cally on understanding spikes across populations of neurons (Pouget, Beck, Ma, & Latham,
2013; Wohrer, Humphries, & Machens, 2013; Yuste, 2015).

This idea has driven a technological arms race in systems neuroscience to record from
as many individual neurons at the same time as physically possible (Stevenson & Kording,
2011). Current technology, ranging from imaging of fluorescent calcium-binding proteins
(Chen et al., 2013; Dupre & Yuste, 2017; S. Peron, Chen, & Svoboda, 2015; S. P. Peron,
Freeman, Iyer, Guo, & Svoboda, 2015) and voltage-sensitive dyes (Briggman, Abarbanel, &
Kristan, 2005; Bruno, Frost, & Humphries, 2015; Frady, Kapoor, Horvitz, & Kristan, 2016)
to large scale multi-electrode arrays and silicon probes (Buzsaki, 2004; Jun et al., 2017),
now allows us to simultaneously capture the activity of hundreds of neurons in a range
of brain systems. These systems include such diverse systems as invertebrate locomotion,
through zebrafish oculomotor control, to executive functions in primate prefrontal cortex.
With the data captured, the key question for any system becomes: how do we describe
these spike data? Visualise them? And how do we discover the coding and computations
therein?
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Here I argue that network science provides a set of tools ideally suited to both describe
the data and discover new ideas within it. Networks are simply a collection of nodes and
links: nodes representing objects, and links representing the interactions between those ob-
jects. This representation can encapsulate a wide array of systems, from email traffic within
a company, through the social groups of dolphins, to word co-occurrence frequencies in a
novel (Newman, 2003). By abstracting these complex systems to a network description,
we can describe their topology, compare them, and deconstruct them into their component
parts. Moreover, we gain access to a range of null models for testing hypotheses about a
network’s structure and about how it changes. I will demonstrate all these ideas below.

First, an important distinction. Networks capture interactions as links, but these links do
not necessarily imply physical connections. In some cases, such as the network of router-
level connections of the Internet or a power-grid, the interaction network follows exactly a
physical network. In somes cases, such as a Facebook social network, there is no physical
connection between the nodes. In other cases, of which neuroscience is a prime exam-
ple, the interactions between nodes are shaped and constrained by the underlying physical
connections, but are not bound to them. We shall touch on this issue of distinguishing
interactions from physical connections throughout.

DESCRIBING MULTI-NEURON DATA AS A NETWORK

A network description of multi-neuron recording data rests on two ideas: the nodes are the
neurons, and the links are the interactions between the neurons (Figure 1A). Strictly speak-
ing, the nodes are the isolated time-series of neural activity, whether spike-trains, calcium
fluorescence, or voltage-dye expression (with the usual caveats applied to the accuracy
of spike-sorting for electrodes or image segmentation and stability for imaging; Harris,
Quiroga, Freeman, & Smith, 2016). An immediate advantage of a network formalism is
that it separates the details of choosing the interaction from the network topology itself -
whatever measure of interaction we chose, the same topological analyses can be applied.

We are free to choose any measure of pairwise interaction we like; and indeed that choice
depends on what questions we want to ask of the data. Typical choices include cosine simi-
larity or a rectified correlation coefficient, as these linear measures are familiar, easy to inter-
pret, and not data-intensive. But with sufficient data we could also use non-linear measure-
ments of interaction including forms of mutual information (Bettencourt, Stephens, Ham,
& Gross, 2007; Singh & Lesica, 2010) and transfer entropy (Nigam et al., 2016; Schreiber,
2000; Thivierge, 2014). We could fit an Ising model, so estimating “direct” interactions
while factoring out other inputs (S. Yu, Huang, Singer, & Nikolic, 2008). We could even fit
a model to each neuron for the generation of its activity time-series, such as a generalised
linear model (Pillow et al., 2008; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005),
and use the fitted weights of the inputs from all other neurons as the interaction values in a
network (Gerhard, Pipa, Lima, Neuenschwander, & Gerstner, 2011). In addition, there is a
large selection of interaction measures specific for spike-trains (e.g. Lyttle & Fellous, 2011;
van Rossum, 2001; Victor & Purpura, 1996), whose use in defining interaction networks
has yet to be well explored. And we should always be mindful that measures of pairwise
interaction alone cannot distinguish between correlations caused by common input from
unrecorded neurons and correlations caused by some direct contact between the recorded
neurons.
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Figure 1. Quantifying neural population dynamics using network science.

A) Schematic of turning neural activity time-series into a network. Left: a raster plot of 52 simultaneously recorded neurons in rat medial
prefrontal cortex, during a single trial of a maze navigation task. Right: the corresponding network representation: nodes are neurons,
links indicate pairwise interactions, and their grey-scale indicates the strength of interaction. Top: Interactions here are rectified Pearson’s
R (setting R < 0 to 0) between pairs of spike-trains convolved with a Gaussian (¢ = 250 ms); two example convolved trains are plotted
here. B) Representations of the network in panel A: the adjacency matrix describes the presence (black) or absence (white) of links; the
weight matrix describes the strengths of those links. Neurons are ranked by total link strength in descending order. Above each we give
the global efficiency (Eff) and average clustering coefficient (C), respectively measuring the ease of getting from one node to another,
and the density of links in the neighbourhood of one node. C) Distributions of node degree (total number of links per node), node
strength (total weight of links per node), and link strength for the network in panel A. D) Network clustering fingerprint. A histogram
of the weighted clustering coefficient for each neuron, measuring the ratio of weighted triangles to weighted triples in which that neuron
participates: the higher the ratio, the more strongly connected is the neighbourhood of that neuron. Some neurons (e.g. 2, 5) have strongly
connected neighbourhoods, implying a local group of correlated neurons. E) Network efficiency fingerprint, given by the decrease in the
network’s global efficiency after deleting each neuron in turn. Neurons that strongly decrease the efficiency (e.g. 3) are potential network
hubs, mediating interactions between many neurons.

Whatever measure of interaction we use, the important distinction is between whether
the interaction measurement is undirected (e.g. the correlation coefficient) or directed (e.g.
transfer entropy), and so whether we end up with an undirected or directed network as
a result (throughout this paper I consider only symmetric measures of interaction, and
hence undirected networks). And we end up with a weighted network (Newman, 2004).
While much of network science, and its applications in neuroscience, is focussed on binary
networks in which a link either exists or it doesn’t, any measurement of interaction gives us
a weight for each link (Figure 1B). Thresholding the weights to construct a binary network
inevitably loses information (Humphries, 2011; Zanin et al., 2012). Consequently, multi-
neuron recording data are best captured in a weighted network.
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This weighted network of interactions between neurons need not map to any physical
network of connections between neurons. The synaptic connections between neurons in
a circuit shape and constrain the dynamics of those neurons, which we capture as popu-
lation activity in multi-neuron recordings. But interactions can change independently of
the physical network, both because the firing of a single neuron requires inputs from many
other neurons, and because physical connections can be modulated on fast time-scales,
such as short-term plasticity temporarily enhancing or depressing the strength of a synapse.
Nonetheless, because physical connections between neurons constrain their dynamics, so
sustained changes in interactions on time-scales of minutes and hours are evidence of some
physical change to the underlying circuit (Baeg et al., 2007; Carrillo-Reid, Yang, Bando, Pe-
terka, & Yuste, 2016; Grewe et al., 2017; Laubach, Wessberg, & Nicolelis, 2000; Yamada
etal., 2017).

The use of network science to describe interactions between neural elements has been
growing in cognitive neuroscience for a decade, and widely used to analyse EEG, MEG, and
fMRI time-series data (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; Bassett &
Bullmore, 2016; Bullmore & Sporns, 2009). Neuroimaging has long used the unfortunate
term “functional networks”, with its connotations of causality and purpose, to describe the
network of pairwise correlations between time-series of neural activity. To avoid any se-
mantic confusion, and distinguish the networks of interactions from the underlying physi-
cal network, I will describe the network of single neuron interactions here as a “dynamical”
network.

What can we do with such dynamical networks of neurons? In the following I show
how with them we can quantify circuit-wide changes following perturbations and manip-
ulations; we can track changes in dynamics over time; and we can quantitatively define
qualitative theories of computational concepts.

CAPTURING POPULATION DYNAMICS AND THEIR CHANGES BY MANIPULA-
TIONS

Applying network science to large-scale recordings of neural systems allows us to capture
their complex dynamics in a compact form. The existing toolbox of network science gives
us a plethora of options for quantifying the structure of a dynamical network. We may sim-
ply quantify its degree and strength distributions (Figure 1C), revealing dominant neurons
(Dann, Michaels, Schaffelhofer, & Scherberger, 2016; Nigam et al., 2016). We can assess the
local clustering of the dynamical network, the proportion of a neuron’s linked neighbours
that are also strongly linked to each other (Watts & Strogatz, 1998; Figure 1D), revealing the
locking of dynamics among neurons (Bettencourt et al., 2007; Sadovsky & MacLean, 2013).
We can compute the efficiency of a network (Latora & Marchiori, 2001), a measure of how
easily a network can be traversed (Figure 1E), revealing how cohesive the dynamics of a
population are - the higher the efficiency, the more structured the interactions amongst the
entire population (Thivierge, 2014). We may define structural measures relative to a null
model, such as quantifying how much of a small-world the dynamical network is (Dann
etal.,, 2016; Gerhard etal.,, 2011; S. Yu et al.,, 2008). Our choice of quantifying measures
depends on the aspects of dynamics we are most interested in capturing.

Having compactly described the dynamics, we are well-placed to then characterise the
effects of manipulating that system. Manipulations of a neural system will likely cause
system-wide changes in its dynamics. Such changes may be the fast, acute effect of optoge-
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netic stimulation (Boyden, 2015; Deisseroth, 2015; Miesenbock, 2009); the sluggish but
acute effects of drugs (Vincent, Tauskela, Mealing, & Thivierge, 2013); or the chronic effects
of neurological damage (Otchy et al., 2015). All these manipulations potentially change the
interactions between neurons, disrupting normal computation. By comparing the dynami-
cal networks before and after the manipulation, one could easily capture the changes in the
relationships between neurons.

There have been few studies examining this idea. Srinivas, Jain, Saurav, and Sikdar
(2007) used dynamical networks to quantify the changes to network-wide activity in hip-
pocampus caused by the glutamate-injury model of epilepsy, suggesting a dramatic drop in
network clustering in the epilepsy model. Vincent et al. (2013) used dynamical networks to
quantify the potential neuroprotective effects of drug pre-conditioning in rat cortex in vitro,
finding increased clustering and increased efficiency in the network over days, implying
the drugs enriched the synaptic connections between groups of neurons. Quantifying ma-
nipulations using network science is an under-explored application, rich in potential.

TRACKING THE EVOLUTION OF DYNAMICS

Neural activity is inherently non-stationary, with population activity moving between dif-
ferent states on a range of time-scales, from shifting global dynamics on time-scales of sec-
onds (Zagha & McCormick, 2014), to changes wrought by learning on time-scales of min-
utes and hours (Benchenane et al., 2010; Huber et al., 2012). For a tractable understanding
of these complex changes, ideally we would like a way describe the entire population’s
dynamics with as few parameters as possible. A recent example of such an approach is
population coupling, the correlation over time between a single neuron’s firing rate and
the population average rate (Okun et al., 2015). But with dynamical networks we can use
the same set of tools above, and more, to easily track changes to the population activity in
time.

Figure 2 illustrates the idea of tracking non-stationary activity with data from a study
by Peyrache, Khamassi, Benchenane, Wiener, and Battaglia (2009). Rats were required to
learn rules in a Y-maze to obtain reward. I use here a single session in which a rat learned
the rule “go to the cued arm” (Figure 2A); 52 simultaneously recorded neurons from me-
dial prefrontal cortex were active in every trial of this session. As the rat learned the rule
in this session, and activity in medial prefrontal cortex is known to represent changes in
behavioural strategy (Durstewitz, Vittoz, Floresco, & Seamans, 2010; Karlsson, Tervo, &
Karpova, 2012; Powell & Redish, 2016), we might reasonably expect the population ac-
tivity to evolve during rule-learning. Visualising trial-by-trial changes using dynamical
networks (built as in Figure 1A) shows a stabilisation of the interactions between neurons
over trials (Figure 2B). Quantifying this by correlating weight matrices on consecutive trials
(Figure 2C), confirms there was a rapid stabilisation of neuron interactions at the start of
this learning session. Plotting the total weight or total number of links in the network over
trials (Figure 2D) shows that this stabilisation of the dynamical network was not a simple
consequence of a global stabilisation of the interactions between neurons. These analy-
ses thus track potentially learning-induced changes in the population activity of prefrontal
cortex.

We can also use these data to illustrate the benefits we accrue from the null models in
network science. These models define the space of possible networks obtained by some
stochastic process. Classically, the null model of choice was the Erdos-Renyi random net-
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Figure 2. Tracking changes in neural population dynamics using network science.

A) Recordings examined here are from one behavioural session of a Y-maze learning task. For
this session, the rat had to reach the end of the randomly-cued arm to receive reward (schematic,
top). This session showed evidence of behavioural learning (bottom), with a sustained increase
in reward accumulation after trial 10 (grey line). A trial lasted typically 70 s, running from the
rat leaving the start position through reaching the arm end and returning to the start position
to initiate the next trial. The population activity from a single trial is shown in Fig. 1A. B)
Dynamical networks from trials 1, 5 and 20 of that session. The top row plots the networks, with
nodes as neurons and greyscale links indicating the strength of pairwise interaction. The bottom
row plots the corresponding weight matrix (ordered by total node strength in trial 1 throughout).
The networks show a clear re-organisation of interactions between neurons during learning. C)
Tracking network stability. The correlation between the weight matrix W at trial ¢ and at trial
t — 1. The dynamical network rapidly increased in similarity over the first few trials. Grey line:
behavioural learning trial. D) Changes in total weight (red) and total number of links (blue) over
trials. E) Clustering coefficient of the weighted network ("Data’) on each trial; compared to the
mean clustering coefficient over 20 null model weighted networks per trial ('Null Model’). F)
Excess clustering in the data compared to the null model on each trial (data in panel E expressed
as a ratio: 100 X Cgata/Cmodel)- The variation across trials in the data is well-accounted for by
the null model, suggesting the average local clustering did not change over learning.

work, which assumes a uniform probability of a link falling between any pair of nodes. As
few if any real-world networks can be described this way, more detailed null models are
now available. One common example is the configuration model (Chung & Lu, 2002; Fos-
dick, Larremore, Nishimura, & Ugander, 2016), in which we assume connections between
nodes are made proportional to the number of links they already have. This model, ap-
plied to neural time-series, is a null model for testing whether the existence of interactions
between a pair of neurons is simply a result of those neurons having many interactions.
Other null model networks include the exponential random graph model (Robins, Patti-
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sona, Kalisha, & Lushera, 2007), or the stochastic block model and its variants (Newman
& Martin, 2014). In general, network null models allow us to test whether features of our
dynamical networks exceed those expected by stochastic variation alone.

We use the example of determining whether or not there is a change in the clustering
of interactions between neurons over this example learning session. Figure 2D plots the
average clustering coefficient for the dynamical networks, and we can see that it varies
across trials. We can compare this to a suitable null model; here I use a null model that con-
serves node strength, but randomly re-assigns the set of weights between nodes (Rubinov
& Sporns, 2011). Plotting the average clustering coefficient for this null model on each trial
shows that the clustering in the data-derived dynamical networks is well in excess of that
predicted by the null model: the interactions between groups of three neurons are more
dense than predicted by just their total interactions with all neurons.

But the null model also shows that the average local clustering does not change over
learning. The ratio of the data and model clustering coefficients is approximately constant
(Figure 2E), showing that trial-by-trial variation in clustering is largely accounted for by
variations in the overall interactions between neurons (one source of these might be finite-
size effects in estimating the interactions on trials of different durations). So we can con-
clude that changes over learning in this population of neurons reflected a local reorganisa-
tion (Figure 2B) and stabilisation (Figure 2C) of interactions, but which did not change the
population-wide distribution of clustering.

The rich potential for tracking dynamics with the readily-available metrics of network
science has not yet been tapped. As just demonstrated, with dynamical networks we can
track trial-by-trial or event-by-event changes in population dynamics. For long record-
ings of spontaneous activity, building dynamical networks in time-windows slid over the
recorded data allows us to track hidden shifts underlying global dynamics (Humphries,
2011). On slower time-scales, we can track changes during development of neural sys-
tems, either using ex-vivo slices (Dehorter et al., 2011) or in vitro cultures (Downes et al.,
2012; M. S. Schroeter, Charlesworth, Kitzbichler, Paulsen, & Bullmore, 2015). These stud-
ies of development have all shown how maturing neuronal networks move from seemingly
randomly-distributed interactions between neurons to a structured set of interactions, po-
tentially driven by changes to the underlying connections between them.

Other tools from network science could be readily re-purposed to track neural popu-
lation dynamics. The growing field of network comparison uses distributions of network
properties to classify networks (Guimera, Sales-Pardo, & Amaral, 2007, Onnela et al.,
2012; Przulj, 2007; Wegner, Ospina-Forero, Gaunt, Deane, & Reinert, 2017). A particularly
promising basis for comparison is the distributions of motifs (or graphlets) in the networks
(Przulj, 2007). Re-purposed to track changes in dynamical networks, by comparing motif
distributions between time-points, these would provide tangible evidence of changes to the
information flow in a neural system.

Ongoing developments in temporal networks (Holme, 2015) and network-based ap-
proaches to change-point detection algorithms (Barnett & Onnela, 2016; Darst et al., 2016;
Peel & Clauset, 2014) also promise powerful yet tractable ways to track neural popula-
tion dynamics. Temporal networks in particular offer a ranges of formalisms for tracking
changes through time (Holme, 2015). In one approach, interaction networks for each slice
of time are coupled by links between the same node in adjacent time-slices; this allows test-
ing for how groups of nodes evolve over time, constrained by their groups in each slice of
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time (Bassett et al., 2011; Mucha, Richardson, Macon, Porter, & Onnela, 2010). A range
of null models are available for testing the evolution of networks in this time-slice repre-
sentation (Bassett et al., 2013). But such a representation requires coarse-graining of time
to capture the interactions between all nodes in each time-slice. An alternative approach
is to define a network per small time-step, comprising just the interactions that exist at
each time-step (Holme, 2015; Thompson, Brantefors, & Fransson, 2016), and then intro-
duce the idea of reachability: that one node is reachable from another if they both link to
an intermediate node on different time-steps. With this representation, standard network
measures such as path-lengths, clustering, and motifs can be easily generalised to include
time (Thompson et al.,, 2016). Thus, a network description of multi-neuron activity need
not just be a frozen snapshot of interactions, but can be extended to account for changes in
time.

NETWORK THEORY QUANTITATIVELY DEFINES COMPUTATIONAL CONCEPTS
OF NEURAL POPULATIONS

The mathematical framework of networks can also provide precise quantitative definitions
of important but qualitative theories about neural populations. A striking example is the
theory of neural ensembles (Harris, 2005). An ensemble is qualitatively defined as a set
of neurons that are consistently co-active (Harris, 2005), thereby indicating they code or
compute the same thing. This qualitative definition leaves open key quantitative questions:
what defines co-active, and what defines consistent?

The network science concept of modularity provides answers to these questions. Many
networks are modular, organised into distinct groups: social networks of friendship groups,
or collaboration networks of scientists. Consequently, the problem of finding modules
within networks in an unsupervised way is an extraordinarily fecund research field (Fortu-
nato & Hric, 2016). Most approaches to finding modules are based on the idea of finding
the division of the network that maximises its modularity Q = {number of links within a
module} - {expected number of such links} (Newman, 2006). Maximising Q thus finds
a division of a network in which the modules are densely linked within themselves, and
weakly linked between them.

Applied to dynamical networks, modularity defines neural ensembles (Billeh, Schaub,
Anastassiou, Barahona, & Koch, 2014; Bruno et al.,, 2015, Humphries, 2011): groups of
neurons that are more co-active with each other than with any other neurons in the popu-
lation, given the choice of pairwise interaction used. Figure 3 demonstrates this idea using
an example recording of 94 neurons from the motor circuit of the sea-slug Aplysia during
fictive locomotion (Bruno et al., 2015). The weight matrix and network view in Figure 3A
clearly indicate some structure within the dynamical network. Applying an unsupervised
module-detection algorithm finds a high modularity division of the dynamical network
(Figure 3B). When we plot the 94 spike-trains grouped by their modules in the dynamical
network, the presence of multiple ensembles is clear (Figure 3C).

With this modularity-based approach, we can also easily check how robust these ensem-
bles are to the choice of time-scale of co-activity. When computing pairwise interactions, we
often have a choice of temporal precision, such as bin-size or Gaussian width (Figure 1A):
choosing small values emphasises spike-time precision; large values emphasise co-varying
firing rates. As shown in Figure 3D, we can also use Q to look for time-scales at which the
population dynamics are most structured (Humphries, 2011): this view suggests a clear
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Figure 3. Defining and detecting neural ensembles using network science.

A) A dynamical network of population dynamics during crawling in Aplysia. The weight matrix
(top) and network view (bottom) for a simultaneous recording of 94 neurons during 90 seconds
from the initiation of crawling (from the experimental protocol of Bruno et al., 2015). Weights
are rectified Pearson’s R between pairs of neurons convolved with a Gaussian of ¢ = 0.306 s (us-
ing the median inter-spike interval of the recording as an initial guide to time-scale, as in Bruno
etal., 2015). B) Modules within the dynamical network. Coloured nodes indicate different mod-
ules found within the dynamical network using an unsupervised consensus module-detection
algorithm (Bruno et al., 2015). Placement of the modules reflects the similarity between them
(Traud et al., 2009). C) Raster plot of the corresponding spike-trains, grouped according to
the modules in panel B. The detection of multiple neural ensembles is evident. D) Dependence
of the modular structure on the time-scale of correlation. Smaller Gaussian o detects precise
spike-timing; larger o detects co-variation in firing rates. Circle: time-scale used in panels A-C.
E) Weight matrices for the smallest and largest time-scale used for the Gaussian convolution.
Neurons are plotted in descending order of total weight in the shorter time-scale. F) Stability of
modules over time-scales. The confusion matrix showing for each pair of neurons the proportion
of time-scales for which that pair was placed in the same module. The majority of neuron pairs
were placed in the same module at every time-scale. G)-I) Comparable analysis for the medial
prefrontal cortex data. G) Dependence of Q on the time-scale of correlation, for every trial in one
session (from Fig. 2). Black: learning trial; red: pre-learning trial; blue: post-learning trial. H) As
for panel E, for the learning trial of the medial prefrontal cortex data. I) As for panel F, for the
learning trial.
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peak time-scale at which the ensembles are structured. Nonetheless, we can also see a con-
sistent set of modules at all time-scales: the weight matrix W at the smallest and largest
Gaussian width are similar (Figure 3E); and the majority of neurons are placed in the same
group at every time-scale (Figure 3F). Modularity not only defines ensembles, but also lets
us quantify their time-scales and find consistent structure across time-scales.

The complexity of the population activity will determine whether a consistent set of en-
sembles appears across time-scales, or whether there are different ensembles at different
time-scales (see Humphries, 2011, for more examples). We can see this when running
the same module-detection analysis on a session from the medial prefrontal cortex data
(Figure 3G-I). For this cortical data there are modules present at every time-scale, but no
consistent time-scale at which the neural activity is most structured (Figure 3G-H). Conse-
quently, there is not a consistent set of modules across time-scales (Figure 3I). Such multi-
scale structure is potentially a consequence of the order-of-magnitude distribution in firing
rates (Dann et al., 2016; Wohrer et al., 2013), for which more work is needed on suitable
measures of interaction. Clearly, such multi-scale structure means that tracking changes in
the structure of population activity should be done at a range of time-scales, and compar-
isons made based on similar time-scales.

As a final step, we can now quantitatively define a Hebbian cell assembly (Holtmaat &
Caroni, 2016). By definition, a cell assembly is an ensemble of neurons that become co-
active because of changes to synaptic connections into and between them during learning
(Carrillo-Reid et al., 2016). Thus, by combining the ideas of tracking dynamical networks
and of module detection, we can test for the formation of assemblies: if we find dynam-
ical network modules that appear during the course of learning, then we have identified
potential cell assemblies.

OUTLOOK

The dynamics of neural populations are emergent properties of the wiring within their
microcircuits. We can of course use network science to describe physical networks of the
microcircuit too (Humphries, Gurney, & Prescott, 2006; Lee et al., 2016; M. Schroeter,
Paulsen, & Bullmore, 2017), gaining insight into the mapping from wiring to dynamics.
But dynamical networks need not map to any circuit. Indeed while dynamical networks
are constrained by their underlying physical connections, they can change faster than their
corresponding physical networks. A clear example is with the actions of neuromodulators -
these can increase or decrease the effective strength of connections between neurons and the
responsiveness of individual neurons (Nadim & Bucher, 2014), so changing the dynamical
network without changing the underlying physical network. More broadly, rapid, global
changes in brain state can shift the dynamics of a neural population (Zagha & McCormick,
2014). Thus, dynamical networks describing the simultaneous activity of multiple neurons
capture the moment-to-moment changes in population dynamics.

There are of course other analysis frameworks for visualising and describing the activity
of large neural populations. The detection of neural ensembles is an unsupervised cluster-
ing problem, for which a number of neuroscience-specifc solutions exist (Feldt, Waddell,
Hetrick, Berke, & Zochowski, 2009; Fellous, Tiesinga, Thomas, & Sejnowski, 2004; Lopes-
dos Santos, Conde-Ocazionez, Nicolelis, Ribeiro, & Tort, 2011; Russo & Durstewitz, 2017).
Some advantages of network science here are that the detection of ensembles is but one ap-
plication of the same representation of the population activity; that a range of null models is
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available for testing hypotheses of clustering; and that the limitations of module-detection
are well established, allowing comparatively safe interpretation of the results (Fortunato
& Hric, 2016; Good, de Montjoye, & Clauset, 2010). More generally, analyses of neu-
ral population recordings have used dimension reduction approaches in order to visualise
and describe the dynamics of the population (Cunningham & Yu, 2014; Pang, Lansdell, &
Fairhall, 2016). As discussed in Box 1, both network and dimension-reduction approaches
offer powerful, complementary views of complex neural dynamics.

Box 1. Networks and dimension-reduction approaches

Dimension reduction approaches to neural population recordings aim to find a compact description
of the population’s activity using many fewer variables than neurons (Pang et al., 2016). Typical
approaches include principal components analysis (PCA) and factor analysis, both of which aim to
find a small set of dimensions in which the population activity can be described with minimal loss of
information (Ahrens et al., 2012; Bartho, Curto, Luczak, Marguet, & Harris, 2009; Briggman et al.,
2005; Bruno et al.,, 2015; Kato et al., 2015; Levi, Varona, Arshavsky, Rabinovich, & Selverston,
2005; Mazor & Laurent, 2005; Wohrer et al., 2013). More complex variants of these standard
approaches can cope with widely-varying time-scales in cortical activity (B. M. Yu et al., 2009), or aim
to decompose multiplexed encodings of stimulus variables by the population’s activity into different
dimensions (Kobak et al., 2016).

Both network and standard dimension reduction approaches have in common the starting point of a
pairwise interaction matrix. PCA, for example, traditionally uses the covariance matrix as its starting
point. Consequently, both approaches assume that the relationships between neurons are static
over the duration of the data from which the matrix is constructed. (This assumption is also true for
dimension reduction methods that fit generative models, such as independent components analysis,
as fitting the model also assumes stationarity over the duration of the data).

Where the approaches diverge is in their advantages and limitations. Dimension reduction ap-
proaches offer the advantage of easy visualisation of the trajectories of the population activity over
time. This in turn allows for potentially strong qualitative conclusions, either about the conditions un-
der which the trajectories differ — such as in encoding different stimuli (Kobak et al., 2016; Mazor &
Laurent, 2005) or making different decisions (Briggman et al., 2005; Harvey, Coen, & Tank, 2012)
— or about the different states repeatedly visited by the population during movement (Ahrens et al.,
2012; Kato et al.,, 2015; B. M. Yu et al., 2009). By contrast, there are not yet well-established ways
of drawing quantitative conclusions from standard dimension reduction approaches, nor of how to
track changes in the population dynamics over time, such as through learning. Further, while reduc-
ing the dimensions down to just those accounting for a high proportion of the variance (or similar) in
the population activity can remove noise, it also risks removing some of the higher-dimensional, and
potentially informative, dynamics in the population. Finally, to date, most applications of dimension
reduction approaches have been based on just the pairwise covariance or correlation coefficient.

As | have demonstrated here, network-based approaches take a different slant on simplifying complex
dynamics. The network description maintains a representation of every neuron, and so potentially
captures all dynamical relationships that might be removed by dimension reduction. It is simple to use
any measure of pairwise interaction, without changing the analysis. Quantitative analyses of either
static (Figure 1) or changing (Figure 2) population activity is captured in simple, compact variables.
And we have access to a range of null models for testing the existence of meaningful interactions
between neurons and changes to those interactions. However, interpreting some of these quantifying
variables, such as efficiency, in terms of neural activity is not straightforward. And it is not obvious


https://doi.org/10.1101/115485
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/115485; this version posted May 8, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

how to visualise trial-by-trial population activity, nor how to draw qualitative conclusions about different
trajectories or states of the activity. Consequently, combining both network and dimension-reduction
approaches could offer complementary insights into a neural population’s dynamics (Bruno et al.,
2015).

One motivation for turning to network science as a toolbox for systems neuroscience
is rooted in the extraordinarily rapid advances in recording technology, now scaling to
hundreds or thousands of simultaneously recorded neurons (Stevenson & Kording, 2011).
Capturing whole nervous systems of even moderately complex animal models will require
scaling by further orders of magnitude (Ahrens et al., 2012; Lemon et al., 2015). And here
is where network science has its most striking advantage: these tools have been developed
to address social and technological networks of millions of nodes or more, so easily scale to
systems neuroscience problems now and in the foreseeable future.

This is not a one-way street. Systems neuroscience poses new challenges for network
science. Most studies in network science concern a handful of static or slowly changing
data networks. Neural populations have non-stationary dynamics, that change rapidly
compared to the temporal resolution of our recordings. And systems neuroscience analysis
requires quantitatively comparing multiple defined networks within and between brain re-
gions, within and between animals, and across experimental conditions - stimuli, decisions,
and other external changes. More work is needed, for example, on appropriate null models
for weighted networks (Palowitch, Bhamidi, & Nobel, 2016, Rubinov & Sporns, 2011).
Bringing network science to bear on challenges in systems neuroscience will thus create a
fertile meeting of minds.

SUPPORTIVE INFORMATION

Visualisations and analyses here drew on a range of open-source MATLAB (Mathworks,
NA) toolboxes:

= Brain Connectivity Toolbox (Rubinov & Sporns, 2010): https://sites.google
.com/site/bctnet/

= Network visualisations used the MATLAB code of Traud et al. (2009), available here:
http://netwiki.amath.unc.edu/VisComms. This also the needs MatlabBGL
library: http://uk.mathworks.com/matlabcentral/fileexchange/10922
—matlabbgl. Mac OSX 64-bit users will need this version: https://dgleich
.wordpress.com/2010/07/08/matlabbgl-osx—64-bit/

= Spike-Train Communities Toolbox (Bruno et al., 2015; Humphries, 2011): https://

github.com/mdhumphries/SpikeTrainCommunitiesToolBox
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